ipa: raspberrypi: Change to C style code comments

As part of the on-going refactor efforts for the source files in
src/ipa/raspberrypi/, switch all C++ style comments to C style comments.

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Naushir Patuck 2022-07-27 09:55:18 +01:00 committed by Laurent Pinchart
parent 177df04d2b
commit acd5d9979f
55 changed files with 887 additions and 630 deletions

View file

@ -21,8 +21,10 @@ LOG_DEFINE_CATEGORY(RPiAwb)
#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y
// todo - the locking in this algorithm needs some tidying up as has been done
// elsewhere (ALSC and AGC).
/*
* todo - the locking in this algorithm needs some tidying up as has been done
* elsewhere (ALSC and AGC).
*/
void AwbMode::read(boost::property_tree::ptree const &params)
{
@ -107,11 +109,11 @@ void AwbConfig::read(boost::property_tree::ptree const &params)
bayes = false;
}
}
fast = params.get<int>("fast", bayes); // default to fast for Bayesian, otherwise slow
fast = params.get<int>("fast", bayes); /* default to fast for Bayesian, otherwise slow */
whitepointR = params.get<double>("whitepoint_r", 0.0);
whitepointB = params.get<double>("whitepoint_b", 0.0);
if (bayes == false)
sensitivityR = sensitivityB = 1.0; // nor do sensitivities make any sense
sensitivityR = sensitivityB = 1.0; /* nor do sensitivities make any sense */
}
Awb::Awb(Controller *controller)
@ -147,16 +149,18 @@ void Awb::read(boost::property_tree::ptree const &params)
void Awb::initialise()
{
frameCount_ = framePhase_ = 0;
// Put something sane into the status that we are filtering towards,
// just in case the first few frames don't have anything meaningful in
// them.
/*
* Put something sane into the status that we are filtering towards,
* just in case the first few frames don't have anything meaningful in
* them.
*/
if (!config_.ctR.empty() && !config_.ctB.empty()) {
syncResults_.temperatureK = config_.ctR.domain().clip(4000);
syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK);
syncResults_.gainG = 1.0;
syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK);
} else {
// random values just to stop the world blowing up
/* random values just to stop the world blowing up */
syncResults_.temperatureK = 4500;
syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0;
}
@ -171,7 +175,7 @@ bool Awb::isPaused() const
void Awb::pause()
{
// "Pause" by fixing everything to the most recent values.
/* "Pause" by fixing everything to the most recent values. */
manualR_ = syncResults_.gainR = prevSyncResults_.gainR;
manualB_ = syncResults_.gainB = prevSyncResults_.gainB;
syncResults_.gainG = prevSyncResults_.gainG;
@ -186,8 +190,10 @@ void Awb::resume()
unsigned int Awb::getConvergenceFrames() const
{
// If not in auto mode, there is no convergence
// to happen, so no need to drop any frames - return zero.
/*
* If not in auto mode, there is no convergence
* to happen, so no need to drop any frames - return zero.
*/
if (!isAutoEnabled())
return 0;
else
@ -201,11 +207,13 @@ void Awb::setMode(std::string const &modeName)
void Awb::setManualGains(double manualR, double manualB)
{
// If any of these are 0.0, we swich back to auto.
/* If any of these are 0.0, we swich back to auto. */
manualR_ = manualR;
manualB_ = manualB;
// If not in auto mode, set these values into the syncResults which
// means that Prepare() will adopt them immediately.
/*
* If not in auto mode, set these values into the syncResults which
* means that Prepare() will adopt them immediately.
*/
if (!isAutoEnabled()) {
syncResults_.gainR = prevSyncResults_.gainR = manualR_;
syncResults_.gainG = prevSyncResults_.gainG = 1.0;
@ -216,8 +224,10 @@ void Awb::setManualGains(double manualR, double manualB)
void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode,
Metadata *metadata)
{
// On the first mode switch we'll have no meaningful colour
// temperature, so try to dead reckon one if in manual mode.
/*
* On the first mode switch we'll have no meaningful colour
* temperature, so try to dead reckon one if in manual mode.
