libcamera: utils: Raspberry Pi Camera Tuning Tool
Initial implementation of the Raspberry Pi (BCM2835) Camera Tuning Tool. All code is licensed under the BSD-2-Clause terms. Copyright (c) 2019-2020 Raspberry Pi Trading Ltd. Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
parent
0db2c8dc75
commit
c01cfe14f5
14 changed files with 3552 additions and 0 deletions
823
utils/raspberrypi/ctt/ctt.py
Executable file
823
utils/raspberrypi/ctt/ctt.py
Executable file
|
@ -0,0 +1,823 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt.py - camera tuning tool
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from ctt_image_load import *
|
||||||
|
from ctt_ccm import *
|
||||||
|
from ctt_awb import *
|
||||||
|
from ctt_alsc import *
|
||||||
|
from ctt_lux import *
|
||||||
|
from ctt_noise import *
|
||||||
|
from ctt_geq import *
|
||||||
|
from ctt_pretty_print_json import *
|
||||||
|
import random
|
||||||
|
import json
|
||||||
|
import re
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file houses the camera object, which is used to perform the calibrations.
|
||||||
|
The camera object houses all the calibration images as attributes in two lists:
|
||||||
|
- imgs (macbeth charts)
|
||||||
|
- imgs_alsc (alsc correction images)
|
||||||
|
Various calibrations are methods of the camera object, and the output is stored
|
||||||
|
in a dictionary called self.json.
|
||||||
|
Once all the caibration has been completed, the Camera.json is written into a
|
||||||
|
json file.
|
||||||
|
The camera object initialises its json dictionary by reading from a pre-written
|
||||||
|
blank json file. This has been done to avoid reproducing the entire json file
|
||||||
|
in the code here, thereby avoiding unecessary clutter.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
Get the colour and lux values from the strings of each inidvidual image
|
||||||
|
"""
|
||||||
|
def get_col_lux(string):
|
||||||
|
"""
|
||||||
|
Extract colour and lux values from filename
|
||||||
|
"""
|
||||||
|
col = re.search('([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$',string)
|
||||||
|
lux = re.search('([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$',string)
|
||||||
|
try:
|
||||||
|
col = col.group(1)
|
||||||
|
except AttributeError:
|
||||||
|
"""
|
||||||
|
Catch error if images labelled incorrectly and pass reasonable defaults
|
||||||
|
"""
|
||||||
|
return None,None
|
||||||
|
try:
|
||||||
|
lux = lux.group(1)
|
||||||
|
except AttributeError:
|
||||||
|
"""
|
||||||
|
Catch error if images labelled incorrectly and pass reasonable defaults
|
||||||
|
Still returns colour if that has been found.
|
||||||
|
"""
|
||||||
|
return col,None
|
||||||
|
return int( col ),int( lux )
|
||||||
|
|
||||||
|
"""
|
||||||
|
Camera object that is the backbone of the tuning tool.
|
||||||
|
Input is the desired path of the output json.
|
||||||
|
"""
|
||||||
|
class Camera:
|
||||||
|
def __init__(self,jfile):
|
||||||
|
self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
|
||||||
|
if self.path == '/':
|
||||||
|
self.path = ''
|
||||||
|
self.imgs = []
|
||||||
|
self.imgs_alsc = []
|
||||||
|
self.log = 'Log created : '+ time.asctime(time.localtime(time.time()))
|
||||||
|
self.log_separator = '\n'+'-'*70+'\n'
|
||||||
|
self.jf = jfile
|
||||||
|
"""
|
||||||
|
initial json dict populated by uncalibrated values
|
||||||
|
"""
|
||||||
|
self.json = {
|
||||||
|
"rpi.black_level" : {
|
||||||
|
"black_level" : 4096
|
||||||
|
},
|
||||||
|
"rpi.dpc" : {
|
||||||
|
},
|
||||||
|
"rpi.lux" : {
|
||||||
|
"reference_shutter_speed": 10000,
|
||||||
|
"reference_gain": 1,
|
||||||
|
"reference_aperture": 1.0
|
||||||
|
},
|
||||||
|
"rpi.noise" : {
|
||||||
|
},
|
||||||
|
"rpi.geq" : {
|
||||||
|
},
|
||||||
|
"rpi.sdn": {
|
||||||
|
},
|
||||||
|
"rpi.awb": {
|
||||||
|
"priors" : [
|
||||||
|
{"lux": 0,"prior":[ 2000, 1.0, 3000, 0.0, 13000, 0.0]},
|
||||||
|
{"lux": 800,"prior":[ 2000, 0.0, 6000, 2.0, 13000, 2.0]},
|
||||||
|
{"lux": 1500,"prior":[ 2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
|
||||||
|
],
|
||||||
|
"modes" : {
|
||||||
|
"auto" : { "lo" : 2500, "hi" : 8000 },
|
||||||
|
"incandescent" : { "lo" : 2500, "hi" : 3000 },
|
||||||
|
"tungsten" : { "lo" : 3000, "hi" : 3500 },
|
||||||
|
"fluorescent" : { "lo" : 4000, "hi" : 4700 },
|
||||||
|
"indoor" : { "lo" : 3000, "hi" : 5000 },
|
||||||
|
"daylight" : { "lo" : 5500, "hi" : 6500 },
|
||||||
|
"cloudy" : { "lo" : 7000, "hi" : 8600 }
|
||||||
|
},
|
||||||
|
"bayes" : 1
|
||||||
|
},
|
||||||
|
"rpi.agc" : {
|
||||||
|
"metering_modes" : {
|
||||||
|
"centre-weighted" : {
|
||||||
|
"weights" : [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
"spot" : {
|
||||||
|
"weights" : [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
"matrix": {
|
||||||
|
"weights" : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"exposure_modes" : {
|
||||||
|
"normal" : {
|
||||||
|
"shutter" : [100, 10000, 30000, 60000, 120000],
|
||||||
|
"gain" : [1.0, 2.0, 4.0, 6.0, 6.0]
|
||||||
|
},
|
||||||
|
"sport": {
|
||||||
|
"shutter": [ 100, 5000, 10000, 20000, 120000 ],
|
||||||
|
"gain": [ 1.0, 2.0, 4.0, 6.0, 6.0 ]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"constraint_modes" : {
|
||||||
|
"normal" : [
|
||||||
|
{"bound" : "LOWER", "q_lo" : 0.98, "q_hi" : 1.0, "y_target" : [0, 0.5, 1000, 0.5]}
|
||||||
|
],
|
||||||
|
"highlight": [
|
||||||
|
{ "bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [ 0, 0.5, 1000, 0.5 ] },
|
||||||
|
{ "bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [ 0, 0.8, 1000, 0.8 ] }
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"y_target" : [0, 0.16, 1000, 0.165, 10000, 0.17]
|
||||||
|
},
|
||||||
|
"rpi.alsc": {
|
||||||
|
'omega' : 1.3,
|
||||||
|
'n_iter' : 100,
|
||||||
|
'luminance_strength' : 0.7,
|
||||||
|
},
|
||||||
|
"rpi.contrast" : {
|
||||||
|
"ce_enable": 1,
|
||||||
|
"gamma_curve": [
|
||||||
|
0, 0,
|
||||||
|
1024, 5040,
|
||||||
|
2048, 9338,
|
||||||
|
3072, 12356,
|
||||||
|
4096, 15312,
|
||||||
|
5120, 18051,
|
||||||
|
6144, 20790,
|
||||||
|
7168, 23193,
|
||||||
|
8192, 25744,
|
||||||
|
9216, 27942,
|
||||||
|
10240, 30035,
|
||||||
|
11264, 32005,
|
||||||
|
12288, 33975,
|
||||||
|
13312, 35815,
|
||||||
|
14336, 37600,
|
||||||
|
15360, 39168,
|
||||||
|
16384, 40642,
|
||||||
|
18432, 43379,
|
||||||
|
20480, 45749,
|
||||||
|
22528, 47753,
|
||||||
|
24576, 49621,
|
||||||
|
26624, 51253,
|
||||||
|
28672, 52698,
|
||||||
|
30720, 53796,
|
||||||
|
32768, 54876,
|
||||||
|
36864, 57012,
|
||||||
|
40960, 58656,
|
||||||
|
45056, 59954,
|
||||||
|
49152, 61183,
|
||||||
|
53248, 62355,
|
||||||
|
57344, 63419,
|
||||||
|
61440, 64476,
|
||||||
|
65535, 65535
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"rpi.ccm": {
|
||||||
|
},
|
||||||
|
"rpi.sharpen":{
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Perform colour correction calibrations by comparing macbeth patch colours
|
||||||
|
to standard macbeth chart colours.
|
||||||
|
"""
|
||||||
|
def ccm_cal(self,do_alsc_colour):
|
||||||
|
if 'rpi.ccm' in self.disable:
|
||||||
|
return 1
|
||||||
|
print('\nStarting CCM calibration')
|
||||||
|
self.log_new_sec('CCM')
|
||||||
|
"""
|
||||||
|
if image is greyscale then CCm makes no sense
|
||||||
|
"""
|
||||||
|
if self.grey:
|
||||||
|
print('\nERROR: Can\'t do CCM on greyscale image!')
|
||||||
|
self.log += '\nERROR: Cannot perform CCM calibration '
|
||||||
|
self.log += 'on greyscale image!\nCCM aborted!'
|
||||||
|
del self.json['rpi.ccm']
|
||||||
|
return 0
|
||||||
|
a = time.time()
|
||||||
|
"""
|
||||||
|
Check if alsc tables have been generated, if not then do ccm without
|
||||||
|
alsc
|
||||||
|
"""
|
||||||
|
if (not "rpi.alsc" in self.disable) and do_alsc_colour:
|
||||||
|
"""
|
||||||
|
case where ALSC colour has been done, so no errors should be
|
||||||
|
expected...
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
|
||||||
|
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
||||||
|
self.log += '\nALSC tables found successfully'
|
||||||
|
except KeyError:
|
||||||
|
cal_cr_list,cal_cb_list=None,None
|
||||||
|
print('WARNING! No ALSC tables found for CCM!')
|
||||||
|
print('Performing CCM calibrations without ALSC correction...')
|
||||||
|
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
||||||
|
self.log += 'performed without ALSC correction...'
|
||||||
|
else:
|
||||||
|
"""
|
||||||
|
case where config options result in CCM done without ALSC colour tables
|
||||||
|
"""
|
||||||
|
cal_cr_list,cal_cb_list=None,None
|
||||||
|
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
||||||
|
self.log += 'performed without ALSC correction...'
|
||||||
|
|
||||||
|
"""
|
||||||
|
Do CCM calibration
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
ccms = ccm(self,cal_cr_list,cal_cb_list)
|
||||||
|
except ArithmeticError:
|
||||||
|
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
|
||||||
|
self.log += '\nERROR: Singular matrix encountered during fit!'
|
||||||
|
self.log += '\nCCM aborted!'
|
||||||
|
return 1
|
||||||
|
"""
|
||||||
|
Write output to json
|
||||||
|
"""
|
||||||
|
self.json['rpi.ccm']['ccms'] = ccms
|
||||||
|
self.log += '\nCCM calibration written to json file'
|
||||||
|
print('Finished CCM calibration')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Auto white balance calibration produces a colour curve for
|
||||||
|
various colour temperatures, as well as providing a maximum 'wiggle room'
|
||||||
|
distance from this curve (transverse_neg/pos).
|
||||||
|
"""
|
||||||
|
def awb_cal(self,greyworld,do_alsc_colour):
|
||||||
|
if 'rpi.awb' in self.disable:
|
||||||
|
return 1
|
||||||
|
print('\nStarting AWB calibration')
|
||||||
|
self.log_new_sec('AWB')
|
||||||
|
"""
|
||||||
|
if image is greyscale then AWB makes no sense
|
||||||
|
"""
|
||||||
|
if self.grey:
|
||||||
|
print('\nERROR: Can\'t do AWB on greyscale image!')
|
||||||
|
self.log += '\nERROR: Cannot perform AWB calibration '
|
||||||
|
self.log += 'on greyscale image!\nAWB aborted!'
|
||||||
|
del self.json['rpi.awb']
|
||||||
|
return 0
|
||||||
|
"""
|
||||||
|
optional set greyworld (e.g. for noir cameras)
|
||||||
|
"""
|
||||||
|
if greyworld:
|
||||||
|
self.json['rpi.awb']['bayes'] = 0
|
||||||
|
self.log += '\nGreyworld set'
|
||||||
|
"""
|
||||||
|
Check if alsc tables have been generated, if not then do awb without
|
||||||
|
alsc correction
|
||||||
|
"""
|
||||||
|
if (not "rpi.alsc" in self.disable) and do_alsc_colour:
|
||||||
|
try:
|
||||||
|
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
|
||||||
|
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
||||||
|
self.log += '\nALSC tables found successfully'
|
||||||
|
except KeyError:
|
||||||
|
cal_cr_list,cal_cb_list=None,None
|
||||||
|
print('ERROR, no ALSC calibrations found for AWB')
|
||||||
|
print('Performing AWB without ALSC tables')
|
||||||
|
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
||||||
|
self.log += 'performed without ALSC correction...'
|
||||||
|
else:
|
||||||
|
cal_cr_list,cal_cb_list=None,None
|
||||||
|
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
||||||
|
self.log += 'performed without ALSC correction...'
|
||||||
|
"""
|
||||||
|
call calibration function
|
||||||
|
"""
|
||||||
|
plot = "rpi.awb" in self.plot
|
||||||
|
awb_out = awb(self,cal_cr_list,cal_cb_list,plot)
|
||||||
|
ct_curve,transverse_neg,transverse_pos = awb_out
|
||||||
|
"""
|
||||||
|
write output to json
|
||||||
|
"""
|
||||||
|
self.json['rpi.awb']['ct_curve'] = ct_curve
|
||||||
|
self.json['rpi.awb']['sensitivity_r'] = 1.0
|
||||||
|
self.json['rpi.awb']['sensitivity_b'] = 1.0
|
||||||
|
self.json['rpi.awb']['transverse_pos'] = transverse_pos
|
||||||
|
self.json['rpi.awb']['transverse_neg'] = transverse_neg
|
||||||
|
self.log += '\nAWB calibration written to json file'
|
||||||
|
print('Finished AWB calibration')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Auto lens shading correction completely mitigates the effects of lens shading for ech
|
||||||
|
colour channel seperately, and then partially corrects for vignetting.
|
||||||
|
The extent of the correction depends on the 'luminance_strength' parameter.
|
||||||
|
"""
|
||||||
|
def alsc_cal(self,luminance_strength,do_alsc_colour):
|
||||||
|
if 'rpi.alsc' in self.disable:
|
||||||
|
return 1
|
||||||
|
print('\nStarting ALSC calibration')
|
||||||
|
self.log_new_sec('ALSC')
|
||||||
|
"""
|
||||||
|
check if alsc images have been taken
|
||||||
|
"""
|
||||||
|
if len(self.imgs_alsc) == 0:
|
||||||
|
print('\nError:\nNo alsc calibration images found')
|
||||||
|
self.log += '\nERROR: No ALSC calibration images found!'
|
||||||
|
self.log += '\nALSC calibration aborted!'
|
||||||
|
return 1
|
||||||
|
self.json['rpi.alsc']['luminance_strength'] = luminance_strength
|
||||||
|
if self.grey and do_alsc_colour:
|
||||||
|
print('Greyscale camera so only luminance_lut calculated')
|
||||||
|
do_alsc_colour = False
|
||||||
|
self.log += '\nWARNING: ALSC colour correction cannot be done on '
|
||||||
|
self.log += 'greyscale image!\nALSC colour corrections forced off!'
|
||||||
|
"""
|
||||||
|
call calibration function
|
||||||
|
"""
|
||||||
|
plot = "rpi.alsc" in self.plot
|
||||||
|
alsc_out = alsc_all(self,do_alsc_colour,plot)
|
||||||
|
cal_cr_list,cal_cb_list,luminance_lut,av_corn = alsc_out
|
||||||
|
"""
|
||||||
|
write ouput to json and finish if not do_alsc_colour
|
||||||
|
"""
|
||||||
|
if not do_alsc_colour:
|
||||||
|
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
|
||||||
|
self.json['rpi.alsc']['n_iter'] = 0
|
||||||
|
self.log += '\nALSC calibrations written to json file'
|
||||||
|
self.log += '\nNo colour calibrations performed'
|
||||||
|
print('Finished ALSC calibrations')
|
||||||
|
return 1
|
||||||
|
|
||||||
|
self.json['rpi.alsc']['calibrations_Cr'] = cal_cr_list
|
||||||
|
self.json['rpi.alsc']['calibrations_Cb'] = cal_cb_list
|
||||||
|
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
|
||||||
|
self.log += '\nALSC colour and luminance tables written to json file'
|
||||||
|
|
||||||
|
"""
|
||||||
|
The sigmas determine the strength of the adaptive algorithm, that
|
||||||
|
cleans up any lens shading that has slipped through the alsc. These are
|
||||||
|
determined by measuring a 'worst-case' difference between two alsc tables
|
||||||
|
that are adjacent in colour space. If, however, only one colour
|
||||||
|
temperature has been provided, then this difference can not be computed
|
||||||
|
as only one table is available.
|
||||||
|
To determine the sigmas you would have to estimate the error of an alsc
|
||||||
|
table with only the image it was taken on as a check. To avoid circularity,
|
||||||
|
dfault exaggerated sigmas are used, which can result in too much alsc and
|
||||||
|
is therefore not advised.
|
||||||
|
In general, just take another alsc picture at another colour temperature!
|
||||||
|
"""
|
||||||
|
|
||||||
|
if len(self.imgs_alsc) == 1:
|
||||||
|
self.json['rpi.alsc']['sigma'] = 0.005
|
||||||
|
self.json['rpi.alsc']['sigma_Cb'] = 0.005
|
||||||
|
print('\nWarning:\nOnly one alsc calibration found' +
|
||||||
|
'\nStandard sigmas used for adaptive algorithm.')
|
||||||
|
print('Finished ALSC calibrations')
|
||||||
|
self.log += '\nWARNING: Only one colour temperature found in '
|
||||||
|
self.log += 'calibration images.\nStandard sigmas used for adaptive '
|
||||||
|
self.log += 'algorithm!'
|
||||||
|
return 1
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain worst-case scenario residual sigmas
|
||||||
|
"""
|
||||||
|
sigma_r,sigma_b = get_sigma(self,cal_cr_list,cal_cb_list)
|
||||||
|
"""
|
||||||
|
write output to json
|
||||||
|
"""
|
||||||
|
self.json['rpi.alsc']['sigma'] = np.round(sigma_r,5)
|
||||||
|
self.json['rpi.alsc']['sigma_Cb'] = np.round(sigma_b,5)
|
||||||
|
self.log += '\nCalibrated sigmas written to json file'
|
||||||
|
print('Finished ALSC calibrations')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Green equalisation fixes problems caused by discrepancies in green
|
||||||
|
channels. This is done by measuring the effect on macbeth chart patches,
|
||||||
|
which ideally would have the same green values throughout.
|
||||||
|
An upper bound linear model is fit, fixing a threshold for the green
|
||||||
|
differences that are corrected.
|
||||||
|
"""
|
||||||
|
def geq_cal(self):
|
||||||
|
if 'rpi.geq' in self.disable:
|
||||||
|
return 1
|
||||||
|
print('\nStarting GEQ calibrations')
|
||||||
|
self.log_new_sec('GEQ')
|
||||||
|
"""
|
||||||
|
perform calibration
|
||||||
|
"""
|
||||||
|
plot = 'rpi.geq' in self.plot
|
||||||
|
slope,offset = geq_fit(self,plot)
|
||||||
|
"""
|
||||||
|
write output to json
|
||||||
|
"""
|
||||||
|
self.json['rpi.geq']['offset'] = offset
|
||||||
|
self.json['rpi.geq']['slope'] = slope
|
||||||
|
self.log += '\nGEQ calibrations written to json file'
|
||||||
|
print('Finished GEQ calibrations')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Lux calibrations allow the lux level of a scene to be estimated by a ratio
|
||||||
|
calculation. Lux values are used in the pipeline for algorithms such as AGC
|
||||||
|
and AWB
|
||||||
|
"""
|
||||||
|
def lux_cal(self):
|
||||||
|
if 'rpi.lux' in self.disable:
|
||||||
|
return 1
|
||||||
|
print('\nStarting LUX calibrations')
|
||||||
|
self.log_new_sec('LUX')
|
||||||
|
"""
|
||||||
|
The lux calibration is done on a single image. For best effects, the
|
||||||
|
image with lux level closest to 1000 is chosen.
|
||||||
|
"""
|
||||||
|
luxes = [Img.lux for Img in self.imgs]
|
||||||
|
argmax = luxes.index(min(luxes, key=lambda l:abs(1000-l)))
|
||||||
|
Img = self.imgs[argmax]
|
||||||
|
self.log += '\nLux found closest to 1000: {} lx'.format(Img.lux)
|
||||||
|
self.log += '\nImage used: ' + Img.name
|
||||||
|
if Img.lux < 50:
|
||||||
|
self.log += '\nWARNING: Low lux could cause inaccurate calibrations!'
