utils: raspberrypi: ctt: Adapt tuning tool for both VC4 and PiSP

The old ctt.py and alsc_only.py scripts are removed.

Instead of ctt.py use ctt_vc4.py or ctt_pisp.py, depending on your
target platform.

Instead of alsc_only.py use alsc_vc4.py or alsc_pisp.py, again
according to your platform.

Signed-off-by: David Plowman <david.plowman@raspberrypi.com>
Reviewed-by: Naushir Patuck <naush@raspberrypi.com>
Tested-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
This commit is contained in:
David Plowman 2024-06-06 11:15:07 +01:00 committed by Kieran Bingham
parent 634bc7838f
commit d13542c28f
9 changed files with 511 additions and 208 deletions

View file

@ -13,8 +13,9 @@ from mpl_toolkits.mplot3d import Axes3D
"""
preform alsc calibration on a set of images
"""
def alsc_all(Cam, do_alsc_colour, plot):
def alsc_all(Cam, do_alsc_colour, plot, grid_size=(16, 12)):
imgs_alsc = Cam.imgs_alsc
grid_w, grid_h = grid_size
"""
create list of colour temperatures and associated calibration tables
"""
@ -23,7 +24,7 @@ def alsc_all(Cam, do_alsc_colour, plot):
list_cb = []
list_cg = []
for Img in imgs_alsc:
col, cr, cb, cg, size = alsc(Cam, Img, do_alsc_colour, plot)
col, cr, cb, cg, size = alsc(Cam, Img, do_alsc_colour, plot, grid_size=grid_size)
list_col.append(col)
list_cr.append(cr)
list_cb.append(cb)
@ -68,11 +69,12 @@ def alsc_all(Cam, do_alsc_colour, plot):
t_b = np.where((100*t_b) % 1 >= 0.95, t_b-0.001, t_b)
t_r = np.round(t_r, 3)
t_b = np.round(t_b, 3)
r_corners = (t_r[0], t_r[15], t_r[-1], t_r[-16])
b_corners = (t_b[0], t_b[15], t_b[-1], t_b[-16])
r_cen = t_r[5*16+7]+t_r[5*16+8]+t_r[6*16+7]+t_r[6*16+8]
r_corners = (t_r[0], t_r[grid_w - 1], t_r[-1], t_r[-grid_w])
b_corners = (t_b[0], t_b[grid_w - 1], t_b[-1], t_b[-grid_w])
middle_pos = (grid_h // 2 - 1) * grid_w + grid_w - 1
r_cen = t_r[middle_pos]+t_r[middle_pos + 1]+t_r[middle_pos + grid_w]+t_r[middle_pos + grid_w + 1]
r_cen = round(r_cen/4, 3)
b_cen = t_b[5*16+7]+t_b[5*16+8]+t_b[6*16+7]+t_b[6*16+8]
b_cen = t_b[middle_pos]+t_b[middle_pos + 1]+t_b[middle_pos + grid_w]+t_b[middle_pos + grid_w + 1]
b_cen = round(b_cen/4, 3)
Cam.log += '\nRed table corners: {}'.format(r_corners)
Cam.log += '\nRed table centre: {}'.format(r_cen)
@ -116,8 +118,9 @@ def alsc_all(Cam, do_alsc_colour, plot):
"""
calculate g/r and g/b for 32x32 points arranged in a grid for a single image
"""
def alsc(Cam, Img, do_alsc_colour, plot=False):
def alsc(Cam, Img, do_alsc_colour, plot=False, grid_size=(16, 12)):
Cam.log += '\nProcessing image: ' + Img.name
grid_w, grid_h = grid_size
"""
get channel in correct order
"""
@ -128,24 +131,24 @@ def alsc(Cam, Img, do_alsc_colour, plot=False):
where w is a multiple of 32.
"""
w, h = Img.w/2, Img.h/2
dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12))
dx, dy = int(-(-(w-1)//grid_w)), int(-(-(h-1)//grid_h))
"""
average the green channels into one
"""
av_ch_g = np.mean((channels[1:3]), axis=0)
if do_alsc_colour:
"""
obtain 16x12 grid of intensities for each channel and subtract black level
obtain grid_w x grid_h grid of intensities for each channel and subtract black level
"""
g = get_16x12_grid(av_ch_g, dx, dy) - Img.blacklevel_16
r = get_16x12_grid(channels[0], dx, dy) - Img.blacklevel_16
b = get_16x12_grid(channels[3], dx, dy) - Img.blacklevel_16
g = get_grid(av_ch_g, dx, dy, grid_size) - Img.blacklevel_16
r = get_grid(channels[0], dx, dy, grid_size) - Img.blacklevel_16
b = get_grid(channels[3], dx, dy, grid_size) - Img.blacklevel_16
"""
calculate ratios as 32 bit in order to be supported by medianBlur function
"""
cr = np.reshape(g/r, (12, 16)).astype('float32')
cb = np.reshape(g/b, (12, 16)).astype('float32')
cg = np.reshape(1/g, (12, 16)).astype('float32')
cr = np.reshape(g/r, (grid_h, grid_w)).astype('float32')
cb = np.reshape(g/b, (grid_h, grid_w)).astype('float32')
cg = np.reshape(1/g, (grid_h, grid_w)).astype('float32')