*/
if (!isAutoEnabled() && firstSwitchMode_ && config_.bayes) {
Pwl ctRInverse = config_.ctR.inverse();
Pwl ctBInverse = config_.ctB.inverse();
@ -226,7 +236,7 @@ void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode,
prevSyncResults_.temperatureK = (ctR + ctB) / 2;
syncResults_.temperatureK = prevSyncResults_.temperatureK;
}
// Let other algorithms know the current white balance values.
/* Let other algorithms know the current white balance values. */
metadata->set("awb.status", prevSyncResults_);
firstSwitchMode_ = false;
}
@ -241,8 +251,10 @@ void Awb::fetchAsyncResults()
LOG(RPiAwb, Debug) << "Fetch AWB results";
asyncFinished_ = false;
asyncStarted_ = false;
// It's possible manual gains could be set even while the async
// thread was running, so only copy the results if still in auto mode.
/*
* It's possible manual gains could be set even while the async
* thread was running, so only copy the results if still in auto mode.
*/
if (isAutoEnabled())
syncResults_ = asyncResults_;
}
@ -250,9 +262,9 @@ void Awb::fetchAsyncResults()
void Awb::restartAsync(StatisticsPtr &stats, double lux)
{
LOG(RPiAwb, Debug) << "Starting AWB calculation";
// this makes a new reference which belongs to the asynchronous thread
/* this makes a new reference which belongs to the asynchronous thread */
statistics_ = stats;
// store the mode as it could technically change
/* store the mode as it could technically change */
auto m = config_.modes.find(modeName_);
mode_ = m != config_.modes.end()
? &m->second
@ -284,7 +296,7 @@ void Awb::prepare(Metadata *imageMetadata)
if (asyncStarted_ && asyncFinished_)
fetchAsyncResults();
}
// Finally apply IIR filter to results and put into metadata.
/* Finally apply IIR filter to results and put into metadata. */
memcpy(prevSyncResults_.mode, syncResults_.mode,
sizeof(prevSyncResults_.mode));
prevSyncResults_.temperatureK = speed * syncResults_.temperatureK +
@ -304,17 +316,17 @@ void Awb::prepare(Metadata *imageMetadata)
void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata)
{
// Count frames since we last poked the async thread.
/* Count frames since we last poked the async thread. */
if (framePhase_ < (int)config_.framePeriod)
framePhase_++;
LOG(RPiAwb, Debug) << "frame_phase " << framePhase_;
// We do not restart the async thread if we're not in auto mode.
/* We do not restart the async thread if we're not in auto mode. */
if (isAutoEnabled() &&
(framePhase_ >= (int)config_.framePeriod ||
frameCount_ < (int)config_.startupFrames)) {
// Update any settings and any image metadata that we need.
/* Update any settings and any image metadata that we need. */
struct LuxStatus luxStatus = {};
luxStatus.lux = 400; // in case no metadata
luxStatus.lux = 400; /* in case no metadata */
if (imageMetadata->get("lux.status", luxStatus) != 0)
LOG(RPiAwb, Debug) << "No lux metadata found";
LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux;
@ -366,15 +378,21 @@ static void generateStats(std::vector<Awb::RGB> &zones,
void Awb::prepareStats()
{
zones_.clear();
// LSC has already been applied to the stats in this pipeline, so stop
// any LSC compensation. We also ignore config_.fast in this version.
/*
* LSC has already been applied to the stats in this pipeline, so stop
* any LSC compensation. We also ignore config_.fast in this version.
*/
generateStats(zones_, statistics_->awb_stats, config_.minPixels,
config_.minG);
// we're done with these; we may as well relinquish our hold on the
// pointer.
/*
* we're done with these; we may as well relinquish our hold on the
* pointer.
*/
statistics_.reset();
// apply sensitivities, so values appear to come from our "canonical"
// sensor.
/*
* apply sensitivities, so values appear to come from our "canonical"
* sensor.
*/
for (auto &zone : zones_) {
zone.R *= config_.sensitivityR;
zone.B *= config_.sensitivityB;
@ -383,14 +401,16 @@ void Awb::prepareStats()
double Awb::computeDelta2Sum(double gainR, double gainB)
{
// Compute the sum of the squared colour error (non-greyness) as it
// appears in the log likelihood equation.
/*
* Compute the sum of the squared colour error (non-greyness) as it
* appears in the log likelihood equation.