|
||||||
|
"""
|
||||||
|
do calibration
|
||||||
|
"""
|
||||||
|
lux_out,shutter_speed,gain = lux(self,Img)
|
||||||
|
"""
|
||||||
|
write output to json
|
||||||
|
"""
|
||||||
|
self.json['rpi.lux']['reference_shutter_speed'] = shutter_speed
|
||||||
|
self.json['rpi.lux']['reference_gain'] = gain
|
||||||
|
self.json['rpi.lux']['reference_lux'] = Img.lux
|
||||||
|
self.json['rpi.lux']['reference_Y'] = lux_out
|
||||||
|
self.log += '\nLUX calibrations written to json file'
|
||||||
|
print('Finished LUX calibrations')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Noise alibration attempts to describe the noise profile of the sensor. The
|
||||||
|
calibration is run on macbeth images and the final output is taken as the average
|
||||||
|
"""
|
||||||
|
def noise_cal(self):
|
||||||
|
if 'rpi.noise' in self.disable:
|
||||||
|
return 1
|
||||||
|
print('\nStarting NOISE calibrations')
|
||||||
|
self.log_new_sec('NOISE')
|
||||||
|
"""
|
||||||
|
run calibration on all images and sort by slope.
|
||||||
|
"""
|
||||||
|
plot = "rpi.noise" in self.plot
|
||||||
|
noise_out = sorted([noise(self,Img,plot) for Img in self.imgs], key = lambda x:x[0])
|
||||||
|
self.log += '\nFinished processing images'
|
||||||
|
"""
|
||||||
|
take the average of the interquartile
|
||||||
|
"""
|
||||||
|
l = len(noise_out)
|
||||||
|
noise_out = np.mean(noise_out[l//4:1+3*l//4],axis=0)
|
||||||
|
self.log += '\nAverage noise profile: constant = {} '.format(int(noise_out[1]))
|
||||||
|
self.log += 'slope = {:.3f}'.format(noise_out[0])
|
||||||
|
"""
|
||||||
|
write to json
|
||||||
|
"""
|
||||||
|
self.json['rpi.noise']['reference_constant'] = int(noise_out[1])
|
||||||
|
self.json['rpi.noise']['reference_slope'] = round(noise_out[0],3)
|
||||||
|
self.log += '\nNOISE calibrations written to json'
|
||||||
|
print('Finished NOISE calibrations')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Removes json entries that are turned off
|
||||||
|
"""
|
||||||
|
def json_remove(self,disable):
|
||||||
|
self.log_new_sec('Disabling Options',cal=False)
|
||||||
|
if len(self.disable) == 0:
|
||||||
|
self.log += '\nNothing disabled!'
|
||||||
|
return 1
|
||||||
|
for key in disable:
|
||||||
|
try:
|
||||||
|
del self.json[key]
|
||||||
|
self.log += '\nDisabled: '+key
|
||||||
|
except KeyError:
|
||||||
|
self.log += '\nERROR: '+key +' not found!'
|
||||||
|
"""
|
||||||
|
writes the json dictionary to the raw json file then make pretty
|
||||||
|
"""
|
||||||
|
def write_json(self):
|
||||||
|
"""
|
||||||
|
Write json dictionary to file
|
||||||
|
"""
|
||||||
|
jstring = json.dumps(self.json,sort_keys=False)
|
||||||
|
"""
|
||||||
|
make it pretty :)
|
||||||
|
"""
|
||||||
|
pretty_print_json(jstring,self.jf)
|
||||||
|
|
||||||
|
"""
|
||||||
|
add a new section to the log file
|
||||||
|
"""
|
||||||
|
def log_new_sec(self,section,cal=True):
|
||||||
|
self.log += '\n'+self.log_separator
|
||||||
|
self.log += section
|
||||||
|
if cal:
|
||||||
|
self.log += ' Calibration'
|
||||||
|
self.log += self.log_separator
|
||||||
|
|
||||||
|
"""
|
||||||
|
write script arguments to log file
|
||||||
|
"""
|
||||||
|
def log_user_input(self,json_output,directory,config,log_output):
|
||||||
|
self.log_new_sec('User Arguments',cal=False)
|
||||||
|
self.log += '\nJson file output: ' + json_output
|
||||||
|
self.log += '\nCalibration images directory: ' + directory
|
||||||
|
if config == None:
|
||||||
|
self.log += '\nNo configuration file input... using default options'
|
||||||
|
elif config == False:
|
||||||
|
self.log += '\nWARNING: Invalid configuration file path...'
|
||||||
|
self.log += ' using default options'
|
||||||
|
elif config == True:
|
||||||
|
self.log += '\nWARNING: Invalid syntax in configuration file...'
|
||||||
|
self.log += ' using default options'
|
||||||
|
else:
|
||||||
|
self.log += '\nConfiguration file: ' + config
|
||||||
|
if log_output == None:
|
||||||
|
self.log += '\nNo log file path input... using default: ctt_log.txt'
|
||||||
|
else:
|
||||||
|
self.log += '\nLog file output: ' + log_output
|
||||||
|
|
||||||
|
# if log_output
|
||||||
|
|
||||||
|
"""
|
||||||
|
write log file
|
||||||
|
"""
|
||||||
|
def write_log(self,filename):
|
||||||
|
if filename == None:
|
||||||
|
filename = 'ctt_log.txt'
|
||||||
|
self.log += '\n' + self.log_separator
|
||||||
|
with open(filename,'w') as logfile:
|
||||||
|
logfile.write(self.log)
|
||||||
|
|
||||||
|
"""
|
||||||
|
Add all images from directory, pass into relevant list of images and
|
||||||
|
extrace lux and temperature values.
|
||||||
|
"""
|
||||||
|
def add_imgs(self,directory,mac_config,blacklevel=-1):
|
||||||
|
self.log_new_sec('Image Loading',cal=False)
|
||||||
|
img_suc_msg = 'Image loaded successfully!'
|
||||||
|
print('\n\nLoading images from '+directory)
|
||||||
|
self.log += '\nDirectory: ' + directory
|
||||||
|
"""
|
||||||
|
get list of files
|
||||||
|
"""
|
||||||
|
filename_list = get_photos(directory)
|
||||||
|
print("Files found: {}".format(len(filename_list)))
|
||||||
|
self.log += '\nFiles found: {}'.format(len(filename_list))
|
||||||
|
"""
|
||||||
|
iterate over files
|
||||||
|
"""
|
||||||
|
filename_list.sort()
|
||||||
|
for filename in filename_list:
|
||||||
|
address = directory + filename
|
||||||
|
print('\nLoading image: '+filename)
|
||||||
|
self.log += '\n\nImage: ' + filename
|
||||||
|
"""
|
||||||
|
obtain colour and lux value
|
||||||
|
"""
|
||||||
|
col,lux = get_col_lux(filename)
|
||||||
|
"""
|
||||||
|
Check if image is an alsc calibration image
|
||||||
|
"""
|
||||||
|
if 'alsc' in filename:
|
||||||
|
Img = load_image(self,address,mac=False)
|
||||||
|
self.log += '\nIdentified as an ALSC image'
|
||||||
|
"""
|
||||||
|
check if imagae data has been successfully unpacked
|
||||||
|
"""
|
||||||
|
if Img == 0:
|
||||||
|
print('\nDISCARDED')
|
||||||
|
self.log += '\nImage discarded!'
|
||||||
|
continue
|
||||||
|
"""
|
||||||
|
check that image colour temperature has been successfuly obtained
|
||||||
|
"""
|
||||||
|
elif col != None:
|
||||||
|
"""
|
||||||
|
if successful, append to list and continue to next image
|
||||||
|
"""
|
||||||
|
Img.col = col
|
||||||
|
Img.name = filename
|
||||||
|
self.log += '\nColour temperature: {} K'.format(col)
|
||||||
|
self.imgs_alsc.append(Img)
|
||||||
|
if blacklevel != -1:
|
||||||
|
Img.blacklevel_16 = blacklevel
|
||||||
|
print(img_suc_msg)
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
print('Error! No colour temperature found!')
|
||||||
|
self.log += '\nWARNING: Error reading colour temperature'
|
||||||
|
self.log += '\nImage discarded!'
|
||||||
|
print('DISCARDED')
|
||||||
|
else:
|
||||||
|
self.log += '\nIdentified as macbeth chart image'
|
||||||
|
"""
|
||||||
|
if image isn't an alsc correction then it must have a lux and a
|
||||||
|
colour temperature value to be useful
|
||||||
|
"""
|
||||||
|
if lux == None:
|
||||||
|
print('DISCARDED')
|
||||||
|
self.log += '\nWARNING: Error reading lux value'
|
||||||
|
self.log += '\nImage discarded!'
|
||||||
|
continue
|
||||||
|
Img = load_image(self,address,mac_config)
|
||||||
|
"""
|
||||||
|
check that image data has been successfuly unpacked
|
||||||
|
"""
|
||||||
|
if Img == 0:
|
||||||
|
print('DISCARDED')
|
||||||
|
self.log += '\nImage discarded!'
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
"""
|
||||||
|
if successful, append to list and continue to next image
|
||||||
|
"""
|
||||||
|
Img.col,Img.lux = col,lux
|
||||||
|
Img.name = filename
|
||||||
|
self.log += '\nColour temperature: {} K'.format(col)
|
||||||
|
self.log += '\nLux value: {} lx'.format(lux)
|
||||||
|
if blacklevel != -1:
|
||||||
|
Img.blacklevel_16 = blacklevel
|
||||||
|
print(img_suc_msg)
|
||||||
|
self.imgs.append(Img)
|
||||||
|
|
||||||
|
print('\nFinished loading images')
|
||||||
|
|
||||||
|
"""
|
||||||
|
Check that usable images have been found
|
||||||
|
Possible errors include:
|
||||||
|
- no macbeth chart
|
||||||
|
- incorrect filename/extension
|
||||||
|
- images from different cameras
|
||||||
|
"""
|
||||||
|
def check_imgs(self):
|
||||||
|
self.log += '\n\nImages found:'
|
||||||
|
self.log += '\nMacbeth : {}'.format(len(self.imgs))
|
||||||
|
self.log += '\nALSC : {} '.format(len(self.imgs_alsc))
|
||||||
|
self.log += '\n\nCamera metadata'
|
||||||
|
"""
|
||||||
|
check usable images found
|
||||||
|
"""
|
||||||
|
if len(self.imgs) == 0:
|
||||||
|
print('\nERROR: No usable macbeth chart images found')
|
||||||
|
self.log += '\nERROR: No usable macbeth chart images found'
|
||||||
|
return 0
|
||||||
|
"""
|
||||||
|
Double check that every image has come from the same camera...
|
||||||
|
"""
|
||||||
|
all_imgs = self.imgs + self.imgs_alsc
|
||||||
|
camNames = list(set([Img.camName for Img in all_imgs]))
|
||||||
|
patterns = list(set([Img.pattern for Img in all_imgs]))
|
||||||
|
sigbitss = list(set([Img.sigbits for Img in all_imgs]))
|
||||||
|
blacklevels = list(set([Img.blacklevel_16 for Img in all_imgs]))
|
||||||
|
sizes = list(set([(Img.w,Img.h) for Img in all_imgs]))
|
||||||
|
|
||||||
|
if len(camNames)==1 and len(patterns)==1 and len(sigbitss)==1 and len(blacklevels) ==1 and len(sizes)== 1:
|
||||||
|
self.grey = (patterns[0] == 128)
|
||||||
|
self.blacklevel_16 = blacklevels[0]
|
||||||
|
self.log += '\nName: {}'.format(camNames[0])
|
||||||
|
self.log += '\nBayer pattern case: {}'.format(patterns[0])
|
||||||
|
if self.grey:
|
||||||
|
self.log += '\nGreyscale camera identified'
|
||||||
|
self.log += '\nSignificant bits: {}'.format(sigbitss[0])
|
||||||
|
self.log += '\nBlacklevel: {}'.format(blacklevels[0])
|
||||||
|
self.log += '\nImage size: w = {} h = {}'.format(sizes[0][0],sizes[0][1])
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
print('\nERROR: Images from different cameras')
|
||||||
|
self.log += '\nERROR: Images are from different cameras'
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def run_ctt(json_output,directory,config,log_output):
|
||||||
|
"""
|
||||||
|
check input files are jsons
|
||||||
|
"""
|
||||||
|
if json_output[-5:] != '.json':
|
||||||
|
raise ArgError('\n\nError: Output must be a json file!')
|
||||||
|
if config != None:
|
||||||
|
"""
|
||||||
|
check if config file is actually a json
|
||||||
|
"""
|
||||||
|
if config[-5:] != '.json':
|
||||||
|
raise ArgError('\n\nError: Config file must be a json file!')
|
||||||
|
"""
|
||||||
|
read configurations
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with open(config,'r') as config_json:
|
||||||
|
configs = json.load(config_json)
|
||||||
|
except FileNotFoundError:
|
||||||
|
configs = {}
|
||||||
|
config = False
|
||||||
|
except json.decoder.JSONDecodeError:
|
||||||
|
configs = {}
|
||||||
|
config = True
|
||||||
|
|
||||||
|
else:
|
||||||
|
configs = {}
|
||||||
|
"""
|
||||||
|
load configurations from config file, if not given then set default
|
||||||
|
"""
|
||||||
|
disable = get_config(configs,"disable",[],'list')
|
||||||
|
plot = get_config(configs,"plot",[],'list')
|
||||||
|
awb_d = get_config(configs,"awb",{},'dict')
|
||||||
|
greyworld = get_config(awb_d,"greyworld",0,'bool')
|
||||||
|
alsc_d = get_config(configs,"alsc",{},'dict')
|
||||||
|
do_alsc_colour = get_config(alsc_d,"do_alsc_colour",1,'bool')
|
||||||
|
luminance_strength = get_config(alsc_d,"luminance_strength",0.5,'num')
|
||||||
|
blacklevel = get_config(configs,"blacklevel",-1,'num')
|
||||||
|
macbeth_d = get_config(configs,"macbeth",{},'dict')
|
||||||
|
mac_small = get_config(macbeth_d,"small",0,'bool')
|
||||||
|
mac_show = get_config(macbeth_d,"show",0,'bool')
|
||||||
|
mac_config = (mac_small,mac_show)
|
||||||
|
|
||||||
|
if blacklevel < -1 or blacklevel >= 2**16:
|
||||||
|
print('\nInvalid blacklevel, defaulted to 64')
|
||||||
|
blacklevel = -1
|
||||||
|
|
||||||
|
if luminance_strength < 0 or luminance_strength > 1:
|
||||||
|
print('\nInvalid luminance_strength strength, defaulted to 0.5')
|
||||||
|
luminance_strength = 0.5
|
||||||
|
|
||||||
|
"""
|
||||||
|
sanitise directory path
|
||||||
|
"""
|
||||||
|
if directory[-1] != '/':
|
||||||
|
directory += '/'
|
||||||
|
"""
|
||||||
|
initialise tuning tool and load images
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
Cam = Camera(json_output)
|
||||||
|
Cam.log_user_input(json_output,directory,config,log_output)
|
||||||
|
Cam.disable = disable
|
||||||
|
Cam.plot = plot
|
||||||
|
Cam.add_imgs(directory,mac_config,blacklevel)
|
||||||
|
except FileNotFoundError:
|
||||||
|
raise ArgError('\n\nError: Input image directory not found!')
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
preform calibrations as long as check_imgs returns True
|
||||||
|
If alsc is activated then it must be done before awb and ccm since the alsc
|
||||||
|
tables are used in awb and ccm calibrations
|
||||||
|
ccm also technically does an awb but it measures this from the macbeth
|
||||||
|
chart in the image rather than using calibration data
|
||||||
|
"""
|
||||||
|
if Cam.check_imgs():
|
||||||
|
Cam.json['rpi.black_level']['black_level'] = Cam.blacklevel_16
|
||||||
|
Cam.json_remove(disable)
|
||||||
|
print('\nSTARTING CALIBRATIONS')
|
||||||
|
Cam.alsc_cal(luminance_strength,do_alsc_colour)
|
||||||
|
Cam.geq_cal()
|
||||||
|
Cam.lux_cal()
|
||||||
|
Cam.noise_cal()
|
||||||
|
Cam.awb_cal(greyworld,do_alsc_colour)
|
||||||
|
Cam.ccm_cal(do_alsc_colour)
|
||||||
|
print('\nFINISHED CALIBRATIONS')
|
||||||
|
Cam.write_json()
|
||||||
|
Cam.write_log(log_output)
|
||||||
|
print('\nCalibrations written to: '+json_output)
|
||||||
|
if log_output == None:
|
||||||
|
log_output = 'ctt_log.txt'
|
||||||
|
print('Log file written to: '+log_output)
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
Cam.write_log(log_output)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
"""
|
||||||
|
initialise calibration
|
||||||
|
"""
|
||||||
|
if len(sys.argv) == 1:
|
||||||
|
print("""
|
||||||
|
Pisp Camera Tuning Tool version 1.0
|
||||||
|
|
||||||
|
Required Arguments:
|
||||||
|
'-i' : Calibration image directory.
|
||||||
|
'-o' : Name of output json file.
|
||||||
|
|
||||||
|
Optional Arguments:
|
||||||
|
'-c' : Config file for the CTT. If not passed, default parameters used.
|
||||||
|
'-l' : Name of output log file. If not passed, 'ctt_log.txt' used.
|
||||||
|
""")
|
||||||
|
quit(0)
|
||||||
|
else:
|
||||||
|
"""
|
||||||
|
parse input arguments
|
||||||
|
"""
|
||||||
|
json_output,directory,config,log_output = parse_input()
|
||||||
|
run_ctt(json_output,directory,config,log_output)
|
297
utils/raspberrypi/ctt/ctt_alsc.py
Normal file
297
utils/raspberrypi/ctt/ctt_alsc.py
Normal file
|
@ -0,0 +1,297 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_alsc.py - camera tuning tool for ALSC (auto lens shading correction)
|
||||||
|
|
||||||
|
from ctt_image_load import *
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib import cm
|
||||||
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
|
"""
|
||||||
|
preform alsc calibration on a set of images
|
||||||
|
"""
|
||||||
|
def alsc_all(Cam,do_alsc_colour,plot):
|
||||||
|
imgs_alsc = Cam.imgs_alsc
|
||||||
|
"""
|
||||||
|
create list of colour temperatures and associated calibration tables
|
||||||
|
"""
|
||||||
|
list_col = []
|
||||||
|
list_cr = []
|
||||||
|
list_cb = []
|
||||||
|
list_cg = []
|
||||||
|
for Img in imgs_alsc:
|
||||||
|
col,cr,cb,cg,size = alsc(Cam,Img,do_alsc_colour,plot)
|
||||||
|
list_col.append(col)
|
||||||
|
list_cr.append(cr)
|
||||||
|
list_cb.append(cb)
|
||||||
|
list_cg.append(cg)
|
||||||
|
Cam.log += '\n'
|
||||||
|
Cam.log += '\nFinished processing images'
|
||||||
|
w,h,dx,dy = size
|
||||||
|
Cam.log += '\nChannel dimensions: w = {} h = {}'.format(int(w),int(h))
|
||||||
|
Cam.log += '\n16x12 grid rectangle size: w = {} h = {}'.format(dx,dy)
|
||||||
|
|
||||||
|
"""
|
||||||
|
convert to numpy array for data manipulation
|
||||||
|
"""
|
||||||
|
list_col = np.array(list_col)
|
||||||
|
list_cr = np.array(list_cr)
|
||||||
|
list_cb = np.array(list_cb)
|
||||||
|
list_cg = np.array(list_cg)
|
||||||
|
|
||||||
|
cal_cr_list = []
|
||||||
|
cal_cb_list = []
|
||||||
|
|
||||||
|
"""
|
||||||
|
only do colour calculations if required
|
||||||
|
"""
|
||||||
|
if do_alsc_colour:
|
||||||
|
Cam.log += '\nALSC colour tables'
|
||||||
|
for ct in sorted(set(list_col)):
|
||||||
|
Cam.log += '\nColour temperature: {} K'.format(ct)
|
||||||
|
"""
|
||||||
|
average tables for the same colour temperature
|
||||||
|
"""
|
||||||
|
indices = np.where(list_col == ct)
|
||||||
|
ct = int(ct)
|
||||||
|
t_r = np.mean(list_cr[indices],axis=0)
|
||||||
|
t_b = np.mean(list_cb[indices],axis=0)
|
||||||
|
"""
|
||||||
|
force numbers to be stored to 3dp.... :(
|
||||||
|
"""
|
||||||
|
t_r = np.where((100*t_r)%1<=0.05, t_r+0.001,t_r)
|
||||||
|
t_b = np.where((100*t_b)%1<=0.05, t_b+0.001,t_b)
|
||||||
|
t_r = np.where((100*t_r)%1>=0.95, t_r-0.001,t_r)
|
||||||
|
t_b = np.where((100*t_b)%1>=0.95, t_b-0.001,t_b)
|
||||||
|
t_r = np.round(t_r,3)
|
||||||
|
t_b = np.round(t_b,3)
|
||||||
|
r_corners = (t_r[0],t_r[15],t_r[-1],t_r[-16])
|
||||||
|
b_corners = (t_b[0],t_b[15],t_b[-1],t_b[-16])
|
||||||
|
r_cen = t_r[5*16+7]+t_r[5*16+8]+t_r[6*16+7]+t_r[6*16+8]
|
||||||
|
r_cen = round(r_cen/4,3)
|
||||||
|
b_cen = t_b[5*16+7]+t_b[5*16+8]+t_b[6*16+7]+t_b[6*16+8]
|
||||||
|
b_cen = round(b_cen/4,3)
|
||||||
|
Cam.log += '\nRed table corners: {}'.format(r_corners)
|
||||||
|
Cam.log += '\nRed table centre: {}'.format(r_cen)
|
||||||
|
Cam.log += '\nBlue table corners: {}'.format(b_corners)
|
||||||
|
Cam.log += '\nBlue table centre: {}'.format(b_cen)
|
||||||
|
cr_dict = {
|
||||||
|
'ct':ct,
|
||||||
|
'table':list(t_r)
|
||||||
|
}
|
||||||
|
cb_dict = {
|
||||||
|
'ct':ct,
|
||||||
|
'table':list(t_b)
|
||||||
|
}
|
||||||
|
cal_cr_list.append(cr_dict)
|
||||||
|
cal_cb_list.append(cb_dict)
|
||||||
|
Cam.log += '\n'
|
||||||
|
else:
|
||||||
|
cal_cr_list,cal_cb_list = None,None
|
||||||
|
|
||||||
|
"""
|
||||||
|
average all values for luminance shading and return one table for all temperatures
|
||||||
|
"""
|
||||||
|
lum_lut = np.mean(list_cg,axis=0)
|
||||||
|
lum_lut = np.where((100*lum_lut)%1<=0.05,lum_lut+0.001,lum_lut)
|
||||||
|
lum_lut = np.where((100*lum_lut)%1>=0.95,lum_lut-0.001,lum_lut)
|
||||||
|
lum_lut = list(np.round(lum_lut,3))
|
||||||
|
|
||||||
|
"""
|
||||||
|
calculate average corner for lsc gain calculation further on
|
||||||
|
"""
|
||||||
|
corners = (lum_lut[0],lum_lut[15],lum_lut[-1],lum_lut[-16])
|
||||||
|
Cam.log += '\nLuminance table corners: {}'.format(corners)
|
||||||
|
l_cen = lum_lut[5*16+7]+lum_lut[5*16+8]+lum_lut[6*16+7]+lum_lut[6*16+8]
|
||||||
|
l_cen = round(l_cen/4,3)
|
||||||
|
Cam.log += '\nLuminance table centre: {}'.format(l_cen)
|
||||||
|
av_corn = np.sum(corners)/4
|
||||||
|
|
||||||
|
return cal_cr_list,cal_cb_list,lum_lut,av_corn
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
calculate g/r and g/b for 32x32 points arranged in a grid for a single image
|
||||||
|
"""
|
||||||
|
def alsc(Cam,Img,do_alsc_colour,plot=False):
|
||||||
|
Cam.log += '\nProcessing image: ' + Img.name
|
||||||
|
"""
|
||||||
|
get channel in correct order
|
||||||
|
"""
|
||||||
|
channels = [Img.channels[i] for i in Img.order]
|
||||||
|
"""
|
||||||
|
calculate size of single rectangle.
