utils: tuning: libtuning: Implement math helpers
Implement math helpers for libtuning. This includes: - Average, a wrapper class for numpy averaging functions - Gradient, a class that represents gradients, for distributing and mapping - Smoothing, a wrapper class for cv2 smoothing functions Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
parent
19dc8c28f6
commit
db99d96663
3 changed files with 120 additions and 0 deletions
21
utils/tuning/libtuning/average.py
Normal file
21
utils/tuning/libtuning/average.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
#
|
||||
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
|
||||
#
|
||||
# average.py - Wrapper for numpy averaging functions to enable duck-typing
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# @brief Wrapper for np averaging functions so that they can be duck-typed
|
||||
class Average(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def average(self, np_array):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Mean(Average):
|
||||
def average(self, np_array):
|
||||
return np.mean(np_array)
|
75
utils/tuning/libtuning/gradient.py
Normal file
75
utils/tuning/libtuning/gradient.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
#
|
||||
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
|
||||
#
|
||||
# gradient.py - Gradients that can be used to distribute or map numbers
|
||||
|
||||
import libtuning as lt
|
||||
|
||||
import math
|
||||
from numbers import Number
|
||||
|
||||
|
||||
# @brief Gradient for how to allocate pixels to sectors
|
||||
# @description There are no parameters for the gradients as the domain is the
|
||||
# number of pixels and the range is the number of sectors, and
|
||||
# there is only one curve that has a startpoint and endpoint at
|
||||
# (0, 0) and at (#pixels, #sectors). The exception is for curves
|
||||
# that *do* have multiple solutions for only two points, such as
|
||||
# gaussian, and curves of higher polynomial orders if we had them.
|
||||
#
|
||||
# \todo There will probably be a helper in the Gradient class, as I have a
|
||||
# feeling that all the other curves (besides Linear and Gaussian) can be
|
||||
# implemented in the same way.
|
||||
class Gradient(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
# @brief Distribute pixels into sectors (only in one dimension)
|
||||
# @param domain Number of pixels
|
||||
# @param sectors Number of sectors
|
||||
# @return A list of number of pixels in each sector
|
||||
def distribute(self, domain: list, sectors: list) -> list:
|
||||
raise NotImplementedError
|
||||
|
||||
# @brief Map a number on a curve
|
||||
# @param domain Domain of the curve
|
||||
# @param rang Range of the curve
|
||||
# @param x Input on the domain of the curve
|
||||
# @return y from the range of the curve
|
||||
def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Linear(Gradient):
|
||||
# @param remainder Mode of handling remainder
|
||||
def __init__(self, remainder: lt.Remainder = lt.Remainder.Float):
|
||||
self.remainder = remainder
|
||||
|
||||
def distribute(self, domain: list, sectors: list) -> list:
|
||||
size = domain / sectors
|
||||
rem = domain % sectors
|
||||
|
||||
if rem == 0:
|
||||
return [int(size)] * sectors
|
||||
|
||||
size = math.ceil(size)
|
||||
rem = domain % size
|
||||
output_sectors = [int(size)] * (sectors - 1)
|
||||
|
||||
if self.remainder == lt.Remainder.Float:
|
||||
size = domain / sectors
|
||||
output_sectors = [size] * sectors
|
||||
elif self.remainder == lt.Remainder.DistributeFront:
|
||||
output_sectors.append(int(rem))
|
||||
elif self.remainder == lt.Remainder.DistributeBack:
|
||||
output_sectors.insert(0, int(rem))
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
return output_sectors
|
||||
|
||||
def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
|
||||
m = (rang[1] - rang[0]) / (domain[1] - domain[0])
|
||||
b = rang[0] - m * domain[0]
|
||||
return m * x + b
|
24
utils/tuning/libtuning/smoothing.py
Normal file
24
utils/tuning/libtuning/smoothing.py
Normal file
|
@ -0,0 +1,24 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
#
|
||||
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
|
||||
#
|
||||
# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing
|
||||
|
||||
import cv2
|
||||
|
||||
|
||||
# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed
|
||||
class Smoothing(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def smoothing(self, src):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MedianBlur(Smoothing):
|
||||
def __init__(self, ksize):
|
||||
self.ksize = ksize
|
||||
|
||||
def smoothing(self, src):
|
||||
return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')
|
Loading…
Add table
Add a link
Reference in a new issue