*/
double delta2Sum = 0;
for (auto &z : zones_) {
double deltaR = gainR * z.R - 1 - config_.whitepointR;
double deltaB = gainB * z.B - 1 - config_.whitepointB;
double delta2 = deltaR * deltaR + deltaB * deltaB;
//LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2;
/* LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2; */
delta2 = std::min(delta2, config_.deltaLimit);
delta2Sum += delta2;
}
@ -399,15 +419,17 @@ double Awb::computeDelta2Sum(double gainR, double gainB)
Pwl Awb::interpolatePrior()
{
// Interpolate the prior log likelihood function for our current lux
// value.
/*
* Interpolate the prior log likelihood function for our current lux
* value.
*/
if (lux_ <= config_.priors.front().lux)
return config_.priors.front().prior;
else if (lux_ >= config_.priors.back().lux)
return config_.priors.back().prior;
else {
int idx = 0;
// find which two we lie between
/* find which two we lie between */
while (config_.priors[idx + 1].lux < lux_)
idx++;
double lux0 = config_.priors[idx].lux,
@ -424,8 +446,10 @@ Pwl Awb::interpolatePrior()
static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b,
Pwl::Point const &c)
{
// Given 3 points on a curve, find the extremum of the function in that
// interval by fitting a quadratic.
/*
* Given 3 points on a curve, find the extremum of the function in that
* interval by fitting a quadratic.
*/
const double eps = 1e-3;
Pwl::Point ca = c - a, ba = b - a;
double denominator = 2 * (ba.y * ca.x - ca.y * ba.x);
@ -434,17 +458,17 @@ static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b,
double result = numerator / denominator + a.x;
return std::max(a.x, std::min(c.x, result));
}
// has degenerated to straight line segment
/* has degenerated to straight line segment */
return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x);
}
double Awb::coarseSearch(Pwl const &prior)
{
points_.clear(); // assume doesn't deallocate memory
points_.clear(); /* assume doesn't deallocate memory */
size_t bestPoint = 0;
double t = mode_->ctLo;
int spanR = 0, spanB = 0;
// Step down the CT curve evaluating log likelihood.
/* Step down the CT curve evaluating log likelihood. */
while (true) {
double r = config_.ctR.eval(t, &spanR);
double b = config_.ctB.eval(t, &spanB);
@ -462,13 +486,15 @@ double Awb::coarseSearch(Pwl const &prior)
bestPoint = points_.size() - 1;
if (t == mode_->ctHi)
break;
// for even steps along the r/b curve scale them by the current t
/* for even steps along the r/b curve scale them by the current t */
t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi);
}
t = points_[bestPoint].x;
LOG(RPiAwb, Debug) << "Coarse search found CT " << t;
// We have the best point of the search, but refine it with a quadratic
// interpolation around its neighbours.
/*
* We have the best point of the search, but refine it with a quadratic
* interpolation around its neighbours.
*/
if (points_.size() > 2) {
unsigned long bp = std::min(bestPoint, points_.size() - 2);
bestPoint = std::max(1UL, bp);
@ -496,17 +522,21 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
Pwl::Point transverse(bDiff, -rDiff);
if (transverse.len2() < 1e-6)
return;
// unit vector orthogonal to the b vs. r function (pointing outwards
// with r and b increasing)
/*
* unit vector orthogonal to the b vs. r function (pointing outwards
* with r and b increasing)
*/
transverse = transverse / transverse.len();
double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0;
double transverseRange = config_.transverseNeg + config_.transversePos;
const int maxNumDeltas = 12;
// a transverse step approximately every 0.01 r/b units
/* a transverse step approximately every 0.01 r/b units */
int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas);
// Step down CT curve. March a bit further if the transverse range is
// large.
/*
* Step down CT curve. March a bit further if the transverse range is
* large.
*/
nsteps += numDeltas;
for (int i = -nsteps; i <= nsteps; i++) {
double tTest = t + i * step;
@ -514,10 +544,10 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
prior.eval(prior.domain().clip(tTest));
double rCurve = config_.ctR.eval(tTest, &spanR);
double bCurve = config_.ctB.eval(tTest, &spanB);
// x will be distance off the curve, y the log likelihood there
/* x will be distance off the curve, y the log likelihood there */
Pwl::Point points[maxNumDeltas];
int bestPoint = 0;
// Take some measurements transversely *off* the CT curve.