|
||||||
|
-(-(w-1)//32) is a ceiling division. w-1 is to deal robustly with the case
|
||||||
|
where w is a multiple of 32.
|
||||||
|
"""
|
||||||
|
w,h = Img.w/2,Img.h/2
|
||||||
|
dx,dy = int(-(-(w-1)//16)),int(-(-(h-1)//12))
|
||||||
|
"""
|
||||||
|
average the green channels into one
|
||||||
|
"""
|
||||||
|
av_ch_g = np.mean((channels[1:2]),axis = 0)
|
||||||
|
if do_alsc_colour:
|
||||||
|
"""
|
||||||
|
obtain 16x12 grid of intensities for each channel and subtract black level
|
||||||
|
"""
|
||||||
|
g = get_16x12_grid(av_ch_g,dx,dy) - Img.blacklevel_16
|
||||||
|
r = get_16x12_grid(channels[0],dx,dy) - Img.blacklevel_16
|
||||||
|
b = get_16x12_grid(channels[3],dx,dy) - Img.blacklevel_16
|
||||||
|
"""
|
||||||
|
calculate ratios as 32 bit in order to be supported by medianBlur function
|
||||||
|
"""
|
||||||
|
cr = np.reshape(g/r,(12,16)).astype('float32')
|
||||||
|
cb = np.reshape(g/b,(12,16)).astype('float32')
|
||||||
|
cg = np.reshape(1/g,(12,16)).astype('float32')
|
||||||
|
"""
|
||||||
|
median blur to remove peaks and save as float 64
|
||||||
|
"""
|
||||||
|
cr = cv2.medianBlur(cr,3).astype('float64')
|
||||||
|
cb = cv2.medianBlur(cb,3).astype('float64')
|
||||||
|
cg = cv2.medianBlur(cg,3).astype('float64')
|
||||||
|
cg = cg/np.min(cg)
|
||||||
|
|
||||||
|
"""
|
||||||
|
debugging code showing 2D surface plot of vignetting. Quite useful for
|
||||||
|
for sanity check
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
hf = plt.figure(figsize=(8,8))
|
||||||
|
ha = hf.add_subplot(311, projection='3d')
|
||||||
|
"""
|
||||||
|
note Y is plotted as -Y so plot has same axes as image
|
||||||
|
"""
|
||||||
|
X,Y = np.meshgrid(range(16),range(12))
|
||||||
|
ha.plot_surface(X,-Y,cr,cmap=cm.coolwarm,linewidth=0)
|
||||||
|
ha.set_title('ALSC Plot\nImg: {}\n\ncr'.format(Img.str))
|
||||||
|
hb = hf.add_subplot(312, projection='3d')
|
||||||
|
hb.plot_surface(X,-Y,cb,cmap=cm.coolwarm,linewidth=0)
|
||||||
|
hb.set_title('cb')
|
||||||
|
hc = hf.add_subplot(313, projection='3d')
|
||||||
|
hc.plot_surface(X,-Y,cg,cmap=cm.coolwarm,linewidth=0)
|
||||||
|
hc.set_title('g')
|
||||||
|
# print(Img.str)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
return Img.col,cr.flatten(),cb.flatten(),cg.flatten(),(w,h,dx,dy)
|
||||||
|
|
||||||
|
else:
|
||||||
|
"""
|
||||||
|
only perform calculations for luminance shading
|
||||||
|
"""
|
||||||
|
g = get_16x12_grid(av_ch_g,dx,dy) - Img.blacklevel_16
|
||||||
|
cg = np.reshape(1/g,(12,16)).astype('float32')
|
||||||
|
cg = cv2.medianBlur(cg,3).astype('float64')
|
||||||
|
cg = cg/np.min(cg)
|
||||||
|
|
||||||
|
if plot:
|
||||||
|
hf = plt.figure(figssize=(8,8))
|
||||||
|
ha = hf.add_subplot(1,1,1,projection='3d')
|
||||||
|
X,Y = np.meashgrid(range(16),range(12))
|
||||||
|
ha.plot_surface(X,-Y,cg,cmap=cm.coolwarm,linewidth=0)
|
||||||
|
ha.set_title('ALSC Plot (Luminance only!)\nImg: {}\n\ncg').format(Img.str)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
return Img.col,None,None,cg.flatten(),(w,h,dx,dy)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Compresses channel down to a 16x12 grid
|
||||||
|
"""
|
||||||
|
def get_16x12_grid(chan,dx,dy):
|
||||||
|
grid = []
|
||||||
|
"""
|
||||||
|
since left and bottom border will not necessarily have rectangles of
|
||||||
|
dimension dx x dy, the 32nd iteration has to be handled separately.
|
||||||
|
"""
|
||||||
|
for i in range(11):
|
||||||
|
for j in range(15):
|
||||||
|
grid.append(np.mean(chan[dy*i:dy*(1+i),dx*j:dx*(1+j)]))
|
||||||
|
grid.append(np.mean(chan[dy*i:dy*(1+i),15*dx:]))
|
||||||
|
for j in range(15):
|
||||||
|
grid.append(np.mean(chan[11*dy:,dx*j:dx*(1+j)]))
|
||||||
|
grid.append(np.mean(chan[11*dy:,15*dx:]))
|
||||||
|
"""
|
||||||
|
return as np.array, ready for further manipulation
|
||||||
|
"""
|
||||||
|
return np.array(grid)
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtains sigmas for red and blue, effectively a measure of the 'error'
|
||||||
|
"""
|
||||||
|
def get_sigma(Cam,cal_cr_list,cal_cb_list):
|
||||||
|
Cam.log += '\nCalculating sigmas'
|
||||||
|
"""
|
||||||
|
provided colour alsc tables were generated for two different colour
|
||||||
|
temperatures sigma is calculated by comparing two calibration temperatures
|
||||||
|
adjacent in colour space
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
create list of colour temperatures
|
||||||
|
"""
|
||||||
|
cts = [cal['ct'] for cal in cal_cr_list]
|
||||||
|
# print(cts)
|
||||||
|
"""
|
||||||
|
calculate sigmas for each adjacent cts and return worst one
|
||||||
|
"""
|
||||||
|
sigma_rs = []
|
||||||
|
sigma_bs = []
|
||||||
|
for i in range(len(cts)-1):
|
||||||
|
sigma_rs.append(calc_sigma(cal_cr_list[i]['table'],cal_cr_list[i+1]['table']))
|
||||||
|
sigma_bs.append(calc_sigma(cal_cb_list[i]['table'],cal_cb_list[i+1]['table']))
|
||||||
|
Cam.log += '\nColour temperature interval {} - {} K'.format(cts[i],cts[i+1])
|
||||||
|
Cam.log += '\nSigma red: {}'.format(sigma_rs[-1])
|
||||||
|
Cam.log += '\nSigma blue: {}'.format(sigma_bs[-1])
|
||||||
|
|
||||||
|
"""
|
||||||
|
return maximum sigmas, not necessarily from the same colour temperature
|
||||||
|
interval
|
||||||
|
"""
|
||||||
|
sigma_r = max(sigma_rs) if sigma_rs else 0.005
|
||||||
|
sigma_b = max(sigma_bs) if sigma_bs else 0.005
|
||||||
|
Cam.log += '\nMaximum sigmas: Red = {} Blue = {}'.format(sigma_r, sigma_b)
|
||||||
|
|
||||||
|
|
||||||
|
# print(sigma_rs,sigma_bs)
|
||||||
|
# print(sigma_r,sigma_b)
|
||||||
|
return sigma_r,sigma_b
|
||||||
|
|
||||||
|
"""
|
||||||
|
calculate sigma from two adjacent gain tables
|
||||||
|
"""
|
||||||
|
def calc_sigma(g1,g2):
|
||||||
|
"""
|
||||||
|
reshape into 16x12 matrix
|
||||||
|
"""
|
||||||
|
g1 = np.reshape(g1,(12,16))
|
||||||
|
g2 = np.reshape(g2,(12,16))
|
||||||
|
"""
|
||||||
|
apply gains to gain table
|
||||||
|
"""
|
||||||
|
gg = g1/g2
|
||||||
|
if np.mean(gg) < 1:
|
||||||
|
gg = 1/gg
|
||||||
|
"""
|
||||||
|
for each internal patch, compute average difference between it and its 4
|
||||||
|
neighbours, then append to list
|
||||||
|
"""
|
||||||
|
diffs = []
|
||||||
|
for i in range(10):
|
||||||
|
for j in range(14):
|
||||||
|
"""
|
||||||
|
note indexing is incremented by 1 since all patches on borders are
|
||||||
|
not counted
|
||||||
|
"""
|
||||||
|
diff = np.abs(gg[i+1][j+1]-gg[i][j+1])
|
||||||
|
diff += np.abs(gg[i+1][j+1]-gg[i+2][j+1])
|
||||||
|
diff += np.abs(gg[i+1][j+1]-gg[i+1][j])
|
||||||
|
diff += np.abs(gg[i+1][j+1]-gg[i+1][j+2])
|
||||||
|
diffs.append(diff/4)
|
||||||
|
|
||||||
|
"""
|
||||||
|
return mean difference
|
||||||
|
"""
|
||||||
|
mean_diff = np.mean(diffs)
|
||||||
|
return(np.round(mean_diff,5))
|
374
utils/raspberrypi/ctt/ctt_awb.py
Normal file
374
utils/raspberrypi/ctt/ctt_awb.py
Normal file
|
@ -0,0 +1,374 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_awb.py - camera tuning tool for AWB
|
||||||
|
|
||||||
|
from ctt_image_load import *
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from bisect import bisect_left
|
||||||
|
from scipy.optimize import fmin
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain piecewise linear approximation for colour curve
|
||||||
|
"""
|
||||||
|
def awb(Cam,cal_cr_list,cal_cb_list,plot):
|
||||||
|
imgs = Cam.imgs
|
||||||
|
"""
|
||||||
|
condense alsc calibration tables into one dictionary
|
||||||
|
"""
|
||||||
|
if cal_cr_list == None:
|
||||||
|
colour_cals = None
|
||||||
|
else:
|
||||||
|
colour_cals = {}
|
||||||
|
for cr,cb in zip(cal_cr_list,cal_cb_list):
|
||||||
|
cr_tab = cr['table']
|
||||||
|
cb_tab = cb['table']
|
||||||
|
"""
|
||||||
|
normalise tables so min value is 1
|
||||||
|
"""
|
||||||
|
cr_tab= cr_tab/np.min(cr_tab)
|
||||||
|
cb_tab= cb_tab/np.min(cb_tab)
|
||||||
|
colour_cals[cr['ct']] = [cr_tab,cb_tab]
|
||||||
|
"""
|
||||||
|
obtain data from greyscale macbeth patches
|
||||||
|
"""
|
||||||
|
rb_raw = []
|
||||||
|
rbs_hat = []
|
||||||
|
for Img in imgs:
|
||||||
|
Cam.log += '\nProcessing '+Img.name
|
||||||
|
"""
|
||||||
|
get greyscale patches with alsc applied if alsc enabled.
|
||||||
|
Note: if alsc is disabled then colour_cals will be set to None and the
|
||||||
|
function will just return the greyscale patches
|
||||||
|
"""
|
||||||
|
r_patchs,b_patchs,g_patchs = get_alsc_patches(Img,colour_cals)
|
||||||
|
"""
|
||||||
|
calculate ratio of r,b to g
|
||||||
|
"""
|
||||||
|
r_g = np.mean(r_patchs/g_patchs)
|
||||||
|
b_g = np.mean(b_patchs/g_patchs)
|
||||||
|
Cam.log += '\n r : {:.4f} b : {:.4f}'.format(r_g,b_g)
|
||||||
|
"""
|
||||||
|
The curve tends to be better behaved in so-called hatspace.
|
||||||
|
R,B,G represent the individual channels. The colour curve is plotted in
|
||||||
|
r,b space, where:
|
||||||
|
r = R/G
|
||||||
|
b = B/G
|
||||||
|
This will be referred to as dehatspace... (sorry)
|
||||||
|
Hatspace is defined as:
|
||||||
|
r_hat = R/(R+B+G)
|
||||||
|
b_hat = B/(R+B+G)
|
||||||
|
To convert from dehatspace to hastpace (hat operation):
|
||||||
|
r_hat = r/(1+r+b)
|
||||||
|
b_hat = b/(1+r+b)
|
||||||
|
To convert from hatspace to dehatspace (dehat operation):
|
||||||
|
r = r_hat/(1-r_hat-b_hat)
|
||||||
|
b = b_hat/(1-r_hat-b_hat)
|
||||||
|
Proof is left as an excercise to the reader...
|
||||||
|
Throughout the code, r and b are sometimes referred to as r_g and b_g
|
||||||
|
as a reminder that they are ratios
|
||||||
|
"""
|
||||||
|
r_g_hat = r_g/(1+r_g+b_g)
|
||||||
|
b_g_hat = b_g/(1+r_g+b_g)
|
||||||
|
Cam.log += '\n r_hat : {:.4f} b_hat : {:.4f}'.format(r_g_hat,b_g_hat)
|
||||||
|
rbs_hat.append((r_g_hat,b_g_hat,Img.col))
|
||||||
|
rb_raw.append((r_g,b_g))
|
||||||
|
Cam.log += '\n'
|
||||||
|
|
||||||
|
Cam.log += '\nFinished processing images'
|
||||||
|
"""
|
||||||
|
sort all lits simultaneously by r_hat
|
||||||
|
"""
|
||||||
|
rbs_zip = list(zip(rbs_hat,rb_raw))
|
||||||
|
rbs_zip.sort(key=lambda x:x[0][0])
|
||||||
|
rbs_hat,rb_raw = list(zip(*rbs_zip))
|
||||||
|
"""
|
||||||
|
unzip tuples ready for processing
|
||||||
|
"""
|
||||||
|
rbs_hat = list(zip(*rbs_hat))
|
||||||
|
rb_raw = list(zip(*rb_raw))
|
||||||
|
"""
|
||||||
|
fit quadratic fit to r_g hat and b_g_hat
|
||||||
|
"""
|
||||||
|
a,b,c = np.polyfit(rbs_hat[0],rbs_hat[1],2)
|
||||||
|
Cam.log += '\nFit quadratic curve in hatspace'
|
||||||
|
"""
|
||||||
|
the algorithm now approximates the shortest distance from each point to the
|
||||||
|
curve in dehatspace. Since the fit is done in hatspace, it is easier to
|
||||||
|
find the actual shortest distance in hatspace and use the projection back
|
||||||
|
into dehatspace as an overestimate.
|
||||||
|
The distance will be used for two things:
|
||||||
|
1) In the case that colour temperature does not strictly decrease with
|
||||||
|
increasing r/g, the closest point to the line will be chosen out of an
|
||||||
|
increasing pair of colours.
|
||||||
|
|
||||||
|
2) To calculate transverse negative an dpositive, the maximum positive
|
||||||
|
and negative distance from the line are chosen. This benefits from the
|
||||||
|
overestimate as the transverse pos/neg are upper bound values.
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
define fit function
|
||||||
|
"""
|
||||||
|
def f(x):
|
||||||
|
return a*x**2 + b*x + c
|
||||||
|
"""
|
||||||
|
iterate over points (R,B are x and y coordinates of points) and calculate
|
||||||
|
distance to line in dehatspace
|
||||||
|
"""
|
||||||
|
dists = []
|
||||||
|
for i, (R,B) in enumerate(zip(rbs_hat[0],rbs_hat[1])):
|
||||||
|
"""
|
||||||
|
define function to minimise as square distance between datapoint and
|
||||||
|
point on curve. Squaring is monotonic so minimising radius squared is
|
||||||
|
equivalent to minimising radius
|
||||||
|
"""
|
||||||
|
def f_min(x):
|
||||||
|
y = f(x)
|
||||||
|
return((x-R)**2+(y-B)**2)
|
||||||
|
"""
|
||||||
|
perform optimisation with scipy.optmisie.fmin
|
||||||
|
"""
|
||||||
|
x_hat = fmin(f_min,R,disp=0)[0]
|
||||||
|
y_hat = f(x_hat)
|
||||||
|
"""
|
||||||
|
dehat
|
||||||
|
"""
|
||||||
|
x = x_hat/(1-x_hat-y_hat)
|
||||||
|
y = y_hat/(1-x_hat-y_hat)
|
||||||
|
rr = R/(1-R-B)
|
||||||
|
bb = B/(1-R-B)
|
||||||
|
"""
|
||||||
|
calculate euclidean distance in dehatspace
|
||||||
|
"""
|
||||||
|
dist = ((x-rr)**2+(y-bb)**2)**0.5
|
||||||
|
"""
|
||||||
|
return negative if point is below the fit curve
|
||||||
|
"""
|
||||||
|
if (x+y) > (rr+bb):
|
||||||
|
dist *= -1
|
||||||
|
dists.append(dist)
|
||||||
|
Cam.log += '\nFound closest point on fit line to each point in dehatspace'
|
||||||
|
"""
|
||||||
|
calculate wiggle factors in awb. 10% added since this is an upper bound
|
||||||
|
"""
|
||||||
|
transverse_neg = - np.min(dists) * 1.1
|
||||||
|
transverse_pos = np.max(dists) * 1.1
|
||||||
|
Cam.log += '\nTransverse pos : {:.5f}'.format(transverse_pos)
|
||||||
|
Cam.log += '\nTransverse neg : {:.5f}'.format(transverse_neg)
|
||||||
|
"""
|
||||||
|
set minimum transverse wiggles to 0.1 .
|
||||||
|
Wiggle factors dictate how far off of the curve the algorithm searches. 0.1
|
||||||
|
is a suitable minimum that gives better results for lighting conditions not
|
||||||
|
within calibration dataset. Anything less will generalise poorly.
