utils: raspberrypi: ctt: Fix pycodestyle E251

E251 unexpected spaces around keyword / parameter equals

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: David Plowman <david.plowman@raspberrypi.com>
This commit is contained in:
Laurent Pinchart 2020-05-02 03:32:00 +03:00
parent 6eb1bce9c7
commit 965cae72a7
6 changed files with 9 additions and 9 deletions

View file

@ -474,7 +474,7 @@ class Camera:
run calibration on all images and sort by slope.
"""
plot = "rpi.noise" in self.plot
noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key = lambda x: x[0])
noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key=lambda x: x[0])
self.log += '\nFinished processing images'
"""
take the average of the interquartile

View file

@ -131,7 +131,7 @@ def alsc(Cam, Img, do_alsc_colour, plot=False):
"""
average the green channels into one
"""
av_ch_g = np.mean((channels[1:2]), axis = 0)
av_ch_g = np.mean((channels[1:2]), axis=0)
if do_alsc_colour:
"""
obtain 16x12 grid of intensities for each channel and subtract black level

View file

@ -27,7 +27,7 @@ def geq_fit(Cam, plot):
data is sorted by green difference and top half is selected since higher
green difference data define the decision boundary.
"""
geqs = np.array(sorted(geqs, key = lambda r: np.abs((r[1]-r[0])/r[0])))
geqs = np.array(sorted(geqs, key=lambda r: np.abs((r[1]-r[0])/r[0])))
length = len(geqs)
g0 = geqs[length//2:, 0]

View file

@ -487,8 +487,8 @@ def get_macbeth_chart(img, ref_data):
"""
clustering = cluster.AgglomerativeClustering(
n_clusters=None,
compute_full_tree = True,
distance_threshold = side*2
compute_full_tree=True,
distance_threshold=side*2
)
mac_mids_list = [x[0] for x in mac_mids]

View file

@ -102,7 +102,7 @@ def noise(Cam, Img, plot):
plt.plot(x, fit_plot_2, label='fit 0 intercept', color='green', ls='--')
plt.plot(0, 0)
plt.title('Noise Plot\nImg: {}'.format(Img.str))
plt.legend(loc = 'upper left')
plt.legend(loc='upper left')
plt.xlabel('Sqrt Pixel Value')
plt.ylabel('Noise Standard Deviation')
plt.grid()

View file

@ -11,7 +11,7 @@ scale = 2
"""
constructs normalised macbeth chart corners for ransac algorithm
"""
def get_square_verts(c_err = 0.05, scale = scale):
def get_square_verts(c_err=0.05, scale=scale):
"""
define macbeth chart corners
"""
@ -57,13 +57,13 @@ def get_square_verts(c_err = 0.05, scale = scale):
# print(square_verts)
return np.array(square_verts, np.float32), mac_norm
def get_square_centres(c_err = 0.05, scale=scale):
def get_square_centres(c_err=0.05, scale=scale):
"""
define macbeth square centres
"""
verts, mac_norm = get_square_verts(c_err, scale=scale)
centres = np.mean(verts, axis = 1)
centres = np.mean(verts, axis=1)
# print('centres')
# print(centres)
return np.array(centres, np.float32)