utils: rkisp1: gen-csc-table: Add support for inverting the CSC

Add a -i/--invert command line argument to invert the YCbCr encoding and
output a YCbCr to RGB matrix.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Jacopo Mondi <jacopo@jmondi.org>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
This commit is contained in:
Laurent Pinchart 2022-09-28 02:13:38 +03:00
parent 0cd715c4de
commit daec83536d

View file

@ -7,6 +7,7 @@
import argparse
import enum
import numpy as np
import sys
@ -63,9 +64,8 @@ class Quantization(enum.Enum):
LIMITED = 1
def scale_coeff(coeff, quantization, luma, precision):
"""Scale a coefficient to the output range dictated by the quantization and
the precision.
def scale_coeff(coeff, quantization, luma):
"""Scale a coefficient to the output range dictated by the quantization.
Parameters
----------
@ -75,9 +75,6 @@ def scale_coeff(coeff, quantization, luma, precision):
The quantization, either FULL or LIMITED
luma : bool
True if the coefficient corresponds to a luma value, False otherwise
precision : int
The desired precision for the scaled coefficient as a number of
fractional bits
"""
# Assume the input range is 8 bits. The output range is set by the
@ -91,7 +88,7 @@ def scale_coeff(coeff, quantization, luma, precision):
else:
out_range = 240 - 16
return coeff * out_range / in_range * (1 << precision)
return coeff * out_range / in_range
def round_array(values):
@ -150,6 +147,8 @@ def main(argv):
description='Generate color space conversion table coefficients with '
'configurable fixed-point precision.'
)
parser.add_argument('--invert', '-i', action='store_true',
help='Invert the color space conversion (YUV -> RGB)')
parser.add_argument('--precision', '-p', default='Q1.7',
help='The output fixed point precision in Q notation (sign bit excluded)')
parser.add_argument('--quantization', '-q', choices=['full', 'limited'],
@ -171,13 +170,25 @@ def main(argv):
luma = True
scaled_coeffs = []
for line in encoding:
line = [scale_coeff(coeff, quantization, luma, precision.fractional) for coeff in line]
line = [scale_coeff(coeff, quantization, luma) for coeff in line]
scaled_coeffs.append(line)
luma = False
if args.invert:
scaled_coeffs = np.linalg.inv(scaled_coeffs)
rounded_coeffs = []
for line in scaled_coeffs:
line = round_array(line)
line = [coeff * (1 << precision.fractional) for coeff in line]
# For the RGB to YUV conversion, use a rounding method that preserves
# the rounded sum of each line to avoid biases and overflow, as the sum
# of luma and chroma coefficients should be 1.0 and 0.0 respectively
# (in full range). For the YUV to RGB conversion, there is no such
# constraint, so use simple rounding.
if args.invert:
line = [round(coeff) for coeff in line]
else:
line = round_array(line)
# Convert coefficients to the number of bits selected by the precision.
# Negative values will be turned into positive integers using 2's
@ -188,7 +199,7 @@ def main(argv):
# Print the result as C code.
nbits = 1 << (precision.total - 1).bit_length()
nbytes = nbits // 4
print(f'static const u{nbits} rgb2yuv_{args.encoding}_{quantization.name.lower()}_coeffs[] = {{')
print(f'static const u{nbits} {"yuv2rgb" if args.invert else "rgb2yuv"}_{args.encoding}_{quantization.name.lower()}_coeffs[] = {{')
for line in rounded_coeffs:
line = [f'0x{coeff:0{nbytes}x}' for coeff in line]