|
||||||
|
"""
|
||||||
|
if transverse_pos < 0.01:
|
||||||
|
transverse_pos = 0.01
|
||||||
|
Cam.log += '\nForced transverse pos to 0.01'
|
||||||
|
if transverse_neg < 0.01:
|
||||||
|
transverse_neg = 0.01
|
||||||
|
Cam.log += '\nForced transverse neg to 0.01'
|
||||||
|
|
||||||
|
"""
|
||||||
|
generate new b_hat values at each r_hat according to fit
|
||||||
|
"""
|
||||||
|
r_hat_fit = np.array(rbs_hat[0])
|
||||||
|
b_hat_fit = a*r_hat_fit**2 + b*r_hat_fit + c
|
||||||
|
"""
|
||||||
|
transform from hatspace to dehatspace
|
||||||
|
"""
|
||||||
|
r_fit = r_hat_fit/(1-r_hat_fit-b_hat_fit)
|
||||||
|
b_fit = b_hat_fit/(1-r_hat_fit-b_hat_fit)
|
||||||
|
c_fit = np.round(rbs_hat[2],0)
|
||||||
|
"""
|
||||||
|
round to 4dp
|
||||||
|
"""
|
||||||
|
r_fit = np.where((1000*r_fit)%1<=0.05,r_fit+0.0001,r_fit)
|
||||||
|
r_fit = np.where((1000*r_fit)%1>=0.95,r_fit-0.0001,r_fit)
|
||||||
|
b_fit = np.where((1000*b_fit)%1<=0.05,b_fit+0.0001,b_fit)
|
||||||
|
b_fit = np.where((1000*b_fit)%1>=0.95,b_fit-0.0001,b_fit)
|
||||||
|
r_fit = np.round(r_fit,4)
|
||||||
|
b_fit = np.round(b_fit,4)
|
||||||
|
"""
|
||||||
|
The following code ensures that colour temperature decreases with
|
||||||
|
increasing r/g
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
iterate backwards over list for easier indexing
|
||||||
|
"""
|
||||||
|
i = len(c_fit) - 1
|
||||||
|
while i > 0 :
|
||||||
|
if c_fit[i] > c_fit[i-1]:
|
||||||
|
Cam.log += '\nColour temperature increase found\n'
|
||||||
|
Cam.log += '{} K at r = {} to '.format(c_fit[i-1],r_fit[i-1])
|
||||||
|
Cam.log += '{} K at r = {}'.format(c_fit[i],r_fit[i])
|
||||||
|
"""
|
||||||
|
if colour temperature increases then discard point furthest from
|
||||||
|
the transformed fit (dehatspace)
|
||||||
|
"""
|
||||||
|
error_1 = abs(dists[i-1])
|
||||||
|
error_2 = abs(dists[i])
|
||||||
|
Cam.log += '\nDistances from fit:\n'
|
||||||
|
Cam.log += '{} K : {:.5f} , '.format(c_fit[i],error_1)
|
||||||
|
Cam.log += '{} K : {:.5f}'.format(c_fit[i-1],error_2)
|
||||||
|
"""
|
||||||
|
find bad index
|
||||||
|
note that in python false = 0 and true = 1
|
||||||
|
"""
|
||||||
|
bad = i - (error_1<error_2)
|
||||||
|
Cam.log += '\nPoint at {} K deleted as '.format(c_fit[bad])
|
||||||
|
Cam.log += 'it is furthest from fit'
|
||||||
|
"""
|
||||||
|
delete bad point
|
||||||
|
"""
|
||||||
|
r_fit = np.delete(r_fit,bad)
|
||||||
|
b_fit = np.delete(b_fit,bad)
|
||||||
|
c_fit = np.delete(c_fit,bad).astype(np.uint16)
|
||||||
|
"""
|
||||||
|
note that if a point has been discarded then the length has decreased
|
||||||
|
by one, meaning that decreasing the index by one will reassess the kept
|
||||||
|
point against the next point. It is therefore possible, in theory, for
|
||||||
|
two adjacent points to be discarded, although probably rare
|
||||||
|
"""
|
||||||
|
i -= 1
|
||||||
|
|
||||||
|
"""
|
||||||
|
return formatted ct curve, ordered by increasing colour temperature
|
||||||
|
"""
|
||||||
|
ct_curve = list(np.array(list(zip(b_fit,r_fit,c_fit))).flatten())[::-1]
|
||||||
|
Cam.log += '\nFinal CT curve:'
|
||||||
|
for i in range(len(ct_curve)//3):
|
||||||
|
j = 3*i
|
||||||
|
Cam.log += '\n ct: {} '.format(ct_curve[j])
|
||||||
|
Cam.log += ' r: {} '.format(ct_curve[j+1])
|
||||||
|
Cam.log += ' b: {} '.format(ct_curve[j+2])
|
||||||
|
|
||||||
|
"""
|
||||||
|
plotting code for debug
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
x = np.linspace(np.min(rbs_hat[0]),np.max(rbs_hat[0]),100)
|
||||||
|
y = a*x**2 + b*x + c
|
||||||
|
plt.subplot(2,1,1)
|
||||||
|
plt.title('hatspace')
|
||||||
|
plt.plot(rbs_hat[0],rbs_hat[1],ls='--',color='blue')
|
||||||
|
plt.plot(x,y,color='green',ls='-')
|
||||||
|
plt.scatter(rbs_hat[0],rbs_hat[1],color='red')
|
||||||
|
for i, ct in enumerate(rbs_hat[2]):
|
||||||
|
plt.annotate(str(ct),(rbs_hat[0][i],rbs_hat[1][i]))
|
||||||
|
plt.xlabel('$\hat{r}$')
|
||||||
|
plt.ylabel('$\hat{b}$')
|
||||||
|
"""
|
||||||
|
optional set axes equal to shortest distance so line really does
|
||||||
|
looks perpendicular and everybody is happy
|
||||||
|
"""
|
||||||
|
# ax = plt.gca()
|
||||||
|
# ax.set_aspect('equal')
|
||||||
|
plt.grid()
|
||||||
|
plt.subplot(2,1,2)
|
||||||
|
plt.title('dehatspace - indoors?')
|
||||||
|
plt.plot(r_fit,b_fit,color='blue')
|
||||||
|
plt.scatter(rb_raw[0],rb_raw[1],color='green')
|
||||||
|
plt.scatter(r_fit,b_fit,color='red')
|
||||||
|
for i,ct in enumerate(c_fit):
|
||||||
|
plt.annotate(str(ct),(r_fit[i],b_fit[i]))
|
||||||
|
plt.xlabel('$r$')
|
||||||
|
plt.ylabel('$b$')
|
||||||
|
"""
|
||||||
|
optional set axes equal to shortest distance so line really does
|
||||||
|
looks perpendicular and everybody is happy
|
||||||
|
"""
|
||||||
|
# ax = plt.gca()
|
||||||
|
# ax.set_aspect('equal')
|
||||||
|
plt.subplots_adjust(hspace=0.5)
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
"""
|
||||||
|
end of plotting code
|
||||||
|
"""
|
||||||
|
return(ct_curve,np.round(transverse_pos,5),np.round(transverse_neg,5))
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain greyscale patches and perform alsc colour correction
|
||||||
|
"""
|
||||||
|
def get_alsc_patches(Img,colour_cals,grey=True):
|
||||||
|
"""
|
||||||
|
get patch centre coordinates, image colour and the actual
|
||||||
|
patches for each channel,remembering to subtract blacklevel
|
||||||
|
If grey then only greyscale patches considered
|
||||||
|
"""
|
||||||
|
if grey:
|
||||||
|
cen_coords = Img.cen_coords[3::4]
|
||||||
|
col = Img.col
|
||||||
|
patches = [np.array(Img.patches[i]) for i in Img.order]
|
||||||
|
r_patchs = patches[0][3::4] - Img.blacklevel_16
|
||||||
|
b_patchs = patches[3][3::4] - Img.blacklevel_16
|
||||||
|
"""
|
||||||
|
note two green channels are averages
|
||||||
|
"""
|
||||||
|
g_patchs = (patches[1][3::4]+patches[2][3::4])/2 - Img.blacklevel_16
|
||||||
|
else:
|
||||||
|
cen_coords = Img.cen_coords
|
||||||
|
col = Img.col
|
||||||
|
patches = [np.array(Img.patches[i]) for i in Img.order]
|
||||||
|
r_patchs = patches[0] - Img.blacklevel_16
|
||||||
|
b_patchs = patches[3] - Img.blacklevel_16
|
||||||
|
g_patchs = (patches[1]+patches[2])/2 - Img.blacklevel_16
|
||||||
|
|
||||||
|
if colour_cals == None:
|
||||||
|
return r_patchs,b_patchs,g_patchs
|
||||||
|
"""
|
||||||
|
find where image colour fits in alsc colour calibration tables
|
||||||
|
"""
|
||||||
|
cts = list(colour_cals.keys())
|
||||||
|
pos = bisect_left(cts,col)
|
||||||
|
"""
|
||||||
|
if img colour is below minimum or above maximum alsc calibration colour, simply
|
||||||
|
pick extreme closest to img colour
|
||||||
|
"""
|
||||||
|
if pos%(len(cts)) == 0:
|
||||||
|
"""
|
||||||
|
this works because -0 = 0 = first and -1 = last index
|
||||||
|
"""
|
||||||
|
col_tabs = np.array(colour_cals[cts[-pos//len(cts)]])
|
||||||
|
"""
|
||||||
|
else, perform linear interpolation between existing alsc colour
|
||||||
|
calibration tables
|
||||||
|
"""
|
||||||
|
else:
|
||||||
|
bef = cts[pos-1]
|
||||||
|
aft = cts[pos]
|
||||||
|
da = col-bef
|
||||||
|
db = aft-col
|
||||||
|
bef_tabs = np.array(colour_cals[bef])
|
||||||
|
aft_tabs = np.array(colour_cals[aft])
|
||||||
|
col_tabs = (bef_tabs*db + aft_tabs*da)/(da+db)
|
||||||
|
col_tabs = np.reshape(col_tabs,(2,12,16))
|
||||||
|
"""
|
||||||
|
calculate dx,dy used to calculate alsc table
|
||||||
|
"""
|
||||||
|
w,h = Img.w/2,Img.h/2
|
||||||
|
dx,dy = int(-(-(w-1)//16)),int(-(-(h-1)//12))
|
||||||
|
"""
|
||||||
|
make list of pairs of gains for each patch by selecting the correct value
|
||||||
|
in alsc colour calibration table
|
||||||
|
"""
|
||||||
|
patch_gains = []
|
||||||
|
for cen in cen_coords:
|
||||||
|
x,y = cen[0]//dx, cen[1]//dy
|
||||||
|
# We could probably do with some better spatial interpolation here?
|
||||||
|
col_gains = (col_tabs[0][y][x],col_tabs[1][y][x])
|
||||||
|
patch_gains.append(col_gains)
|
||||||
|
|
||||||
|
"""
|
||||||
|
multiply the r and b channels in each patch by the respective gain, finally
|
||||||
|
performing the alsc colour correction
|
||||||
|
"""
|
||||||
|
for i,gains in enumerate(patch_gains):
|
||||||
|
r_patchs[i] = r_patchs[i] * gains[0]
|
||||||
|
b_patchs[i] = b_patchs[i] * gains[1]
|
||||||
|
|
||||||
|
"""
|
||||||
|
return greyscale patches, g channel and correct r,b channels
|
||||||
|
"""
|
||||||
|
return r_patchs,b_patchs,g_patchs
|
221
utils/raspberrypi/ctt/ctt_ccm.py
Normal file
221
utils/raspberrypi/ctt/ctt_ccm.py
Normal file
|
@ -0,0 +1,221 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_ccm.py - camera tuning tool for CCM (colour correction matrix)
|
||||||
|
|
||||||
|
from ctt_image_load import *
|
||||||
|
from ctt_awb import get_alsc_patches
|
||||||
|
|
||||||
|
"""
|
||||||
|
takes 8-bit macbeth chart values, degammas and returns 16 bit
|
||||||
|
"""
|
||||||
|
def degamma(x):
|
||||||
|
x = x / ((2**8)-1)
|
||||||
|
x = np.where(x < 0.04045, x/12.92, ((x+0.055)/1.055)**2.4)
|
||||||
|
x = x * ((2**16)-1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
"""
|
||||||
|
FInds colour correction matrices for list of images
|
||||||
|
"""
|
||||||
|
def ccm(Cam,cal_cr_list,cal_cb_list):
|
||||||
|
imgs = Cam.imgs
|
||||||
|
"""
|
||||||
|
standard macbeth chart colour values
|
||||||
|
"""
|
||||||
|
m_rgb = np.array([ # these are in sRGB
|
||||||
|
[116, 81, 67], # dark skin
|
||||||
|
[199, 147, 129], # light skin
|
||||||
|
[91, 122, 156], # blue sky
|
||||||
|
[90, 108, 64], # foliage
|
||||||
|
[130, 128, 176], # blue flower
|
||||||
|
[92, 190, 172], # bluish green
|
||||||
|
[224, 124, 47], # orange
|
||||||
|
[68, 91,170], # purplish blue
|
||||||
|
[198, 82, 97], # moderate red
|
||||||
|
[94, 58, 106], # purple
|
||||||
|
[159, 189, 63], # yellow green
|
||||||
|
[230, 162, 39], # orange yellow
|
||||||
|
[35, 63, 147], # blue
|
||||||
|
[67, 149, 74], # green
|
||||||
|
[180, 49, 57], # red
|
||||||
|
[238, 198, 20], # yellow
|
||||||
|
[193, 84, 151], # magenta
|
||||||
|
[0, 136, 170], # cyan (goes out of gamut)
|
||||||
|
[245, 245, 243], # white 9.5
|
||||||
|
[200, 202, 202], # neutral 8
|
||||||
|
[161, 163, 163], # neutral 6.5
|
||||||
|
[121, 121, 122], # neutral 5
|
||||||
|
[82, 84, 86], # neutral 3.5
|
||||||
|
[49, 49, 51] # black 2
|
||||||
|
])
|
||||||
|
|
||||||
|
"""
|
||||||
|
convert reference colours from srgb to rgb
|
||||||
|
"""
|
||||||
|
m_srgb = degamma(m_rgb)
|
||||||
|
"""
|
||||||
|
reorder reference values to match how patches are ordered
|
||||||
|
"""
|
||||||
|
m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24,3))
|
||||||
|
|
||||||
|
"""
|
||||||
|
reformat alsc correction tables or set colour_cals to None if alsc is
|
||||||
|
deactivated
|
||||||
|
"""
|
||||||
|
if cal_cr_list == None:
|
||||||
|
colour_cals = None
|
||||||
|
else:
|
||||||
|
colour_cals = {}
|
||||||
|
for cr,cb in zip(cal_cr_list,cal_cb_list):
|
||||||
|
cr_tab = cr['table']
|
||||||
|
cb_tab = cb['table']
|
||||||
|
"""
|
||||||
|
normalise tables so min value is 1
|
||||||
|
"""
|
||||||
|
cr_tab= cr_tab/np.min(cr_tab)
|
||||||
|
cb_tab= cb_tab/np.min(cb_tab)
|
||||||
|
colour_cals[cr['ct']] = [cr_tab,cb_tab]
|
||||||
|
|
||||||
|
"""
|
||||||
|
for each image, perform awb and alsc corrections.
|
||||||
|
Then calculate the colour correction matrix for that image, recording the
|
||||||
|
ccm and the colour tempertaure.
|
||||||
|
"""
|
||||||
|
ccm_tab = {}
|
||||||
|
for Img in imgs:
|
||||||
|
Cam.log += '\nProcessing image: ' + Img.name
|
||||||
|
"""
|
||||||
|
get macbeth patches with alsc applied if alsc enabled.
|
||||||
|
Note: if alsc is disabled then colour_cals will be set to None and no
|
||||||
|
the function will simply return the macbeth patches
|
||||||
|
"""
|
||||||
|
r,b,g = get_alsc_patches(Img,colour_cals,grey=False)
|
||||||
|
"""
|
||||||
|
do awb
|
||||||
|
Note: awb is done by measuring the macbeth chart in the image, rather
|
||||||
|
than from the awb calibration. This is done so the awb will be perfect
|
||||||
|
and the ccm matrices will be more accurate.
|
||||||
|
"""
|
||||||
|
r_greys,b_greys,g_greys = r[3::4],b[3::4],g[3::4]
|
||||||
|
r_g = np.mean(r_greys/g_greys)
|
||||||
|
b_g = np.mean(b_greys/g_greys)
|
||||||
|
r = r / r_g
|
||||||
|
b = b / b_g
|
||||||
|
|
||||||
|
"""
|
||||||
|
normalise brightness wrt reference macbeth colours and then average
|
||||||
|
each channel for each patch
|
||||||
|
"""
|
||||||
|
gain = np.mean(m_srgb)/np.mean((r,g,b))
|
||||||
|
Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain)
|
||||||
|
r = np.mean(gain*r,axis=1)
|
||||||
|
b = np.mean(gain*b,axis=1)
|
||||||
|
g = np.mean(gain*g,axis=1)
|
||||||
|
|
||||||
|
"""
|
||||||
|
calculate ccm matrix
|
||||||
|
"""
|
||||||
|
ccm = do_ccm(r,g,b,m_srgb)
|
||||||
|
|
||||||
|
"""
|
||||||
|
if a ccm has already been calculated for that temperature then don't
|
||||||
|
overwrite but save both. They will then be averaged later on
|
||||||
|
"""
|
||||||
|
if Img.col in ccm_tab.keys():
|
||||||
|
ccm_tab[Img.col].append(ccm)
|
||||||
|
else:
|
||||||
|
ccm_tab[Img.col] = [ccm]
|
||||||
|
Cam.log += '\n'
|
||||||
|
|
||||||
|
Cam.log += '\nFinished processing images'
|
||||||
|
"""
|
||||||
|
average any ccms that share a colour temperature
|
||||||
|
"""
|
||||||
|
for k,v in ccm_tab.items():
|
||||||
|
tab = np.mean(v,axis=0)
|
||||||
|
tab = np.where((10000*tab)%1<=0.05,tab+0.00001,tab)
|
||||||
|
tab = np.where((10000*tab)%1>=0.95,tab-0.00001,tab)
|
||||||
|
ccm_tab[k] = list(np.round(tab,5))
|
||||||
|
Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k)
|
||||||
|
|
||||||
|
"""
|
||||||
|
return all ccms with respective colour temperature in the correct format,
|
||||||
|
sorted by their colour temperature
|
||||||
|
"""
|
||||||
|
sorted_ccms = sorted(ccm_tab.items(),key=lambda kv: kv[0])
|
||||||
|
ccms = []
|
||||||
|
for i in sorted_ccms:
|
||||||
|
ccms.append({
|
||||||
|
'ct' : i[0],
|
||||||
|
'ccm' : i[1]
|
||||||
|
})
|
||||||
|
return ccms
|
||||||
|
|
||||||
|
"""
|
||||||
|
calculates the ccm for an individual image.
|
||||||
|
ccms are calculate in rgb space, and are fit by hand. Although it is a 3x3
|
||||||
|
matrix, each row must add up to 1 in order to conserve greyness, simplifying
|
||||||
|
calculation.
|
||||||
|
Should you want to fit them in another space (e.g. LAB) we wish you the best of
|
||||||
|
luck and send us the code when you are done! :-)
|
||||||
|
"""
|
||||||
|
def do_ccm(r,g,b,m_srgb):
|
||||||
|
rb = r-b
|
||||||
|
gb = g-b
|
||||||
|
rb_2s = (rb*rb)
|
||||||
|
rb_gbs = (rb*gb)
|
||||||
|
gb_2s = (gb*gb)
|
||||||
|
|
||||||
|
r_rbs = ( rb * (m_srgb[...,0] - b) )
|
||||||
|
r_gbs = ( gb * (m_srgb[...,0] - b) )
|
||||||
|
g_rbs = ( rb * (m_srgb[...,1] - b) )
|
||||||
|
g_gbs = ( gb * (m_srgb[...,1] - b) )
|
||||||
|
b_rbs = ( rb * (m_srgb[...,2] - b) )
|
||||||
|
b_gbs = ( gb * (m_srgb[...,2] - b) )
|
||||||
|
|
||||||
|
"""
|
||||||
|
Obtain least squares fit
|
||||||
|
"""
|
||||||
|
rb_2 = np.sum(rb_2s)
|
||||||
|
gb_2 = np.sum(gb_2s)
|
||||||
|
rb_gb = np.sum(rb_gbs)
|
||||||
|
r_rb = np.sum(r_rbs)
|
||||||
|
r_gb = np.sum(r_gbs)
|
||||||
|
g_rb = np.sum(g_rbs)
|
||||||
|
g_gb = np.sum(g_gbs)
|
||||||
|
b_rb = np.sum(b_rbs)
|
||||||
|
b_gb = np.sum(b_gbs)
|
||||||
|
|
||||||
|
det = rb_2*gb_2 - rb_gb*rb_gb
|
||||||
|
|
||||||
|
"""
|
||||||
|
Raise error if matrix is singular...
|
||||||
|
This shouldn't really happen with real data but if it does just take new
|
||||||
|
pictures and try again, not much else to be done unfortunately...
|
||||||
|
"""
|
||||||
|
if det < 0.001:
|
||||||
|
raise ArithmeticError
|
||||||
|
|
||||||
|
r_a = (gb_2*r_rb - rb_gb*r_gb)/det
|
||||||
|
r_b = (rb_2*r_gb - rb_gb*r_rb)/det
|
||||||
|
"""
|
||||||
|
Last row can be calculated by knowing the sum must be 1
|
||||||
|
"""
|
||||||
|
r_c = 1 - r_a - r_b
|
||||||
|
|
||||||
|
g_a = (gb_2*g_rb - rb_gb*g_gb)/det
|
||||||
|
g_b = (rb_2*g_gb - rb_gb*g_rb)/det
|
||||||
|
g_c = 1 - g_a - g_b
|
||||||
|
|
||||||
|
b_a = (gb_2*b_rb - rb_gb*b_gb)/det
|
||||||
|
b_b = (rb_2*b_gb - rb_gb*b_rb)/det
|
||||||
|
b_c = 1 - b_a - b_b
|
||||||
|
|
||||||
|
"""
|
||||||
|
format ccm
|
||||||
|
"""
|
||||||
|
ccm = [r_a,r_b,r_c,g_a,g_b,g_c,b_a,b_b,b_c]
|
||||||
|
|
||||||
|
return ccm
|
16
utils/raspberrypi/ctt/ctt_config_example.json
Normal file
16
utils/raspberrypi/ctt/ctt_config_example.json
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
{
|
||||||
|
"disable": [],
|
||||||
|
"plot": [],
|
||||||
|
"alsc": {
|
||||||
|
"do_alsc_colour": 1,
|
||||||
|
"luminance_strength": 0.5
|
||||||
|
},
|
||||||
|
"awb": {
|
||||||
|
"greyworld": 0
|
||||||
|
},
|
||||||
|
"blacklevel": -1,
|
||||||
|
"macbeth": {
|
||||||
|
"small": 0,
|
||||||
|
"show": 0
|
||||||
|
}
|
||||||
|
}
|
179
utils/raspberrypi/ctt/ctt_geq.py
Normal file
179
utils/raspberrypi/ctt/ctt_geq.py
Normal file
|
@ -0,0 +1,179 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_geq.py - camera tuning tool for GEQ (green equalisation)
|
||||||
|
|
||||||
|
from ctt_tools import *
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import scipy.optimize as optimize
|
||||||
|
|
||||||
|
"""
|
||||||
|
Uses green differences in macbeth patches to fit green equalisation threshold
|
||||||
|
model. Ideally, all macbeth chart centres would fall below the threshold as
|
||||||
|
these should be corrected by geq.