"""
median blur to remove peaks and save as float 64
"""
@ -164,7 +167,7 @@ def alsc(Cam, Img, do_alsc_colour, plot=False):
"""
note Y is plotted as -Y so plot has same axes as image
"""
X, Y = np.meshgrid(range(16), range(12))
X, Y = np.meshgrid(range(grid_w), range(grid_h))
ha.plot_surface(X, -Y, cr, cmap=cm.coolwarm, linewidth=0)
ha.set_title('ALSC Plot\nImg: {}\n\ncr'.format(Img.str))
hb = hf.add_subplot(312, projection='3d')
@ -182,15 +185,15 @@ def alsc(Cam, Img, do_alsc_colour, plot=False):
"""
only perform calculations for luminance shading
"""
g = get_16x12_grid(av_ch_g, dx, dy) - Img.blacklevel_16
cg = np.reshape(1/g, (12, 16)).astype('float32')
g = get_grid(av_ch_g, dx, dy, grid_size) - Img.blacklevel_16
cg = np.reshape(1/g, (grid_h, grid_w)).astype('float32')
cg = cv2.medianBlur(cg, 3).astype('float64')
cg = cg/np.min(cg)
if plot:
hf = plt.figure(figssize=(8, 8))
ha = hf.add_subplot(1, 1, 1, projection='3d')
X, Y = np.meashgrid(range(16), range(12))
X, Y = np.meashgrid(range(grid_w), range(grid_h))
ha.plot_surface(X, -Y, cg, cmap=cm.coolwarm, linewidth=0)
ha.set_title('ALSC Plot (Luminance only!)\nImg: {}\n\ncg').format(Img.str)
plt.show()
@ -199,21 +202,22 @@ def alsc(Cam, Img, do_alsc_colour, plot=False):
"""
Compresses channel down to a 16x12 grid
Compresses channel down to a grid of the requested size
"""
def get_16x12_grid(chan, dx, dy):
def get_grid(chan, dx, dy, grid_size):
grid_w, grid_h = grid_size
grid = []
"""
since left and bottom border will not necessarily have rectangles of
dimension dx x dy, the 32nd iteration has to be handled separately.
"""
for i in range(11):
for j in range(15):
for i in range(grid_h - 1):
for j in range(grid_w - 1):
grid.append(np.mean(chan[dy*i:dy*(1+i), dx*j:dx*(1+j)]))
grid.append(np.mean(chan[dy*i:dy*(1+i), 15*dx:]))
for j in range(15):
grid.append(np.mean(chan[11*dy:, dx*j:dx*(1+j)]))
grid.append(np.mean(chan[11*dy:, 15*dx:]))
grid.append(np.mean(chan[dy*i:dy*(1+i), (grid_w - 1)*dx:]))
for j in range(grid_w - 1):
grid.append(np.mean(chan[(grid_h - 1)*dy:, dx*j:dx*(1+j)]))
grid.append(np.mean(chan[(grid_h - 1)*dy:, (grid_w - 1)*dx:]))
"""
return as np.array, ready for further manipulation
"""
@ -223,7 +227,7 @@ def get_16x12_grid(chan, dx, dy):
"""
obtains sigmas for red and blue, effectively a measure of the 'error'
"""
def get_sigma(Cam, cal_cr_list, cal_cb_list):
def get_sigma(Cam, cal_cr_list, cal_cb_list, grid_size):
Cam.log += '\nCalculating sigmas'
"""
provided colour alsc tables were generated for two different colour
@ -241,8 +245,8 @@ def get_sigma(Cam, cal_cr_list, cal_cb_list):
sigma_rs = []
sigma_bs = []
for i in range(len(cts)-1):
sigma_rs.append(calc_sigma(cal_cr_list[i]['table'], cal_cr_list[i+1]['table']))
sigma_bs.append(calc_sigma(cal_cb_list[i]['table'], cal_cb_list[i+1]['table']))
sigma_rs.append(calc_sigma(cal_cr_list[i]['table'], cal_cr_list[i+1]['table'], grid_size))
sigma_bs.append(calc_sigma(cal_cb_list[i]['table'], cal_cb_list[i+1]['table'], grid_size))
Cam.log += '\nColour temperature interval {} - {} K'.format(cts[i], cts[i+1])
Cam.log += '\nSigma red: {}'.format(sigma_rs[-1])
Cam.log += '\nSigma blue: {}'.format(sigma_bs[-1])
@ -263,12 +267,13 @@ def get_sigma(Cam, cal_cr_list, cal_cb_list):
"""
calculate sigma from two adjacent gain tables
"""
def calc_sigma(g1, g2):
def calc_sigma(g1, g2, grid_size):
grid_w, grid_h = grid_size
"""
reshape into 16x12 matrix
"""
g1 = np.reshape(g1, (12, 16))
g2 = np.reshape(g2, (12, 16))
g1 = np.reshape(g1, (grid_h, grid_w))
g2 = np.reshape(g2, (grid_h, grid_w))
"""
apply gains to gain table
"""
@ -280,8 +285,8 @@ def calc_sigma(g1, g2):
neighbours, then append to list
"""
diffs = []
for i in range(10):
for j in range(14):
for i in range(grid_h - 2):
for j in range(grid_w - 2):
"""
note indexing is incremented by 1 since all patches on borders are
not counted