/* Take some measurements transversely *off* the CT curve. */
for (int j = 0; j < numDeltas; j++) {
points[j].x = -config_.transverseNeg +
(transverseRange * j) / (numDeltas - 1);
@ -533,8 +563,10 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
if (points[j].y < points[bestPoint].y)
bestPoint = j;
}
// We have NUM_DELTAS points transversely across the CT curve,
// now let's do a quadratic interpolation for the best result.
/*
* We have NUM_DELTAS points transversely across the CT curve,
* now let's do a quadratic interpolation for the best result.
*/
bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2));
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
transverse * interpolateQuadatric(points[bestPoint - 1],
@ -560,12 +592,16 @@ void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
void Awb::awbBayes()
{
// May as well divide out G to save computeDelta2Sum from doing it over
// and over.
/*
* May as well divide out G to save computeDelta2Sum from doing it over
* and over.
*/
for (auto &z : zones_)
z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
// Get the current prior, and scale according to how many zones are
// valid... not entirely sure about this.
/*
* Get the current prior, and scale according to how many zones are
* valid... not entirely sure about this.
*/
Pwl prior = interpolatePrior();
prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
prior.map([](double x, double y) {
@ -577,19 +613,23 @@ void Awb::awbBayes()
LOG(RPiAwb, Debug)
<< "After coarse search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")";
// Not entirely sure how to handle the fine search yet. Mostly the
// estimated CT is already good enough, but the fine search allows us to
// wander transverely off the CT curve. Under some illuminants, where
// there may be more or less green light, this may prove beneficial,
// though I probably need more real datasets before deciding exactly how
// this should be controlled and tuned.
/*
* Not entirely sure how to handle the fine search yet. Mostly the
* estimated CT is already good enough, but the fine search allows us to
* wander transverely off the CT curve. Under some illuminants, where
* there may be more or less green light, this may prove beneficial,
* though I probably need more real datasets before deciding exactly how
* this should be controlled and tuned.
*/
fineSearch(t, r, b, prior);
LOG(RPiAwb, Debug)
<< "After fine search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")";
// Write results out for the main thread to pick up. Remember to adjust
// the gains from the ones that the "canonical sensor" would require to
// the ones needed by *this* sensor.
/*
* Write results out for the main thread to pick up. Remember to adjust
* the gains from the ones that the "canonical sensor" would require to
* the ones needed by *this* sensor.
*/
asyncResults_.temperatureK = t;
asyncResults_.gainR = 1.0 / r * config_.sensitivityR;
asyncResults_.gainG = 1.0;
@ -599,10 +639,12 @@ void Awb::awbBayes()
void Awb::awbGrey()
{
LOG(RPiAwb, Debug) << "Grey world AWB";
// Make a separate list of the derivatives for each of red and blue, so
// that we can sort them to exclude the extreme gains. We could
// consider some variations, such as normalising all the zones first, or
// doing an L2 average etc.
/*
* Make a separate list of the derivatives for each of red and blue, so
* that we can sort them to exclude the extreme gains. We could
* consider some variations, such as normalising all the zones first, or
* doing an L2 average etc.
*/
std::vector<RGB> &derivsR(zones_);
std::vector<RGB> derivsB(derivsR);
std::sort(derivsR.begin(), derivsR.end(),
@ -613,7 +655,7 @@ void Awb::awbGrey()
[](RGB const &a, RGB const &b) {
return a.G * b.B < b.G * a.B;
});
// Average the middle half of the values.
/* Average the middle half of the values. */
int discard = derivsR.size() / 4;
RGB sumR(0, 0, 0), sumB(0, 0, 0);
for (auto ri = derivsR.begin() + discard,
@ -622,7 +664,7 @@ void Awb::awbGrey()
sumR += *ri, sumB += *bi;
double gainR = sumR.G / (sumR.R + 1),
gainB = sumB.G / (sumB.B + 1);
asyncResults_.temperatureK = 4500; // don't know what it is
asyncResults_.temperatureK = 4500; /* don't know what it is */
asyncResults_.gainR = gainR;
asyncResults_.gainG = 1.0;
asyncResults_.gainB = gainB;
@ -645,7 +687,7 @@ void Awb::doAwb()
}
}
// Register algorithm with the system.
/* Register algorithm with the system. */
static Algorithm *create(Controller *controller)
{
return (Algorithm *)new Awb(controller);