|
||||||
|
"""
|
||||||
|
def geq_fit(Cam,plot):
|
||||||
|
imgs = Cam.imgs
|
||||||
|
"""
|
||||||
|
green equalisation to mitigate mazing.
|
||||||
|
Fits geq model by looking at difference
|
||||||
|
between greens in macbeth patches
|
||||||
|
"""
|
||||||
|
geqs = np.array([ geq(Cam,Img)*Img.againQ8_norm for Img in imgs ])
|
||||||
|
Cam.log += '\nProcessed all images'
|
||||||
|
geqs = geqs.reshape((-1,2))
|
||||||
|
"""
|
||||||
|
data is sorted by green difference and top half is selected since higher
|
||||||
|
green difference data define the decision boundary.
|
||||||
|
"""
|
||||||
|
geqs = np.array(sorted(geqs,key = lambda r:np.abs((r[1]-r[0])/r[0])))
|
||||||
|
|
||||||
|
length = len(geqs)
|
||||||
|
g0 = geqs[length//2:,0]
|
||||||
|
g1 = geqs[length//2:,1]
|
||||||
|
gdiff = np.abs(g0-g1)
|
||||||
|
"""
|
||||||
|
find linear fit by minimising asymmetric least square errors
|
||||||
|
in order to cover most of the macbeth images.
|
||||||
|
the philosophy here is that every macbeth patch should fall within the
|
||||||
|
threshold, hence the upper bound approach
|
||||||
|
"""
|
||||||
|
def f(params):
|
||||||
|
m,c = params
|
||||||
|
a = gdiff - (m*g0+c)
|
||||||
|
"""
|
||||||
|
asymmetric square error returns:
|
||||||
|
1.95 * a**2 if a is positive
|
||||||
|
0.05 * a**2 if a is negative
|
||||||
|
"""
|
||||||
|
return(np.sum(a**2+0.95*np.abs(a)*a))
|
||||||
|
|
||||||
|
initial_guess = [0.01,500]
|
||||||
|
"""
|
||||||
|
Nelder-Mead is usually not the most desirable optimisation method
|
||||||
|
but has been chosen here due to its robustness to undifferentiability
|
||||||
|
(is that a word?)
|
||||||
|
"""
|
||||||
|
result = optimize.minimize(f,initial_guess,method='Nelder-Mead')
|
||||||
|
"""
|
||||||
|
need to check if the fit worked correectly
|
||||||
|
"""
|
||||||
|
if result.success:
|
||||||
|
slope,offset = result.x
|
||||||
|
Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
|
||||||
|
Cam.log += 'offset = {}'.format(int(offset))
|
||||||
|
"""
|
||||||
|
optional plotting code
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
x = np.linspace(max(g0)*1.1,100)
|
||||||
|
y = slope*x + offset
|
||||||
|
plt.title('GEQ Asymmetric \'Upper Bound\' Fit')
|
||||||
|
plt.plot(x,y,color='red',ls='--',label='fit')
|
||||||
|
plt.scatter(g0,gdiff,color='b',label='data')
|
||||||
|
plt.ylabel('Difference in green channels')
|
||||||
|
plt.xlabel('Green value')
|
||||||
|
|
||||||
|
"""
|
||||||
|
This upper bound asymmetric gives correct order of magnitude values.
|
||||||
|
The pipeline approximates a 1st derivative of a gaussian with some
|
||||||
|
linear piecewise functions, introducing arbitrary cutoffs. For
|
||||||
|
pessimistic geq, the model parameters have been increased by a
|
||||||
|
scaling factor/constant.
|
||||||
|
|
||||||
|
Feel free to tune these or edit the json files directly if you
|
||||||
|
belive there are still mazing effects left (threshold too low) or if you
|
||||||
|
think it is being overcorrected (threshold too high).
|
||||||
|
We have gone for a one size fits most approach that will produce
|
||||||
|
acceptable results in most applications.
|
||||||
|
"""
|
||||||
|
slope *= 1.5
|
||||||
|
offset += 201
|
||||||
|
Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope)
|
||||||
|
Cam.log += ' offset = {}'.format(int(offset))
|
||||||
|
"""
|
||||||
|
clamp offset at 0 due to pipeline considerations
|
||||||
|
"""
|
||||||
|
if offset < 0:
|
||||||
|
Cam.log += '\nOffset raised to 0'
|
||||||
|
offset = 0
|
||||||
|
"""
|
||||||
|
optional plotting code
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
y2 = slope*x + offset
|
||||||
|
plt.plot(x,y2,color='green',ls='--',label='scaled fit')
|
||||||
|
plt.grid()
|
||||||
|
plt.legend()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
"""
|
||||||
|
the case where for some reason the fit didn't work correctly
|
||||||
|
|
||||||
|
Transpose data and then least squares linear fit. Transposing data
|
||||||
|
makes it robust to many patches where green difference is the same
|
||||||
|
since they only contribute to one error minimisation, instead of dragging
|
||||||
|
the entire linear fit down.
|
||||||
|
"""
|
||||||
|
|
||||||
|
else:
|
||||||
|
print('\nError! Couldn\'t fit asymmetric lest squares')
|
||||||
|
print(result.message)
|
||||||
|
Cam.log += '\nWARNING: Asymmetric least squares fit failed! '
|
||||||
|
Cam.log += 'Standard fit used could possibly lead to worse results'
|
||||||
|
fit = np.polyfit(gdiff,g0,1)
|
||||||
|
offset,slope = -fit[1]/fit[0],1/fit[0]
|
||||||
|
Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
|
||||||
|
Cam.log += 'offset = {}'.format(int(offset))
|
||||||
|
"""
|
||||||
|
optional plotting code
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
x = np.linspace(max(g0)*1.1,100)
|
||||||
|
y = slope*x + offset
|
||||||
|
plt.title('GEQ Linear Fit')
|
||||||
|
plt.plot(x,y,color='red',ls='--',label='fit')
|
||||||
|
plt.scatter(g0,gdiff,color='b',label='data')
|
||||||
|
plt.ylabel('Difference in green channels')
|
||||||
|
plt.xlabel('Green value')
|
||||||
|
"""
|
||||||
|
Scaling factors (see previous justification)
|
||||||
|
The model here will not be an upper bound so scaling factors have
|
||||||
|
been increased.
|
||||||
|
This method of deriving geq model parameters is extremely arbitrary
|
||||||
|
and undesirable.
|
||||||
|
"""
|
||||||
|
slope *= 2.5
|
||||||
|
offset += 301
|
||||||
|
Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope)
|
||||||
|
Cam.log += ' offset = {}'.format(int(offset))
|
||||||
|
|
||||||
|
if offset < 0:
|
||||||
|
Cam.log += '\nOffset raised to 0'
|
||||||
|
offset = 0
|
||||||
|
|
||||||
|
"""
|
||||||
|
optional plotting code
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
y2 = slope*x + offset
|
||||||
|
plt.plot(x,y2,color='green',ls='--',label='scaled fit')
|
||||||
|
plt.legend()
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
return round(slope,5),int(offset)
|
||||||
|
|
||||||
|
""""
|
||||||
|
Return green channels of macbeth patches
|
||||||
|
returns g0,g1 where
|
||||||
|
> g0 is green next to red
|
||||||
|
> g1 is green next to blue
|
||||||
|
"""
|
||||||
|
def geq(Cam,Img):
|
||||||
|
Cam.log += '\nProcessing image {}'.format(Img.name)
|
||||||
|
patches = [Img.patches[i] for i in Img.order][1:3]
|
||||||
|
g_patches = np.array([(np.mean(patches[0][i]),np.mean(patches[1][i])) for i in range(24)])
|
||||||
|
Cam.log += '\n'
|
||||||
|
return(g_patches)
|
428
utils/raspberrypi/ctt/ctt_image_load.py
Normal file
428
utils/raspberrypi/ctt/ctt_image_load.py
Normal file
|
@ -0,0 +1,428 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019-2020, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_image_load.py - camera tuning tool image loading
|
||||||
|
|
||||||
|
from ctt_tools import *
|
||||||
|
from ctt_macbeth_locator import *
|
||||||
|
import json
|
||||||
|
import pyexiv2 as pyexif
|
||||||
|
import rawpy as raw
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Image class load image from raw data and extracts metadata.
|
||||||
|
|
||||||
|
Once image is extracted from data, it finds 24 16x16 patches for each
|
||||||
|
channel, centred at the macbeth chart squares
|
||||||
|
"""
|
||||||
|
class Image:
|
||||||
|
def __init__(self,buf):
|
||||||
|
self.buf = buf
|
||||||
|
self.patches = None
|
||||||
|
self.saturated = False
|
||||||
|
|
||||||
|
'''
|
||||||
|
obtain metadata from buffer
|
||||||
|
'''
|
||||||
|
def get_meta(self):
|
||||||
|
self.ver = ba_to_b(self.buf[4:5])
|
||||||
|
self.w = ba_to_b(self.buf[0xd0:0xd2])
|
||||||
|
self.h = ba_to_b(self.buf[0xd2:0xd4])
|
||||||
|
self.pad = ba_to_b(self.buf[0xd4:0xd6])
|
||||||
|
self.fmt = self.buf[0xf5]
|
||||||
|
self.sigbits = 2*self.fmt + 4
|
||||||
|
self.pattern = self.buf[0xf4]
|
||||||
|
self.exposure = ba_to_b(self.buf[0x90:0x94])
|
||||||
|
self.againQ8 = ba_to_b(self.buf[0x94:0x96])
|
||||||
|
self.againQ8_norm = self.againQ8/256
|
||||||
|
camName = self.buf[0x10:0x10+128]
|
||||||
|
camName_end = camName.find(0x00)
|
||||||
|
self.camName = self.buf[0x10:0x10+128][:camName_end].decode()
|
||||||
|
|
||||||
|
"""
|
||||||
|
Channel order depending on bayer pattern
|
||||||
|
"""
|
||||||
|
bayer_case = {
|
||||||
|
0 : (0,1,2,3), #red
|
||||||
|
1 : (2,0,3,1), #green next to red
|
||||||
|
2 : (3,2,1,0), #green next to blue
|
||||||
|
3 : (1,0,3,2), #blue
|
||||||
|
128 : (0,1,2,3) #arbitrary order for greyscale casw
|
||||||
|
}
|
||||||
|
self.order = bayer_case[self.pattern]
|
||||||
|
|
||||||
|
'''
|
||||||
|
manual blacklevel - not robust
|
||||||
|
'''
|
||||||
|
if 'ov5647' in self.camName:
|
||||||
|
self.blacklevel = 16
|
||||||
|
else:
|
||||||
|
self.blacklevel = 64
|
||||||
|
self.blacklevel_16 = self.blacklevel << (6)
|
||||||
|
return 1
|
||||||
|
|
||||||
|
'''
|
||||||
|
print metadata for debug
|
||||||
|
'''
|
||||||
|
def print_meta(self):
|
||||||
|
print('\nData:')
|
||||||
|
print(' ver = {}'.format(self.ver))
|
||||||
|
print(' w = {}'.format(self.w))
|
||||||
|
print(' h = {}'.format(self.h))
|
||||||
|
print(' pad = {}'.format(self.pad))
|
||||||
|
print(' fmt = {}'.format(self.fmt))
|
||||||
|
print(' sigbits = {}'.format(self.sigbits))
|
||||||
|
print(' pattern = {}'.format(self.pattern))
|
||||||
|
print(' exposure = {}'.format(self.exposure))
|
||||||
|
print(' againQ8 = {}'.format(self.againQ8))
|
||||||
|
print(' againQ8_norm = {}'.format(self.againQ8_norm))
|
||||||
|
print(' camName = {}'.format(self.camName))
|
||||||
|
print(' blacklevel = {}'.format(self.blacklevel))
|
||||||
|
print(' blacklevel_16 = {}'.format(self.blacklevel_16))
|
||||||
|
|
||||||
|
return 1
|
||||||
|
|
||||||
|
"""
|
||||||
|
get image from raw scanline data
|
||||||
|
"""
|
||||||
|
def get_image(self,raw):
|
||||||
|
self.dptr = []
|
||||||
|
"""
|
||||||
|
check if data is 10 or 12 bits
|
||||||
|
"""
|
||||||
|
if self.sigbits == 10:
|
||||||
|
"""
|
||||||
|
calc length of scanline
|
||||||
|
"""
|
||||||
|
lin_len = ((((((self.w+self.pad+3)>>2)) * 5)+31)>>5) * 32
|
||||||
|
"""
|
||||||
|
stack scan lines into matrix
|
||||||
|
"""
|
||||||
|
raw = np.array(raw).reshape(-1,lin_len).astype(np.int64)[:self.h,...]
|
||||||
|
"""
|
||||||
|
separate 5 bits in each package, stopping when w is satisfied
|
||||||
|
"""
|
||||||
|
ba0 = raw[...,0:5*((self.w+3)>>2):5]
|
||||||
|
ba1 = raw[...,1:5*((self.w+3)>>2):5]
|
||||||
|
ba2 = raw[...,2:5*((self.w+3)>>2):5]
|
||||||
|
ba3 = raw[...,3:5*((self.w+3)>>2):5]
|
||||||
|
ba4 = raw[...,4:5*((self.w+3)>>2):5]
|
||||||
|
"""
|
||||||
|
assemble 10 bit numbers
|
||||||
|
"""
|
||||||
|
ch0 = np.left_shift((np.left_shift(ba0,2) + (ba4%4)),6)
|
||||||
|
ch1 = np.left_shift((np.left_shift(ba1,2) + (np.right_shift(ba4,2)%4)),6)
|
||||||
|
ch2 = np.left_shift((np.left_shift(ba2,2) + (np.right_shift(ba4,4)%4)),6)
|
||||||
|
ch3 = np.left_shift((np.left_shift(ba3,2) + (np.right_shift(ba4,6)%4)),6)
|
||||||
|
"""
|
||||||
|
interleave bits
|
||||||
|
"""
|
||||||
|
mat = np.empty((self.h,self.w),dtype=ch0.dtype)
|
||||||
|
|
||||||
|
mat[...,0::4] = ch0
|
||||||
|
mat[...,1::4] = ch1
|
||||||
|
mat[...,2::4] = ch2
|
||||||
|
mat[...,3::4] = ch3
|
||||||
|
|
||||||
|
"""
|
||||||
|
There is som eleaking memory somewhere in the code. This code here
|
||||||
|
seemed to make things good enough that the code would run for
|
||||||
|
reasonable numbers of images, however this is techincally just a
|
||||||
|
workaround. (sorry)
|
||||||
|
"""
|
||||||
|
ba0,ba1,ba2,ba3,ba4 = None,None,None,None,None
|
||||||
|
del ba0,ba1,ba2,ba3,ba4
|
||||||
|
ch0,ch1,ch2,ch3 = None,None,None,None
|
||||||
|
del ch0,ch1,ch2,ch3
|
||||||
|
|
||||||
|
"""
|
||||||
|
same as before but 12 bit case
|
||||||
|
"""
|
||||||
|
elif self.sigbits == 12:
|
||||||
|
lin_len = ((((((self.w+self.pad+1)>>1)) * 3)+31)>>5) * 32
|
||||||
|
raw = np.array(raw).reshape(-1,lin_len).astype(np.int64)[:self.h,...]
|
||||||
|
ba0 = raw[...,0:3*((self.w+1)>>1):3]
|
||||||
|
ba1 = raw[...,1:3*((self.w+1)>>1):3]
|
||||||
|
ba2 = raw[...,2:3*((self.w+1)>>1):3]
|
||||||
|
ch0 = np.left_shift((np.left_shift(ba0,4) + ba2%16),4)
|
||||||
|
ch1 = np.left_shift((np.left_shift(ba1,4) + (np.right_shift(ba2,4))%16),4)
|
||||||
|
mat = np.empty((self.h,self.w),dtype=ch0.dtype)
|
||||||
|
mat[...,0::2] = ch0
|
||||||
|
mat[...,1::2] = ch1
|
||||||
|
|
||||||
|
else:
|
||||||
|
"""
|
||||||
|
data is neither 10 nor 12 or incorrect data
|
||||||
|
"""
|
||||||
|
print('ERROR: wrong bit format, only 10 or 12 bit supported')
|
||||||
|
return 0
|
||||||
|
|
||||||
|
"""
|
||||||
|
separate bayer channels
|
||||||
|
"""
|
||||||
|
c0 = mat[0::2,0::2]
|
||||||
|
c1 = mat[0::2,1::2]
|
||||||
|
c2 = mat[1::2,0::2]
|
||||||
|
c3 = mat[1::2,1::2]
|
||||||
|
self.channels = [c0,c1,c2,c3]
|
||||||
|
return 1
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain 16x16 patch centred at macbeth square centre for each channel
|
||||||
|
"""
|
||||||
|
def get_patches(self,cen_coords,size=16):
|
||||||
|
"""
|
||||||
|
obtain channel widths and heights
|
||||||
|
"""
|
||||||
|
ch_w,ch_h = self.w,self.h
|
||||||
|
cen_coords = list(np.array((cen_coords[0])).astype(np.int32))
|
||||||
|
self.cen_coords = cen_coords
|
||||||
|
"""
|
||||||
|
squares are ordered by stacking macbeth chart columns from
|
||||||
|
left to right. Some useful patch indices:
|
||||||
|
white = 3
|
||||||
|
black = 23
|
||||||
|
'reds' = 9,10
|
||||||
|
'blues' = 2,5,8,20,22
|
||||||
|
'greens' = 6,12,17
|
||||||
|
greyscale = 3,7,11,15,19,23
|
||||||
|
"""
|
||||||
|
all_patches = []
|
||||||
|
for ch in self.channels:
|
||||||
|
ch_patches = []
|
||||||
|
for cen in cen_coords:
|
||||||
|
'''
|
||||||
|
macbeth centre is placed at top left of central 2x2 patch
|
||||||
|
to account for rounding
|
||||||
|
Patch pixels are sorted by pixel brightness so spatial
|
||||||
|
information is lost.
|
||||||
|
'''
|
||||||
|
patch = ch[cen[1]-7:cen[1]+9,cen[0]-7:cen[0]+9].flatten()
|
||||||
|
patch.sort()
|
||||||
|
if patch[-5] == (2**self.sigbits-1)*2**(16-self.sigbits):
|
||||||
|
self.saturated = True
|
||||||
|
ch_patches.append(patch)
|
||||||
|
# print('\nNew Patch\n')
|
||||||
|
all_patches.append(ch_patches)
|
||||||
|
# print('\n\nNew Channel\n\n')
|
||||||
|
self.patches = all_patches
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def brcm_load_image(Cam, im_str):
|
||||||
|
"""
|
||||||
|
Load image where raw data and metadata is in the BRCM format
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
"""
|
||||||
|
create byte array
|
||||||
|
"""
|
||||||
|
with open(im_str,'rb') as image:
|
||||||
|
f = image.read()
|
||||||
|
b = bytearray(f)
|
||||||
|
"""
|
||||||
|
return error if incorrect image address
|
||||||
|
"""
|
||||||
|
except FileNotFoundError:
|
||||||
|
print('\nERROR:\nInvalid image address')
|
||||||
|
Cam.log += '\nWARNING: Invalid image address'
|
||||||
|
return 0
|
||||||
|
|
||||||
|
"""
|
||||||
|
return error if problem reading file
|
||||||
|
"""
|
||||||
|
if f == None:
|
||||||
|
print('\nERROR:\nProblem reading file')
|
||||||
|
Cam.log += '\nWARNING: Problem readin file'
|
||||||
|
return 0
|
||||||
|
|
||||||
|
# print('\nLooking for EOI and BRCM header')
|
||||||
|
"""
|
||||||
|
find end of image followed by BRCM header by turning
|
||||||
|
bytearray into hex string and string matching with regexp
|
||||||
|
"""
|
||||||
|
start = -1
|
||||||
|
match = bytearray(b'\xff\xd9@BRCM')
|
||||||
|
match_str = binascii.hexlify(match)
|
||||||
|
b_str = binascii.hexlify(b)
|
||||||
|
"""
|
||||||
|
note index is divided by two to go from string to hex
|
||||||
|
"""
|
||||||
|
indices = [m.start()//2 for m in re.finditer(match_str,b_str)]
|
||||||
|
# print(indices)
|
||||||
|
try:
|
||||||
|
start = indices[0] + 3
|
||||||
|
except IndexError:
|
||||||
|
print('\nERROR:\nNo Broadcom header found')
|
||||||
|
Cam.log += '\nWARNING: No Broadcom header found!'
