utils: tuning: libtuning: Implement math helpers

Implement math helpers for libtuning. This includes:
- Average, a wrapper class for numpy averaging functions
- Gradient, a class that represents gradients, for distributing and
  mapping
- Smoothing, a wrapper class for cv2 smoothing functions

Signed-off-by: Paul Elder <paul.elder@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Paul Elder 2022-11-11 02:05:53 +09:00
parent 19dc8c28f6
commit db99d96663
3 changed files with 120 additions and 0 deletions

View file

@ -0,0 +1,21 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
#
# average.py - Wrapper for numpy averaging functions to enable duck-typing
import numpy as np
# @brief Wrapper for np averaging functions so that they can be duck-typed
class Average(object):
def __init__(self):
pass
def average(self, np_array):
raise NotImplementedError
class Mean(Average):
def average(self, np_array):
return np.mean(np_array)

View file

@ -0,0 +1,75 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
#
# gradient.py - Gradients that can be used to distribute or map numbers
import libtuning as lt
import math
from numbers import Number
# @brief Gradient for how to allocate pixels to sectors
# @description There are no parameters for the gradients as the domain is the
# number of pixels and the range is the number of sectors, and
# there is only one curve that has a startpoint and endpoint at
# (0, 0) and at (#pixels, #sectors). The exception is for curves
# that *do* have multiple solutions for only two points, such as
# gaussian, and curves of higher polynomial orders if we had them.
#
# \todo There will probably be a helper in the Gradient class, as I have a
# feeling that all the other curves (besides Linear and Gaussian) can be
# implemented in the same way.
class Gradient(object):
def __init__(self):
pass
# @brief Distribute pixels into sectors (only in one dimension)
# @param domain Number of pixels
# @param sectors Number of sectors
# @return A list of number of pixels in each sector
def distribute(self, domain: list, sectors: list) -> list:
raise NotImplementedError
# @brief Map a number on a curve
# @param domain Domain of the curve
# @param rang Range of the curve
# @param x Input on the domain of the curve
# @return y from the range of the curve
def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
raise NotImplementedError
class Linear(Gradient):
# @param remainder Mode of handling remainder
def __init__(self, remainder: lt.Remainder = lt.Remainder.Float):
self.remainder = remainder
def distribute(self, domain: list, sectors: list) -> list:
size = domain / sectors
rem = domain % sectors
if rem == 0:
return [int(size)] * sectors
size = math.ceil(size)
rem = domain % size
output_sectors = [int(size)] * (sectors - 1)
if self.remainder == lt.Remainder.Float:
size = domain / sectors
output_sectors = [size] * sectors
elif self.remainder == lt.Remainder.DistributeFront:
output_sectors.append(int(rem))
elif self.remainder == lt.Remainder.DistributeBack:
output_sectors.insert(0, int(rem))
else:
raise ValueError
return output_sectors
def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
m = (rang[1] - rang[0]) / (domain[1] - domain[0])
b = rang[0] - m * domain[0]
return m * x + b

View file

@ -0,0 +1,24 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
#
# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing
import cv2
# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed
class Smoothing(object):
def __init__(self):
pass
def smoothing(self, src):
raise NotImplementedError
class MedianBlur(Smoothing):
def __init__(self, ksize):
self.ksize = ksize
def smoothing(self, src):
return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')