|
||||||
|
return 0
|
||||||
|
"""
|
||||||
|
extract data after header
|
||||||
|
"""
|
||||||
|
# print('\nExtracting data after header')
|
||||||
|
buf = b[start:start+32768]
|
||||||
|
Img = Image(buf)
|
||||||
|
Img.str = im_str
|
||||||
|
# print('Data found successfully')
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain metadata
|
||||||
|
"""
|
||||||
|
# print('\nReading metadata')
|
||||||
|
Img.get_meta()
|
||||||
|
Cam.log += '\nExposure : {} us'.format(Img.exposure)
|
||||||
|
Cam.log += '\nNormalised gain : {}'.format(Img.againQ8_norm)
|
||||||
|
# print('Metadata read successfully')
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain raw image data
|
||||||
|
"""
|
||||||
|
# print('\nObtaining raw image data')
|
||||||
|
raw = b[start+32768:]
|
||||||
|
Img.get_image(raw)
|
||||||
|
"""
|
||||||
|
delete raw to stop memory errors
|
||||||
|
"""
|
||||||
|
raw = None
|
||||||
|
del raw
|
||||||
|
# print('Raw image data obtained successfully')
|
||||||
|
|
||||||
|
return Img
|
||||||
|
|
||||||
|
def dng_load_image(Cam, im_str):
|
||||||
|
try:
|
||||||
|
Img = Image(None)
|
||||||
|
|
||||||
|
# RawPy doesn't load all the image tags that we need, so we use py3exiv2
|
||||||
|
metadata = pyexif.ImageMetadata(im_str)
|
||||||
|
metadata.read()
|
||||||
|
|
||||||
|
Img.ver = 100 # random value
|
||||||
|
Img.w = metadata['Exif.SubImage1.ImageWidth'].value
|
||||||
|
Img.pad = 0
|
||||||
|
Img.h = metadata['Exif.SubImage1.ImageLength'].value
|
||||||
|
white = metadata['Exif.SubImage1.WhiteLevel'].value
|
||||||
|
Img.sigbits = int(white).bit_length()
|
||||||
|
Img.fmt = (Img.sigbits - 4) // 2
|
||||||
|
Img.exposure = int(metadata['Exif.Photo.ExposureTime'].value*1000000)
|
||||||
|
Img.againQ8 = metadata['Exif.Photo.ISOSpeedRatings'].value*256/100
|
||||||
|
Img.againQ8_norm = Img.againQ8 / 256
|
||||||
|
Img.camName = metadata['Exif.Image.Model'].value
|
||||||
|
Img.blacklevel = int(metadata['Exif.SubImage1.BlackLevel'].value[0])
|
||||||
|
Img.blacklevel_16 = Img.blacklevel << (16 - Img.sigbits)
|
||||||
|
bayer_case = {
|
||||||
|
'0 1 1 2': (0, (0, 1, 2, 3)),
|
||||||
|
'1 2 0 1': (1, (2, 0, 3, 1)),
|
||||||
|
'2 1 1 0': (2, (3, 2, 1, 0)),
|
||||||
|
'1 0 2 1': (3, (1, 0, 3, 2))
|
||||||
|
}
|
||||||
|
cfa_pattern = metadata['Exif.SubImage1.CFAPattern'].value
|
||||||
|
Img.pattern = bayer_case[cfa_pattern][0]
|
||||||
|
Img.order = bayer_case[cfa_pattern][1]
|
||||||
|
|
||||||
|
# Now use RawPy tp get the raw Bayer pixels
|
||||||
|
raw_im = raw.imread(im_str)
|
||||||
|
raw_data = raw_im.raw_image
|
||||||
|
shift = 16 - Img.sigbits
|
||||||
|
c0 = np.left_shift(raw_data[0::2,0::2].astype(np.int64), shift)
|
||||||
|
c1 = np.left_shift(raw_data[0::2,1::2].astype(np.int64), shift)
|
||||||
|
c2 = np.left_shift(raw_data[1::2,0::2].astype(np.int64), shift)
|
||||||
|
c3 = np.left_shift(raw_data[1::2,1::2].astype(np.int64), shift)
|
||||||
|
Img.channels = [c0, c1, c2, c3]
|
||||||
|
|
||||||
|
except:
|
||||||
|
print("\nERROR: failed to load DNG file", im_str)
|
||||||
|
print("Either file does not exist or is incompatible")
|
||||||
|
Cam.log += '\nERROR: DNG file does not exist or is incompatible'
|
||||||
|
raise
|
||||||
|
|
||||||
|
return Img
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
load image from file location and perform calibration
|
||||||
|
check correct filetype
|
||||||
|
|
||||||
|
mac boolean is true if image is expected to contain macbeth chart and false
|
||||||
|
if not (alsc images don't have macbeth charts)
|
||||||
|
'''
|
||||||
|
def load_image(Cam,im_str,mac_config=None,show=False,mac=True,show_meta=False):
|
||||||
|
"""
|
||||||
|
check image is correct filetype
|
||||||
|
"""
|
||||||
|
if '.jpg' in im_str or '.jpeg' in im_str or '.brcm' in im_str or '.dng' in im_str:
|
||||||
|
if '.dng' in im_str:
|
||||||
|
Img = dng_load_image(Cam, im_str)
|
||||||
|
else:
|
||||||
|
Img = brcm_load_image(Cam, im_str)
|
||||||
|
if show_meta:
|
||||||
|
Img.print_meta()
|
||||||
|
|
||||||
|
if mac:
|
||||||
|
"""
|
||||||
|
find macbeth centres, discarding images that are too dark or light
|
||||||
|
"""
|
||||||
|
av_chan = (np.mean(np.array(Img.channels),axis=0)/(2**16))
|
||||||
|
av_val = np.mean(av_chan)
|
||||||
|
# print(av_val)
|
||||||
|
if av_val < Img.blacklevel_16/(2**16)+1/64:
|
||||||
|
macbeth = None
|
||||||
|
print('\nError: Image too dark!')
|
||||||
|
Cam.log += '\nWARNING: Image too dark!'
|
||||||
|
else:
|
||||||
|
macbeth = find_macbeth(Cam,av_chan,mac_config)
|
||||||
|
|
||||||
|
"""
|
||||||
|
if no macbeth found return error
|
||||||
|
"""
|
||||||
|
if macbeth == None:
|
||||||
|
print('\nERROR: No macbeth chart found')
|
||||||
|
return 0
|
||||||
|
mac_cen_coords = macbeth[1]
|
||||||
|
# print('\nMacbeth centres located successfully')
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain image patches
|
||||||
|
"""
|
||||||
|
# print('\nObtaining image patches')
|
||||||
|
Img.get_patches(mac_cen_coords)
|
||||||
|
if Img.saturated:
|
||||||
|
print('\nERROR: Macbeth patches have saturated')
|
||||||
|
Cam.log += '\nWARNING: Macbeth patches have saturated!'
|
||||||
|
return 0
|
||||||
|
|
||||||
|
"""
|
||||||
|
clear memory
|
||||||
|
"""
|
||||||
|
Img.buf = None
|
||||||
|
del Img.buf
|
||||||
|
|
||||||
|
# print('Image patches obtained successfully')
|
||||||
|
|
||||||
|
"""
|
||||||
|
optional debug
|
||||||
|
"""
|
||||||
|
if show and __name__ == '__main__':
|
||||||
|
copy = sum(Img.channels)/2**18
|
||||||
|
copy = np.reshape(copy,(Img.h//2,Img.w//2)).astype(np.float64)
|
||||||
|
copy,_ = reshape(copy,800)
|
||||||
|
represent(copy)
|
||||||
|
|
||||||
|
return Img
|
||||||
|
|
||||||
|
"""
|
||||||
|
return error if incorrect filetype
|
||||||
|
"""
|
||||||
|
else:
|
||||||
|
# print('\nERROR:\nInvalid file extension')
|
||||||
|
return 0
|
||||||
|
|
||||||
|
"""
|
||||||
|
bytearray splice to number little endian
|
||||||
|
"""
|
||||||
|
def ba_to_b(b):
|
||||||
|
total = 0
|
||||||
|
for i in range(len(b)):
|
||||||
|
total += 256**i * b[i]
|
||||||
|
return total
|
58
utils/raspberrypi/ctt/ctt_lux.py
Normal file
58
utils/raspberrypi/ctt/ctt_lux.py
Normal file
|
@ -0,0 +1,58 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_lux.py - camera tuning tool for lux level
|
||||||
|
|
||||||
|
from ctt_tools import *
|
||||||
|
"""
|
||||||
|
Find lux values from metadata and calculate Y
|
||||||
|
"""
|
||||||
|
def lux(Cam,Img):
|
||||||
|
shutter_speed = Img.exposure
|
||||||
|
gain = Img.againQ8_norm
|
||||||
|
aperture = 1
|
||||||
|
Cam.log += '\nShutter speed = {}'.format(shutter_speed)
|
||||||
|
Cam.log += '\nGain = {}'.format(gain)
|
||||||
|
Cam.log += '\nAperture = {}'.format(aperture)
|
||||||
|
patches = [Img.patches[i] for i in Img.order]
|
||||||
|
channels = [Img.channels[i] for i in Img.order]
|
||||||
|
return lux_calc(Cam,Img,patches,channels),shutter_speed,gain
|
||||||
|
|
||||||
|
"""
|
||||||
|
perform lux calibration on bayer channels
|
||||||
|
"""
|
||||||
|
def lux_calc(Cam,Img,patches,channels):
|
||||||
|
"""
|
||||||
|
find means color channels on grey patches
|
||||||
|
"""
|
||||||
|
ap_r = np.mean(patches[0][3::4])
|
||||||
|
ap_g = (np.mean(patches[1][3::4])+np.mean(patches[2][3::4]))/2
|
||||||
|
ap_b = np.mean(patches[3][3::4])
|
||||||
|
Cam.log += '\nAverage channel values on grey patches:'
|
||||||
|
Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(ap_r,ap_b,ap_g)
|
||||||
|
# print(ap_r,ap_g,ap_b)
|
||||||
|
"""
|
||||||
|
calculate channel gains
|
||||||
|
"""
|
||||||
|
gr = ap_g/ap_r
|
||||||
|
gb = ap_g/ap_b
|
||||||
|
Cam.log += '\nChannel gains: Red = {:.3f} Blue = {:.3f}'.format(gr,gb)
|
||||||
|
|
||||||
|
"""
|
||||||
|
find means color channels on image and scale by gain
|
||||||
|
note greens are averaged together (treated as one channel)
|
||||||
|
"""
|
||||||
|
a_r = np.mean(channels[0])*gr
|
||||||
|
a_g = (np.mean(channels[1])+np.mean(channels[2]))/2
|
||||||
|
a_b = np.mean(channels[3])*gb
|
||||||
|
Cam.log += '\nAverage channel values over entire image scaled by channel gains:'
|
||||||
|
Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(a_r,a_b,a_g)
|
||||||
|
# print(a_r,a_g,a_b)
|
||||||
|
"""
|
||||||
|
Calculate y with top row of yuv matrix
|
||||||
|
"""
|
||||||
|
y = 0.299*a_r + 0.587*a_g + 0.114*a_b
|
||||||
|
Cam.log += '\nY value calculated: {}'.format(int(y))
|
||||||
|
# print(y)
|
||||||
|
return int(y)
|
748
utils/raspberrypi/ctt/ctt_macbeth_locator.py
Normal file
748
utils/raspberrypi/ctt/ctt_macbeth_locator.py
Normal file
|
@ -0,0 +1,748 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_macbeth_locator.py - camera tuning tool Macbeth chart locator
|
||||||
|
|
||||||
|
from ctt_ransac import *
|
||||||
|
from ctt_tools import *
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
"""
|
||||||
|
NOTE: some custom functions have been used here to make the code more readable.
|
||||||
|
These are defined in tools.py if they are needed for reference.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
Some inconsistencies between packages cause runtime warnings when running
|
||||||
|
the clustering algorithm. This catches these warnings so they don't flood the
|
||||||
|
output to the console
|
||||||
|
"""
|
||||||
|
def fxn():
|
||||||
|
warnings.warn("runtime",RuntimeWarning)
|
||||||
|
|
||||||
|
"""
|
||||||
|
Define the success message
|
||||||
|
"""
|
||||||
|
success_msg = 'Macbeth chart located successfully'
|
||||||
|
|
||||||
|
def find_macbeth(Cam,img,mac_config=(0,0)):
|
||||||
|
small_chart,show = mac_config
|
||||||
|
print('Locating macbeth chart')
|
||||||
|
Cam.log += '\nLocating macbeth chart'
|
||||||
|
"""
|
||||||
|
catch the warnings
|
||||||
|
"""
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
fxn()
|
||||||
|
|
||||||
|
"""
|
||||||
|
Reference macbeth chart is created that will be correlated with the located
|
||||||
|
macbeth chart guess to produce a confidence value for the match.
|
||||||
|
"""
|
||||||
|
ref = cv2.imread(Cam.path +'ctt_ref.pgm',flags=cv2.IMREAD_GRAYSCALE)
|
||||||
|
ref_w = 120
|
||||||
|
ref_h = 80
|
||||||
|
rc1 = (0,0)
|
||||||
|
rc2 = (0,ref_h)
|
||||||
|
rc3 = (ref_w,ref_h)
|
||||||
|
rc4 = (ref_w,0)
|
||||||
|
ref_corns = np.array((rc1,rc2,rc3,rc4),np.float32)
|
||||||
|
ref_data = (ref,ref_w,ref_h,ref_corns)
|
||||||
|
|
||||||
|
"""
|
||||||
|
locate macbeth chart
|
||||||
|
"""
|
||||||
|
cor,mac,coords,msg = get_macbeth_chart(img,ref_data)
|
||||||
|
|
||||||
|
"""
|
||||||
|
following bits of code tries to fix common problems with simple
|
||||||
|
techniques.
|
||||||
|
If now or at any point the best correlation is of above 0.75, then
|
||||||
|
nothing more is tried as this is a high enough confidence to ensure
|
||||||
|
reliable macbeth square centre placement.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
brighten image 2x
|
||||||
|
"""
|
||||||
|
if cor < 0.75:
|
||||||
|
a = 2
|
||||||
|
img_br = cv2.convertScaleAbs(img,alpha=a,beta=0)
|
||||||
|
cor_b,mac_b,coords_b,msg_b = get_macbeth_chart(img_br,ref_data)
|
||||||
|
if cor_b > cor:
|
||||||
|
cor,mac,coords,msg = cor_b,mac_b,coords_b,msg_b
|
||||||
|
|
||||||
|
"""
|
||||||
|
brighten image 4x
|
||||||
|
"""
|
||||||
|
if cor < 0.75:
|
||||||
|
a = 4
|
||||||
|
img_br = cv2.convertScaleAbs(img,alpha=a,beta=0)
|
||||||
|
cor_b,mac_b,coords_b,msg_b = get_macbeth_chart(img_br,ref_data)
|
||||||
|
if cor_b > cor:
|
||||||
|
cor,mac,coords,msg = cor_b,mac_b,coords_b,msg_b
|
||||||
|
|
||||||
|
"""
|
||||||
|
In case macbeth chart is too small, take a selection of the image and
|
||||||
|
attempt to locate macbeth chart within that. The scale increment is
|
||||||
|
root 2
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
These variables will be used to transform the found coordinates at smaller
|
||||||
|
scales back into the original. If ii is still -1 after this section that
|
||||||
|
means it was not successful
|
||||||
|
"""
|
||||||
|
ii = -1
|
||||||
|
w_best = 0
|
||||||
|
h_best = 0
|
||||||
|
d_best = 100
|
||||||
|
"""
|
||||||
|
d_best records the scale of the best match. Macbeth charts are only looked
|
||||||
|
for at one scale increment smaller than the current best match in order to avoid
|
||||||
|
unecessarily searching for macbeth charts at small scales.
|
||||||
|
If a macbeth chart ha already been found then set d_best to 0
|
||||||
|
"""
|
||||||
|
if cor != 0:
|
||||||
|
d_best = 0
|
||||||
|
|
||||||
|
"""
|
||||||
|
scale 3/2 (approx root2)
|
||||||
|
"""
|
||||||
|
if cor < 0.75:
|
||||||
|
imgs = []
|
||||||
|
"""
|
||||||
|
get size of image
|
||||||
|
"""
|
||||||
|
shape = list(img.shape[:2])
|
||||||
|
w,h = shape
|
||||||
|
"""
|
||||||
|
set dimensions of the subselection and the step along each axis between
|
||||||
|
selections
|
||||||
|
"""
|
||||||
|
w_sel = int(2*w/3)
|
||||||
|
h_sel = int(2*h/3)
|
||||||
|
w_inc = int(w/6)
|
||||||
|
h_inc = int(h/6)
|
||||||
|
"""
|
||||||
|
for each subselection, look for a macbeth chart
|
||||||
|
"""
|
||||||
|
for i in range(3):
|
||||||
|
for j in range(3):
|
||||||
|
w_s,h_s = i*w_inc,j*h_inc
|
||||||
|
img_sel = img[w_s:w_s+w_sel,h_s:h_s+h_sel]
|
||||||
|
cor_ij,mac_ij,coords_ij,msg_ij = get_macbeth_chart(img_sel,ref_data)
|
||||||
|
"""
|
||||||
|
if the correlation is better than the best then record the
|
||||||
|
scale and current subselection at which macbeth chart was
|
||||||
|
found. Also record the coordinates, macbeth chart and message.
|
||||||
|
"""
|
||||||
|
if cor_ij > cor:
|
||||||
|
cor = cor_ij
|
||||||
|
mac,coords,msg = mac_ij,coords_ij,msg_ij
|
||||||
|
ii,jj = i,j
|
||||||
|
w_best,h_best = w_inc,h_inc
|
||||||
|
d_best = 1
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
scale 2
|
||||||
|
"""
|
||||||
|
if cor < 0.75:
|
||||||
|
imgs = []
|
||||||
|
shape = list(img.shape[:2])
|
||||||
|
w,h = shape
|
||||||
|
w_sel = int(w/2)
|
||||||
|
h_sel = int(h/2)
|
||||||
|
w_inc = int(w/8)
|
||||||
|
h_inc = int(h/8)
|
||||||
|
for i in range(5):
|
||||||
|
for j in range(5):
|
||||||
|
w_s,h_s = i*w_inc,j*h_inc
|
||||||
|
img_sel = img[w_s:w_s+w_sel,h_s:h_s+h_sel]
|
||||||
|
cor_ij,mac_ij,coords_ij,msg_ij = get_macbeth_chart(img_sel,ref_data)
|
||||||
|
if cor_ij > cor:
|
||||||
|
cor = cor_ij
|
||||||
|
mac,coords,msg = mac_ij,coords_ij,msg_ij
|
||||||
|
ii,jj = i,j
|
||||||
|
w_best,h_best = w_inc,h_inc
|
||||||
|
d_best = 2
|
||||||
|
|
||||||
|
"""
|
||||||
|
The following code checks for macbeth charts at even smaller scales. This
|
||||||
|
slows the code down significantly and has therefore been omitted by default,
|
||||||
|
however it is not unusably slow so might be useful if the macbeth chart
|
||||||
|
is too small to be picked up to by the current subselections.
|
||||||
|
Use this for macbeth charts with side lengths around 1/5 image dimensions
|
||||||
|
(and smaller...?) it is, however, recommended that macbeth charts take up as
|
||||||
|
large as possible a proportion of the image.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if small_chart:
|
||||||
|
|
||||||
|
if cor < 0.75 and d_best > 1 :
|
||||||
|
imgs = []
|
||||||
|
shape = list(img.shape[:2])
|
||||||
|
w,h = shape
|
||||||
|
w_sel = int(w/3)
|
||||||
|
h_sel = int(h/3)
|
||||||
|
w_inc = int(w/12)
|
||||||
|
h_inc = int(h/12)
|
||||||
|
for i in range(9):
|
||||||
|
for j in range(9):
|
||||||
|
w_s,h_s = i*w_inc,j*h_inc
|
||||||
|
img_sel = img[w_s:w_s+w_sel,h_s:h_s+h_sel]
|
||||||
|
cor_ij,mac_ij,coords_ij,msg_ij = get_macbeth_chart(img_sel,ref_data)
|
||||||
|
if cor_ij > cor:
|
||||||
|
cor = cor_ij
|
||||||
|
mac,coords,msg = mac_ij,coords_ij,msg_ij
|
||||||
|
ii,jj = i,j
|
||||||
|
w_best,h_best = w_inc,h_inc
|
||||||
|
d_best = 3
|
||||||
|
|
||||||
|
if cor < 0.75 and d_best > 2:
|
||||||
|
imgs = []
|
||||||
|
shape = list(img.shape[:2])
|
||||||
|
w,h = shape
|
||||||
|
w_sel = int(w/4)
|
||||||
|
h_sel = int(h/4)
|
||||||
|
w_inc = int(w/16)
|
||||||
|
h_inc = int(h/16)
|
||||||
|
for i in range(13):
|
||||||
|
for j in range(13):
|
||||||
|
w_s,h_s = i*w_inc,j*h_inc
|
||||||
|
img_sel = img[w_s:w_s+w_sel,h_s:h_s+h_sel]
|
||||||
|
cor_ij,mac_ij,coords_ij,msg_ij = get_macbeth_chart(img_sel,ref_data)
|
||||||
|
if cor_ij > cor:
|
||||||
|
cor = cor_ij
|
||||||
|
mac,coords,msg = mac_ij,coords_ij,msg_ij
|
||||||
|
ii,jj = i,j
|
||||||
|
w_best,h_best = w_inc,h_inc
|
||||||
|
|
||||||
|
"""
|
||||||
|
Transform coordinates from subselection to original image
|
||||||
|
"""
|
||||||
|
if ii != -1:
|
||||||
|
for a in range(len(coords)):
|
||||||
|
for b in range(len(coords[a][0])):
|
||||||
|
coords[a][0][b][1] += ii*w_best
|
||||||
|
coords[a][0][b][0] += jj*h_best
|
||||||
|
|
||||||
|
"""
|
||||||
|
initialise coords_fit variable
|
||||||
|
"""
|
||||||
|
coords_fit = None
|
||||||
|
# print('correlation: {}'.format(cor))
|
||||||
|
"""
|
||||||
|
print error or success message
|
||||||
|
"""
|
||||||
|
print(msg)
|
||||||
|
Cam.log += '\n' + msg
|
||||||
|
if msg == success_msg:
|
||||||
|
coords_fit = coords
|
||||||
|
Cam.log += '\nMacbeth chart vertices:\n'
|
||||||
|
Cam.log += '{}'.format(2*np.round(coords_fit[0][0]),0)
|
||||||
|
"""
|
||||||
|
if correlation is lower than 0.75 there may be a risk of macbeth chart
|
||||||
|
corners not having been located properly. It might be worth running
|
||||||
|
with show set to true to check where the macbeth chart centres have
|
||||||
|
been located.
|
||||||
|
"""
|
||||||
|
print('Confidence: {:.3f}'.format(cor))
|
||||||
|
Cam.log += '\nConfidence: {:.3f}'.format(cor)
|
||||||
|
if cor < 0.75:
|
||||||
|
print('Caution: Low confidence guess!')
|
||||||
|
Cam.log += 'WARNING: Low confidence guess!'
|
||||||
|
# cv2.imshow('MacBeth',mac)
|
||||||
|
# represent(mac,'MacBeth chart')
|
||||||
|
|
||||||
|
"""
|
||||||
|
extract data from coords_fit and plot on original image
|
||||||
|
"""
|
||||||
|
if show and coords_fit != None:
|
||||||
|
copy = img.copy()
|
||||||
|
verts = coords_fit[0][0]
|
||||||
|
cents = coords_fit[1][0]
|
||||||
|
|
||||||
|
"""
|
||||||
|
draw circles at vertices of macbeth chart
|
||||||
|
"""
|
||||||
|
for vert in verts:
|
||||||
|
p = tuple(np.round(vert).astype(np.int32))
|
||||||
|
cv2.circle(copy,p,10,1,-1)
|
||||||
|
"""
|
||||||
|
draw circles at centres of squares
|
||||||
|
"""
|
||||||
|
for i in range(len(cents)):
|
||||||
|
cent = cents[i]
|
||||||
|
p = tuple(np.round(cent).astype(np.int32))
|
||||||
|
"""
|
||||||
|
draw black circle on white square, white circle on black square an
|
||||||
|
grey circle everywhere else.
|
||||||
|
"""
|
||||||
|
if i == 3:
|
||||||
|
cv2.circle(copy,p,8,0,-1)
|
||||||
|
elif i == 23:
|
||||||
|
cv2.circle(copy,p,8,1,-1)
|
||||||
|
else:
|
||||||
|
cv2.circle(copy,p,8,0.5,-1)
|
||||||
|
copy,_ = reshape(copy,400)
|
||||||
|
represent(copy)
|
||||||
|
|
||||||
|
return(coords_fit)
|
||||||
|
|
||||||
|
def get_macbeth_chart(img,ref_data):
|
||||||
|
"""
|
||||||
|
function returns coordinates of macbeth chart vertices and square centres,
|
||||||
|
along with an error/success message for debugging purposes. Additionally,
|
||||||
|
it scores the match with a confidence value.
|
||||||
|
|
||||||
|
Brief explanation of the macbeth chart locating algorithm:
|
||||||
|
- Find rectangles within image
|
||||||
|
- Take rectangles within percentage offset of median perimeter. The
|
||||||
|
assumption is that these will be the macbeth squares
|
||||||
|
- For each potential square, find the 24 possible macbeth centre locations
|
||||||
|
that would produce a square in that location
|
||||||
|
- Find clusters of potential macbeth chart centres to find the potential
|
||||||
|
macbeth centres with the most votes, i.e. the most likely ones
|
||||||
|
- For each potential macbeth centre, use the centres of the squares that
|
||||||
|
voted for it to find macbeth chart corners
|
||||||
|
- For each set of corners, transform the possible match into normalised
|
||||||
|
space and correlate with a reference chart to evaluate the match
|
||||||
|
- Select the highest correlation as the macbeth chart match, returning the
|
||||||
|
correlation as the confidence score
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
get reference macbeth chart data
|
||||||
|
"""
|
||||||
|
(ref,ref_w,ref_h,ref_corns) = ref_data
|
||||||
|
|
||||||
|
"""
|
||||||
|
the code will raise and catch a MacbethError in case of a problem, trying
|
||||||
|
to give some likely reasons why the problem occred, hence the try/except
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
"""
|
||||||
|
obtain image, convert to grayscale and normalise
|
||||||
|
"""
|
||||||
|
src = img
|
||||||
|
src,factor = reshape(src,200)
|
||||||
|
original=src.copy()
|
||||||
|
a = 125/np.average(src)
|
||||||
|
src_norm = cv2.convertScaleAbs(src,alpha=a,beta=0)
|
||||||
|
"""
|
||||||
|
This code checks if there are seperate colour channels. In the past the
|
||||||
|
macbeth locator ran on jpgs and this makes it robust to different
|
||||||
|
filetypes. Note that running it on a jpg has 4x the pixels of the
|
||||||
|
average bayer channel so coordinates must be doubled.
|
||||||
|
|
||||||
|
This is best done in img_load.py in the get_patches method. The
|
||||||
|
coordinates and image width,height must be divided by two if the
|
||||||
|
macbeth locator has been run on a demosaicked image.
|
||||||
|
"""
|
||||||
|
if len(src_norm.shape) == 3:
|
||||||
|
src_bw = cv2.cvtColor(src_norm,cv2.COLOR_BGR2GRAY)
|
||||||
|
else:
|
||||||
|
src_bw = src_norm
|
||||||
|
original_bw = src_bw.copy()
|
||||||
|
"""
|
||||||
|
obtain image edges
|
||||||
|
"""
|
||||||
|
sigma=2
|
||||||
|
src_bw = cv2.GaussianBlur(src_bw,(0,0),sigma)
|
||||||
|
t1,t2 = 50,100
|
||||||
|
edges = cv2.Canny(src_bw,t1,t2)
|
||||||
|
"""
|
||||||
|
dilate edges to prevent self-intersections in contours
|
||||||
|
"""
|
||||||
|
k_size = 2
|
||||||
|
kernel = np.ones((k_size,k_size))
|
||||||
|
its = 1
|
||||||
|
edges = cv2.dilate(edges,kernel,iterations=its)
|
||||||
|
"""
|
||||||
|
find Contours in image
|
||||||
|
"""
|
||||||
|
conts,_ = cv2.findContours(edges,
|
||||||
|
cv2.RETR_TREE,
|
||||||
|
cv2.CHAIN_APPROX_NONE)
|
||||||
|
if len(conts) == 0:
|
||||||
|
raise MacbethError(
|
||||||
|
'\nWARNING: No macbeth chart found!'
|
||||||
|
'\nNo contours found in image\n'
|
||||||
|
'Possible problems:\n'
|
||||||
|
'- Macbeth chart is too dark or bright\n'
|
||||||
|
'- Macbeth chart is occluded\n'
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
find quadrilateral contours
|
||||||
|
"""
|
||||||
|
epsilon = 0.07
|
||||||
|
conts_per = []
|
||||||
|
for i in range(len(conts)):
|
||||||
|
per = cv2.arcLength(conts[i],True)
|
||||||
|
poly = cv2.approxPolyDP(conts[i],
|
||||||
|
epsilon*per,True)
|
||||||
|
if len(poly) == 4 and cv2.isContourConvex(poly):
|
||||||
|
conts_per.append((poly,per))
|
||||||
|
|
||||||
|
if len(conts_per) == 0:
|
||||||
|
raise MacbethError(
|
||||||
|
'\nWARNING: No macbeth chart found!'
|
||||||
|
'\nNo quadrilateral contours found'
|
||||||
|
'\nPossible problems:\n'
|
||||||
|
'- Macbeth chart is too dark or bright\n'
|
||||||
|
'- Macbeth chart is occluded\n'
|
||||||
|
'- Macbeth chart is out of camera plane\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
sort contours by perimeter and get perimeters within percent of median
|
||||||
|
"""
|
||||||
|
conts_per = sorted(conts_per,key=lambda x:x[1])
|
||||||
|
med_per = conts_per[int(len(conts_per)/2)][1]
|
||||||
|
side = med_per/4
|
||||||
|
perc = 0.1
|
||||||
|
med_low,med_high = med_per*(1-perc),med_per*(1+perc)
|
||||||
|
squares = []
|
||||||
|
for i in conts_per:
|
||||||
|
if med_low <= i[1] and med_high >= i[1]:
|
||||||
|
squares.append(i[0])
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain coordinates of nomralised macbeth and squares
|
||||||
|
"""
|
||||||
|
square_verts,mac_norm = get_square_verts(0.06)
|
||||||
|
"""
|
||||||
|
for each square guess, find 24 possible macbeth chart centres
|
||||||
|
"""
|
||||||
|
mac_mids = []
|
||||||
|
squares_raw = []
|
||||||
|
for i in range(len(squares)):
|
||||||
|
square = squares[i]
|
||||||
|
squares_raw.append(square)
|
||||||
|
"""
|
||||||
|
convert quads to rotated rectangles. This is required as the
|
||||||
|
'squares' are usually quite irregular quadrilaterls, so performing
|
||||||
|
a transform would result in exaggerated warping and inaccurate
|
||||||
|
macbeth chart centre placement
|
||||||
|
"""
|
||||||
|
rect = cv2.minAreaRect(square)
|
||||||
|
square = cv2.boxPoints(rect).astype(np.float32)
|
||||||
|
"""
|
||||||
|
reorder vertices to prevent 'hourglass shape'
|
||||||
|
"""
|
||||||
|
square = sorted(square,key=lambda x:x[0])
|
||||||
|
square_1 = sorted(square[:2],key=lambda x:x[1])
|
||||||
|
square_2 = sorted(square[2:],key=lambda x:-x[1])
|
||||||
|
square = np.array(np.concatenate((square_1,square_2)),np.float32)
|
||||||
|
square = np.reshape(square,(4,2)).astype(np.float32)
|
||||||
|
squares[i] = square
|
||||||
|
"""
|
||||||
|
find 24 possible macbeth chart centres by trasnforming normalised
|
||||||
|
macbeth square vertices onto candidate square vertices found in image
|
||||||
|
"""
|
||||||
|
for j in range(len(square_verts)):
|
||||||
|
verts = square_verts[j]
|
||||||
|
p_mat = cv2.getPerspectiveTransform(verts,square)
|
||||||
|
mac_guess = cv2.perspectiveTransform(mac_norm,p_mat)
|
||||||
|
mac_guess = np.round(mac_guess).astype(np.int32)
|
||||||
|
"""
|
||||||
|
keep only if candidate macbeth is within image border
|
||||||
|
(deprecated)
|
||||||
|
"""
|
||||||
|
in_border = True
|
||||||
|
# for p in mac_guess[0]:
|
||||||
|
# pptest = cv2.pointPolygonTest(
|
||||||
|
# img_con,
|
||||||
|
# tuple(p),
|
||||||
|
# False
|
||||||
|
# )
|
||||||
|
# if pptest == -1:
|
||||||
|
# in_border = False
|
||||||
|
# break
|
||||||
|
|
||||||
|
if in_border:
|
||||||
|
mac_mid = np.mean(mac_guess,
|
||||||
|
axis=1)
|
||||||
|
mac_mids.append([mac_mid,(i,j)])
|
||||||
|
|
||||||
|
if len(mac_mids) == 0:
|
||||||
|
raise MacbethError(
|
||||||
|
'\nWARNING: No macbeth chart found!'
|
||||||
|
'\nNo possible macbeth charts found within image'
|
||||||
|
'\nPossible problems:\n'
|
||||||
|
'- Part of the macbeth chart is outside the image\n'
|
||||||
|
'- Quadrilaterals in image background\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
reshape data
|
||||||
|
"""
|
||||||
|
for i in range(len(mac_mids)):
|
||||||
|
mac_mids[i][0] = mac_mids[i][0][0]
|
||||||
|
|
||||||
|
"""
|
||||||
|
find where midpoints cluster to identify most likely macbeth centres
|
||||||
|
"""
|
||||||
|
clustering = cluster.AgglomerativeClustering(
|
||||||
|
n_clusters=None,
|
||||||
|
compute_full_tree = True,
|
||||||
|
distance_threshold = side*2
|
||||||
|
)
|
||||||
|
mac_mids_list = [x[0] for x in mac_mids]
|
||||||
|
|
||||||
|
if len(mac_mids_list)==1:
|
||||||
|
"""
|
||||||
|
special case of only one valid centre found (probably not needed)
|
||||||
|
"""
|
||||||
|
clus_list = []
|
||||||
|
clus_list.append([mac_mids,len(mac_mids)])
|
||||||
|
|
||||||
|
else:
|
||||||
|
clustering.fit(mac_mids_list)
|
||||||
|
# try:
|
||||||
|
# clustering.fit(mac_mids_list)
|
||||||
|
# except RuntimeWarning as error:
|
||||||
|
# return(0,None,None,error)
|
||||||
|
|
||||||
|
"""
|
||||||
|
create list of all clusters
|
||||||
|
"""
|
||||||
|
clus_list = []
|
||||||
|
if clustering.n_clusters_ >1:
|
||||||
|
for i in range(clustering.labels_.max()+1):
|
||||||
|
indices = [j for j,x in enumerate(clustering.labels_) if x == i]
|
||||||
|
clus = []
|
||||||
|
for index in indices:
|
||||||
|
clus.append(mac_mids[index])
|
||||||
|
clus_list.append([clus,len(clus)])
|
||||||
|
clus_list.sort(key=lambda x:-x[1])
|
||||||
|
|
||||||
|
elif clustering.n_clusters_ == 1:
|
||||||
|
"""
|
||||||
|
special case of only one cluster found
|
||||||
|
"""
|
||||||
|
# print('only 1 cluster')
|
||||||
|
clus_list.append([mac_mids,len(mac_mids)])
|
||||||
|
else:
|
||||||
|
raise MacbethError(
|
||||||
|
'\nWARNING: No macebth chart found!'
|
||||||
|
'\nNo clusters found'
|
||||||
|
'\nPossible problems:\n'
|
||||||
|
'- NA\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
keep only clusters with enough votes
|
||||||
|
"""
|
||||||
|
clus_len_max = clus_list[0][1]
|
||||||
|
clus_tol= 0.7
|
||||||
|
for i in range(len(clus_list)):
|
||||||
|
if clus_list[i][1] < clus_len_max * clus_tol:
|
||||||
|
clus_list = clus_list[:i]
|
||||||
|
break
|
||||||
|
cent = np.mean(clus_list[i][0],axis=0)[0]
|
||||||
|
clus_list[i].append(cent)
|
||||||
|
|
||||||
|
"""
|
||||||
|
represent most popular cluster centroids
|
||||||
|
"""
|
||||||
|
# copy = original_bw.copy()
|
||||||
|
# copy = cv2.cvtColor(copy,cv2.COLOR_GRAY2RGB)
|
||||||
|
# copy = cv2.resize(copy,None,fx=2,fy=2)
|
||||||
|
# for clus in clus_list:
|
||||||
|
# centroid = tuple(2*np.round(clus[2]).astype(np.int32))
|
||||||
|
# cv2.circle(copy,centroid,7,(255,0,0),-1)
|
||||||
|
# cv2.circle(copy,centroid,2,(0,0,255),-1)
|
||||||
|
# represent(copy)
|
||||||
|
|
||||||
|
"""
|
||||||
|
get centres of each normalised square
|
||||||
|
"""
|
||||||
|
reference = get_square_centres(0.06)
|
||||||
|
|
||||||
|
"""
|
||||||
|
for each possible macbeth chart, transform image into
|
||||||
|
normalised space and find correlation with reference
|
||||||
|
"""
|
||||||
|
max_cor = 0
|
||||||
|
best_map = None
|
||||||
|
best_fit = None
|
||||||
|
best_cen_fit = None
|
||||||
|
best_ref_mat = None
|
||||||
|
|
||||||
|
for clus in clus_list:
|
||||||
|
clus = clus[0]
|
||||||
|
sq_cents = []
|
||||||
|
ref_cents = []
|
||||||
|
i_list = [p[1][0] for p in clus]
|
||||||
|
for point in clus:
|
||||||
|
i,j = point[1]
|
||||||
|
"""
|
||||||
|
remove any square that voted for two different points within
|
||||||
|
the same cluster. This causes the same point in the image to be
|
||||||
|
mapped to two different reference square centres, resulting in
|
||||||
|
a very distorted perspective transform since cv2.findHomography
|
||||||
|
simply minimises error.
|
||||||
|
This phenomenon is not particularly likely to occur due to the
|
||||||
|
enforced distance threshold in the clustering fit but it is
|
||||||
|
best to keep this in just in case.
|
||||||
|
"""
|
||||||
|
if i_list.count(i) == 1:
|
||||||
|
square = squares_raw[i]
|
||||||
|
sq_cent = np.mean(square,axis=0)
|
||||||
|
ref_cent = reference[j]
|
||||||
|
sq_cents.append(sq_cent)
|
||||||
|
ref_cents.append(ref_cent)
|
||||||
|
|
||||||
|
"""
|
||||||
|
At least three squares need to have voted for a centre in
|
||||||
|
order for a transform to be found
|
||||||
|
"""
|
||||||
|
if len(sq_cents) < 3:
|
||||||
|
raise MacbethError(
|
||||||
|
'\nWARNING: No macbeth chart found!'
|
||||||
|
'\nNot enough squares found'
|
||||||
|
'\nPossible problems:\n'
|
||||||
|
'- Macbeth chart is occluded\n'
|
||||||
|
'- Macbeth chart is too dark of bright\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
ref_cents = np.array(ref_cents)
|
||||||
|
sq_cents = np.array(sq_cents)
|
||||||
|
"""
|
||||||
|
find best fit transform from normalised centres to image
|
||||||
|
"""
|
||||||
|
h_mat,mask = cv2.findHomography(ref_cents,sq_cents)
|
||||||
|
if 'None' in str(type(h_mat)):
|
||||||
|
raise MacbethError(
|
||||||
|
'\nERROR\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
transform normalised corners and centres into image space
|
||||||
|
"""
|
||||||
|
mac_fit = cv2.perspectiveTransform(mac_norm,h_mat)
|
||||||
|
mac_cen_fit = cv2.perspectiveTransform(np.array([reference]),h_mat)
|
||||||
|
"""
|
||||||
|
transform located corners into reference space
|
||||||
|
"""
|
||||||
|
ref_mat = cv2.getPerspectiveTransform(
|
||||||
|
mac_fit,
|
||||||
|
np.array([ref_corns])
|
||||||
|
)
|
||||||
|
map_to_ref = cv2.warpPerspective(
|
||||||
|
original_bw,ref_mat,
|
||||||
|
(ref_w,ref_h)
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
normalise brigthness
|
||||||
|
"""
|
||||||
|
a = 125/np.average(map_to_ref)
|
||||||
|
map_to_ref = cv2.convertScaleAbs(map_to_ref,alpha=a,beta=0)
|
||||||
|
"""
|
||||||
|
find correlation with bw reference macbeth
|
||||||
|
"""
|
||||||
|
cor = correlate(map_to_ref,ref)
|
||||||
|
"""
|
||||||
|
keep only if best correlation
|
||||||
|
"""
|
||||||
|
if cor > max_cor:
|
||||||
|
max_cor = cor
|
||||||
|
best_map = map_to_ref
|
||||||
|
best_fit = mac_fit
|
||||||
|
best_cen_fit = mac_cen_fit
|
||||||
|
best_ref_mat = ref_mat
|
||||||
|
|
||||||
|
"""
|
||||||
|
rotate macbeth by pi and recorrelate in case macbeth chart is
|
||||||
|
upside-down
|
||||||
|
"""
|
||||||
|
mac_fit_inv = np.array(
|
||||||
|
([[mac_fit[0][2],mac_fit[0][3],
|
||||||
|
mac_fit[0][0],mac_fit[0][1]]])
|
||||||
|
)
|
||||||
|
mac_cen_fit_inv = np.flip(mac_cen_fit,axis=1)
|
||||||
|
ref_mat = cv2.getPerspectiveTransform(
|
||||||
|
mac_fit_inv,
|
||||||
|
np.array([ref_corns])
|
||||||
|
)
|
||||||
|
map_to_ref = cv2.warpPerspective(
|
||||||
|
original_bw,ref_mat,
|
||||||
|
(ref_w,ref_h)
|
||||||
|
)
|
||||||
|
a = 125/np.average(map_to_ref)
|
||||||
|
map_to_ref = cv2.convertScaleAbs(map_to_ref,alpha=a,beta=0)
|
||||||
|
cor = correlate(map_to_ref,ref)
|
||||||
|
if cor > max_cor:
|
||||||
|
max_cor = cor
|
||||||
|
best_map = map_to_ref
|
||||||
|
best_fit = mac_fit_inv
|
||||||
|
best_cen_fit = mac_cen_fit_inv
|
||||||
|
best_ref_mat = ref_mat
|
||||||
|
|
||||||
|
"""
|
||||||
|
Check best match is above threshold
|
||||||
|
"""
|
||||||
|
cor_thresh = 0.6
|
||||||
|
if max_cor < cor_thresh:
|
||||||
|
raise MacbethError(
|
||||||
|
'\nWARNING: Correlation too low'
|
||||||
|
'\nPossible problems:\n'
|
||||||
|
'- Bad lighting conditions\n'
|
||||||
|
'- Macbeth chart is occluded\n'
|
||||||
|
'- Background is too noisy\n'
|
||||||
|
'- Macbeth chart is out of camera plane\n'
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
Following code is mostly representation for debugging purposes
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
draw macbeth corners and centres on image
|
||||||
|
"""
|
||||||
|
copy = original.copy()
|
||||||
|
copy = cv2.resize(original,None,fx=2,fy=2)
|
||||||
|
# print('correlation = {}'.format(round(max_cor,2)))
|
||||||
|
for point in best_fit[0]:
|
||||||
|
point = np.array(point,np.float32)
|
||||||
|
point = tuple(2*np.round(point).astype(np.int32))
|
||||||
|
cv2.circle(copy,point,4,(255,0,0),-1)
|
||||||
|
for point in best_cen_fit[0]:
|
||||||
|
point = np.array(point,np.float32)
|
||||||
|
point = tuple(2*np.round(point).astype(np.int32))
|
||||||
|
cv2.circle(copy,point,4,(0,0,255),-1)
|
||||||
|
copy = copy.copy()
|
||||||
|
cv2.circle(copy,point,4,(0,0,255),-1)
|
||||||
|
|
||||||
|
"""
|
||||||
|
represent coloured macbeth in reference space
|
||||||
|
"""
|
||||||
|
best_map_col = cv2.warpPerspective(
|
||||||
|
original,best_ref_mat,(ref_w,ref_h)
|
||||||
|
)
|
||||||
|
best_map_col = cv2.resize(
|
||||||
|
best_map_col,None,fx=4,fy=4
|
||||||
|
)
|
||||||
|
a = 125/np.average(best_map_col)
|
||||||
|
best_map_col_norm = cv2.convertScaleAbs(
|
||||||
|
best_map_col,alpha=a,beta=0
|
||||||
|
)
|
||||||
|
# cv2.imshow('Macbeth',best_map_col)
|
||||||
|
# represent(copy)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
rescale coordinates to original image size
|
||||||
|
"""
|
||||||
|
fit_coords = (best_fit/factor,best_cen_fit/factor)
|
||||||
|
|
||||||
|
return(max_cor,best_map_col_norm,fit_coords,success_msg)
|
||||||
|
|
||||||
|
"""
|
||||||
|
catch macbeth errors and continue with code
|
||||||
|
"""
|
||||||
|
except MacbethError as error:
|
||||||
|
return(0,None,None,error)
|
123
utils/raspberrypi/ctt/ctt_noise.py
Normal file
123
utils/raspberrypi/ctt/ctt_noise.py
Normal file
|
@ -0,0 +1,123 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_noise.py - camera tuning tool noise calibration
|
||||||
|
|
||||||
|
from ctt_image_load import *
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
"""
|
||||||
|
Find noise standard deviation and fit to model:
|
||||||
|
|
||||||
|
noise std = a + b*sqrt(pixel mean)
|
||||||
|
"""
|
||||||
|
def noise(Cam,Img,plot):
|
||||||
|
Cam.log += '\nProcessing image: {}'.format(Img.name)
|
||||||
|
stds = []
|
||||||
|
means = []
|
||||||
|
"""
|
||||||
|
iterate through macbeth square patches
|
||||||
|
"""
|
||||||
|
for ch_patches in Img.patches:
|
||||||
|
for patch in ch_patches:
|
||||||
|
"""
|
||||||
|
renormalise patch
|
||||||
|
"""
|
||||||
|
patch = np.array(patch)
|
||||||
|
patch = (patch-Img.blacklevel_16)/Img.againQ8_norm
|
||||||
|
std = np.std(patch)
|
||||||
|
mean = np.mean(patch)
|
||||||
|
stds.append(std)
|
||||||
|
means.append(mean)
|
||||||
|
|
||||||
|
"""
|
||||||
|
clean data and ensure all means are above 0
|
||||||
|
"""
|
||||||
|
stds = np.array(stds)
|
||||||
|
means = np.array(means)
|
||||||
|
means = np.clip(np.array(means),0,None)
|
||||||
|
sq_means = np.sqrt(means)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
least squares fit model
|
||||||
|
"""
|
||||||
|
fit = np.polyfit(sq_means,stds,1)
|
||||||
|
Cam.log += '\nBlack level = {}'.format(Img.blacklevel_16)
|
||||||
|
Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
|
||||||
|
Cam.log += ' slope = {:.3f}'.format(fit[0])
|
||||||
|
"""
|
||||||
|
remove any values further than std from the fit
|
||||||
|
|
||||||
|
anomalies most likely caused by:
|
||||||
|
> ucharacteristically noisy white patch
|
||||||
|
> saturation in the white patch
|
||||||
|
"""
|
||||||
|
fit_score = np.abs(stds - fit[0]*sq_means - fit[1])
|
||||||
|
fit_std = np.std(stds)
|
||||||
|
fit_score_norm = fit_score - fit_std
|
||||||
|
anom_ind = np.where(fit_score_norm > 1)
|
||||||
|
fit_score_norm.sort()
|
||||||
|
sq_means_clean = np.delete(sq_means,anom_ind)
|
||||||
|
stds_clean = np.delete(stds,anom_ind)
|
||||||
|
removed = len(stds) - len(stds_clean)
|
||||||
|
if removed != 0:
|
||||||
|
Cam.log += '\nIdentified and removed {} anomalies.'.format(removed)
|
||||||
|
Cam.log += '\nRecalculating fit'
|
||||||
|
"""
|
||||||
|
recalculate fit with outliers removed
|
||||||
|
"""
|
||||||
|
fit = np.polyfit(sq_means_clean,stds_clean,1)
|
||||||
|
Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
|
||||||
|
Cam.log += ' slope = {:.3f}'.format(fit[0])
|
||||||
|
|
||||||
|
"""
|
||||||
|
if fit const is < 0 then force through 0 by
|
||||||
|
dividing by sq_means and fitting poly order 0
|
||||||
|
"""
|
||||||
|
corrected = 0
|
||||||
|
if fit[1] < 0:
|
||||||
|
corrected = 1
|
||||||
|
ones = np.ones(len(means))
|
||||||
|
y_data = stds/sq_means
|
||||||
|
fit2 = np.polyfit(ones,y_data,0)
|
||||||
|
Cam.log += '\nOffset below zero. Fit recalculated with zero offset'
|
||||||
|
Cam.log += '\nNoise profile: offset = 0'
|
||||||
|
Cam.log += ' slope = {:.3f}'.format(fit2[0])
|
||||||
|
# print('new fit')
|
||||||
|
# print(fit2)
|
||||||
|
|
||||||
|
"""
|
||||||
|
plot fit for debug
|
||||||
|
"""
|
||||||
|
if plot:
|
||||||
|
x = np.arange(sq_means.max()//0.88)
|
||||||
|
fit_plot = x*fit[0] + fit[1]
|
||||||
|
plt.scatter(sq_means,stds,label='data',color='blue')
|
||||||
|
plt.scatter(sq_means[anom_ind],stds[anom_ind],color='orange',label='anomalies')
|
||||||
|
plt.plot(x,fit_plot,label='fit',color='red',ls=':')
|
||||||
|
if fit[1] < 0:
|
||||||
|
fit_plot_2 = x*fit2[0]
|
||||||
|
plt.plot(x,fit_plot_2,label='fit 0 intercept',color='green',ls='--')
|
||||||
|
plt.plot(0,0)
|
||||||
|
plt.title('Noise Plot\nImg: {}'.format(Img.str))
|
||||||
|
plt.legend(loc = 'upper left')
|
||||||
|
plt.xlabel('Sqrt Pixel Value')
|
||||||
|
plt.ylabel('Noise Standard Deviation')
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
"""
|
||||||
|
End of plotting code
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
format output to include forced 0 constant
|
||||||
|
"""
|
||||||
|
Cam.log += '\n'
|
||||||
|
if corrected:
|
||||||
|
fit = [fit2[0],0]
|
||||||
|
return fit
|
||||||
|
|
||||||
|
else:
|
||||||
|
return fit
|
70
utils/raspberrypi/ctt/ctt_pretty_print_json.py
Normal file
70
utils/raspberrypi/ctt/ctt_pretty_print_json.py
Normal file
|
@ -0,0 +1,70 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_pretty_print_json.py - camera tuning tool JSON formatter
|
||||||
|
|
||||||
|
"""
|
||||||
|
takes a collapsed json file and makes it more readable
|
||||||
|
"""
|
||||||
|
def process_file(string, fout, state):
|
||||||
|
for c in string:
|
||||||
|
process_char(c, fout, state)
|
||||||
|
|
||||||
|
def print_newline(fout, state):
|
||||||
|
fout.write('\n')
|
||||||
|
fout.write(' '*state["indent"]*4)
|
||||||
|
|
||||||
|
def process_char(c, fout, state):
|
||||||
|
if c == '{':
|
||||||
|
if not state["skipnewline"]: print_newline(fout, state)
|
||||||
|
fout.write(c)
|
||||||
|
state["indent"] += 1
|
||||||
|
print_newline(fout, state)
|
||||||
|
elif c == '}':
|
||||||
|
state["indent"] -= 1
|
||||||
|
print_newline(fout, state)
|
||||||
|
fout.write(c)
|
||||||
|
elif c == '[':
|
||||||
|
print_newline(fout, state)
|
||||||
|
fout.write(c)
|
||||||
|
state["indent"] += 1
|
||||||
|
print_newline(fout, state)
|
||||||
|
state["inarray"] = [True] + state["inarray"]
|
||||||
|
state["arraycount"] = [0] + state["arraycount"]
|
||||||
|
elif c == ']':
|
||||||
|
state["indent"] -= 1
|
||||||
|
print_newline(fout, state)
|
||||||
|
state["inarray"].pop(0)
|
||||||
|
state["arraycount"].pop(0)
|
||||||
|
fout.write(c)
|
||||||
|
elif c == ':':
|
||||||
|
fout.write(c)
|
||||||
|
fout.write(' ')
|
||||||
|
elif c == ' ':
|
||||||
|
pass
|
||||||
|
elif c == ',':
|
||||||
|
if not state["inarray"][0]:
|
||||||
|
fout.write(c)
|
||||||
|
fout.write(' ')
|
||||||
|
print_newline(fout, state)
|
||||||
|
else:
|
||||||
|
fout.write(c)
|
||||||
|
state["arraycount"][0] += 1
|
||||||
|
if state["arraycount"][0] == 16:
|
||||||
|
state["arraycount"][0] = 0
|
||||||
|
print_newline(fout, state)
|
||||||
|
else:
|
||||||
|
fout.write(' ')
|
||||||
|
else:
|
||||||
|
fout.write(c)
|
||||||
|
state["skipnewline"] = (c == '[')
|
||||||
|
|
||||||
|
def pretty_print_json(str_in, output_filename):
|
||||||
|
state = {"indent": 0, "inarray": [False], "arraycount": [], "skipnewline" : True}
|
||||||
|
with open(output_filename, "w") as fout:
|
||||||
|
process_file(str_in, fout, state)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pretty_print_json("../ctt/ref_json/final_imx477.json", "pretty.json")
|
69
utils/raspberrypi/ctt/ctt_ransac.py
Normal file
69
utils/raspberrypi/ctt/ctt_ransac.py
Normal file
|
@ -0,0 +1,69 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_ransac.py - camera tuning tool RANSAC selector for Macbeth chart locator
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
scale = 2
|
||||||
|
|
||||||
|
"""
|
||||||
|
constructs normalised macbeth chart corners for ransac algorithm
|
||||||
|
"""
|
||||||
|
def get_square_verts(c_err = 0.05,scale = scale):
|
||||||
|
"""
|
||||||
|
define macbeth chart corners
|
||||||
|
"""
|
||||||
|
b_bord_x,b_bord_y = scale*8.5,scale*13
|
||||||
|
s_bord = 6*scale
|
||||||
|
side = 41*scale
|
||||||
|
x_max = side*6 + 5*s_bord + 2*b_bord_x
|
||||||
|
y_max = side*4 + 3*s_bord + 2*b_bord_y
|
||||||
|
c1 = (0,0)
|
||||||
|
c2 = (0,y_max)
|
||||||
|
c3 = (x_max,y_max)
|
||||||
|
c4 = (x_max,0)
|
||||||
|
mac_norm = np.array((c1,c2,c3,c4),np.float32)
|
||||||
|
mac_norm = np.array([ mac_norm ])
|
||||||
|
|
||||||
|
square_verts = []
|
||||||
|
square_0 = np.array(((0,0),(0,side),
|
||||||
|
(side,side),(side,0)),np.float32)
|
||||||
|
offset_0 = np.array((b_bord_x,b_bord_y),np.float32)
|
||||||
|
c_off = side * c_err
|
||||||
|
offset_cont = np.array(((c_off,c_off),(c_off,-c_off),
|
||||||
|
(-c_off,-c_off),(-c_off,c_off)),np.float32)
|
||||||
|
square_0 += offset_0
|
||||||
|
square_0 += offset_cont
|
||||||
|
"""
|
||||||
|
define macbeth square corners
|
||||||
|
"""
|
||||||
|
for i in range(6):
|
||||||
|
shift_i = np.array(((i*side,0),(i*side,0),
|
||||||
|
(i*side,0),(i*side,0)),np.float32)
|
||||||
|
shift_bord =np.array(((i*s_bord,0),(i*s_bord,0),
|
||||||
|
(i*s_bord,0),(i*s_bord,0)),np.float32)
|
||||||
|
square_i = square_0 + shift_i + shift_bord
|
||||||
|
for j in range(4):
|
||||||
|
shift_j = np.array(((0,j*side),(0,j*side),
|
||||||
|
(0,j*side),(0,j*side)),np.float32)
|
||||||
|
shift_bord = np.array(((0,j*s_bord),
|
||||||
|
(0,j*s_bord),(0,j*s_bord),
|
||||||
|
(0,j*s_bord)),np.float32)
|
||||||
|
square_j = square_i + shift_j + shift_bord
|
||||||
|
square_verts.append(square_j)
|
||||||
|
# print('square_verts')
|
||||||
|
# print(square_verts)
|
||||||
|
return np.array(square_verts,np.float32),mac_norm
|
||||||
|
|
||||||
|
def get_square_centres(c_err = 0.05,scale=scale):
|
||||||
|
"""
|
||||||
|
define macbeth square centres
|
||||||
|
"""
|
||||||
|
verts,mac_norm = get_square_verts(c_err,scale=scale)
|
||||||
|
|
||||||
|
centres = np.mean(verts,axis = 1)
|
||||||
|
# print('centres')
|
||||||
|
# print(centres)
|
||||||
|
return np.array(centres,np.float32)
|
5
utils/raspberrypi/ctt/ctt_ref.pgm
Normal file
5
utils/raspberrypi/ctt/ctt_ref.pgm
Normal file
File diff suppressed because one or more lines are too long
141
utils/raspberrypi/ctt/ctt_tools.py
Normal file
141
utils/raspberrypi/ctt/ctt_tools.py
Normal file
|
@ -0,0 +1,141 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||||
|
#
|
||||||
|
# ctt_tools.py - camera tuning tool miscellaneous
|
||||||
|
|
||||||
|
import time
|
||||||
|
import re
|
||||||
|
import binascii
|
||||||
|
import os
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import imutils
|
||||||
|
import sys
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from sklearn import cluster as cluster
|
||||||
|
from sklearn.neighbors.nearest_centroid import NearestCentroid as get_centroids
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file contains some useful tools, the details of which aren't important to
|
||||||
|
understanding of the code. They ar collated here to attempt to improve code
|
||||||
|
readability in the main files.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
obtain config values, unless it doesnt exist, in which case pick default
|
||||||
|
Furthermore, it can check if the input is the correct type
|
||||||
|
"""
|
||||||
|
def get_config(dictt,key,default,ttype):
|
||||||
|
try:
|
||||||
|
val = dictt[key]
|
||||||
|
if ttype == 'string':
|
||||||
|
val = str(val)
|
||||||
|
elif ttype == 'num':
|
||||||
|
if 'int' not in str(type(val)):
|
||||||
|
if 'float' not in str(type(val)):
|
||||||
|
raise ValueError
|
||||||
|
elif ttype == 'dict':
|
||||||
|
if type(val) != type(dictt):
|
||||||
|
raise ValueError
|
||||||
|
elif ttype == 'list':
|
||||||
|
if type(val) != type([]):
|
||||||
|
raise ValueError
|
||||||
|
elif ttype == 'bool':
|
||||||
|
ttype = int(bool(ttype))
|
||||||
|
else:
|
||||||
|
val = dictt[key]
|
||||||
|
except (KeyError, ValueError):
|
||||||
|
val = default
|
||||||
|
return val
|
||||||
|
"""
|
||||||
|
argument parser
|
||||||
|
"""
|
||||||
|
def parse_input():
|
||||||
|
arguments = sys.argv[1:]
|
||||||
|
if len(arguments)%2 != 0:
|
||||||
|
raise ArgError('\n\nERROR! Enter value for each arguent passed.')
|
||||||
|
params = arguments [0::2]
|
||||||
|
vals = arguments [1::2]
|
||||||
|
args_dict = dict(zip(params,vals))
|
||||||
|
json_output = get_config(args_dict,'-o',None,'string')
|
||||||
|
directory = get_config(args_dict,'-i',None,'string')
|
||||||
|
config = get_config(args_dict,'-c',None,'string')
|
||||||
|
log_path = get_config(args_dict,'-l',None,'string')
|
||||||
|
if directory == None:
|
||||||
|
raise ArgError('\n\nERROR! No input directory given.')
|
||||||
|
if json_output == None:
|
||||||
|
raise ArgError('\n\nERROR! No output json given.')
|
||||||
|
return json_output,directory,config,log_path
|
||||||
|
"""
|
||||||
|
custom arg and macbeth error class
|
||||||
|
"""
|
||||||
|
class ArgError(Exception):
|
||||||
|
pass
|
||||||
|
class MacbethError(Exception):
|
||||||
|
pass
|
||||||
|
|
||||||
|
"""
|
||||||
|
correlation function to quantify match
|
||||||
|
"""
|
||||||
|
def correlate(im1,im2):
|
||||||
|
f1 = im1.flatten()
|
||||||
|
f2 = im2.flatten()
|
||||||
|
cor = np.corrcoef(f1,f2)
|
||||||
|
return cor[0][1]
|
||||||
|
|
||||||
|
"""
|
||||||
|
get list of files from directory
|
||||||
|
"""
|
||||||
|
def get_photos(directory='photos'):
|
||||||
|
filename_list = []
|
||||||
|
for filename in os.listdir(directory):
|
||||||
|
if 'jp' in filename or '.dng' in filename:
|
||||||
|
filename_list.append(filename)
|
||||||
|
return filename_list
|
||||||
|
|
||||||
|
"""
|
||||||
|
display image for debugging... read at your own risk...
|
||||||
|
"""
|
||||||
|
def represent(img,name='image'):
|
||||||
|
# if type(img) == tuple or type(img) == list:
|
||||||
|
# for i in range(len(img)):
|
||||||
|
# name = 'image {}'.format(i)
|
||||||
|
# cv2.imshow(name,img[i])
|
||||||
|
# else:
|
||||||
|
# cv2.imshow(name,img)
|
||||||
|
# cv2.waitKey(0)
|
||||||
|
# cv2.destroyAllWindows()
|
||||||
|
# return 0
|
||||||
|
"""
|
||||||
|
code above displays using opencv, but this doesn't catch users pressing 'x'
|
||||||
|
with their mouse to close the window.... therefore matplotlib is used....
|
||||||
|
(thanks a lot opencv)
|
||||||
|
"""
|
||||||
|
grid = plt.GridSpec(22,1)
|
||||||
|
plt.subplot(grid[:19,0])
|
||||||
|
plt.imshow(img,cmap='gray')
|
||||||
|
plt.axis('off')
|
||||||
|
plt.subplot(grid[21,0])
|
||||||
|
plt.title('press \'q\' to continue')
|
||||||
|
plt.axis('off')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# f = plt.figure()
|
||||||
|
# ax = f.add_subplot(211)
|
||||||
|
# ax2 = f.add_subplot(122)
|
||||||
|
# ax.imshow(img,cmap='gray')
|
||||||
|
# ax.axis('off')
|
||||||
|
# ax2.set_figheight(2)
|
||||||
|
# ax2.title('press \'q\' to continue')
|
||||||
|
# ax2.axis('off')
|
||||||
|
# plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
reshape image to fixed width without distorting
|
||||||
|
returns image and scale factor
|
||||||
|
"""
|
||||||
|
def reshape(img,width):
|
||||||
|
factor = width/img.shape[0]
|
||||||
|
return cv2.resize(img,None,fx=factor,fy=factor),factor
|
Loading…
Add table
Add a link
Reference in a new issue