libcamera: Add Transform enum to represent 2D plane transforms.
We implement 2D transforms as an enum class with 8 elements, consisting of the usual 2D plane transformations (flips, rotations etc.). The transform is made up of 3 bits, indicating whether the transform includes: a transpose, a horizontal flip (mirror) and a vertical flip. Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
This commit is contained in:
parent
d522ad2549
commit
edf19e4c72
4 changed files with 402 additions and 0 deletions
|
@ -19,6 +19,7 @@ libcamera_public_headers = files([
|
|||
'span.h',
|
||||
'stream.h',
|
||||
'timer.h',
|
||||
'transform.h',
|
||||
])
|
||||
|
||||
include_dir = join_paths(libcamera_include_dir, 'libcamera')
|
||||
|
|
78
include/libcamera/transform.h
Normal file
78
include/libcamera/transform.h
Normal file
|
@ -0,0 +1,78 @@
|
|||
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
||||
/*
|
||||
* Copyright (C) 2020, Raspberry Pi (Trading) Limited
|
||||
*
|
||||
* transform.h - 2D plane transforms
|
||||
*/
|
||||
|
||||
#ifndef __LIBCAMERA_TRANSFORM_H__
|
||||
#define __LIBCAMERA_TRANSFORM_H__
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace libcamera {
|
||||
|
||||
enum class Transform : int {
|
||||
Identity = 0,
|
||||
Rot0 = Identity,
|
||||
HFlip = 1,
|
||||
VFlip = 2,
|
||||
HVFlip = HFlip | VFlip,
|
||||
Rot180 = HVFlip,
|
||||
Transpose = 4,
|
||||
Rot270 = HFlip | Transpose,
|
||||
Rot90 = VFlip | Transpose,
|
||||
Rot180Transpose = HFlip | VFlip | Transpose
|
||||
};
|
||||
|
||||
constexpr Transform operator&(Transform t0, Transform t1)
|
||||
{
|
||||
return static_cast<Transform>(static_cast<int>(t0) & static_cast<int>(t1));
|
||||
}
|
||||
|
||||
constexpr Transform operator|(Transform t0, Transform t1)
|
||||
{
|
||||
return static_cast<Transform>(static_cast<int>(t0) | static_cast<int>(t1));
|
||||
}
|
||||
|
||||
constexpr Transform operator^(Transform t0, Transform t1)
|
||||
{
|
||||
return static_cast<Transform>(static_cast<int>(t0) ^ static_cast<int>(t1));
|
||||
}
|
||||
|
||||
constexpr Transform &operator&=(Transform &t0, Transform t1)
|
||||
{
|
||||
return t0 = t0 & t1;
|
||||
}
|
||||
|
||||
constexpr Transform &operator|=(Transform &t0, Transform t1)
|
||||
{
|
||||
return t0 = t0 | t1;
|
||||
}
|
||||
|
||||
constexpr Transform &operator^=(Transform &t0, Transform t1)
|
||||
{
|
||||
return t0 = t0 ^ t1;
|
||||
}
|
||||
|
||||
Transform operator*(Transform t0, Transform t1);
|
||||
|
||||
Transform operator-(Transform t);
|
||||
|
||||
constexpr bool operator!(Transform t)
|
||||
{
|
||||
return t == Transform::Identity;
|
||||
}
|
||||
|
||||
constexpr Transform operator~(Transform t)
|
||||
{
|
||||
return static_cast<Transform>(~static_cast<int>(t) & 7);
|
||||
}
|
||||
|
||||
Transform transformFromRotation(int angle, bool *success = nullptr);
|
||||
|
||||
const char *transformToString(Transform t);
|
||||
|
||||
} /* namespace libcamera */
|
||||
|
||||
#endif /* __LIBCAMERA_TRANSFORM_H__ */
|
|
@ -44,6 +44,7 @@ libcamera_sources = files([
|
|||
'sysfs.cpp',
|
||||
'thread.cpp',
|
||||
'timer.cpp',
|
||||
'transform.cpp',
|
||||
'utils.cpp',
|
||||
'v4l2_controls.cpp',
|
||||
'v4l2_device.cpp',
|
||||
|
|
322
src/libcamera/transform.cpp
Normal file
322
src/libcamera/transform.cpp
Normal file
|
@ -0,0 +1,322 @@
|
|||
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
||||
/*
|
||||
* Copyright (C) 2020, Raspberry Pi (Trading) Limited
|
||||
*
|
||||
* transform.cpp - 2D plane transforms.
|
||||
*/
|
||||
|
||||
#include <libcamera/transform.h>
|
||||
|
||||
/**
|
||||
* \file transform.h
|
||||
* \brief Enum to represent and manipulate 2D plane transforms
|
||||
*/
|
||||
|
||||
namespace libcamera {
|
||||
|
||||
/**
|
||||
* \enum Transform
|
||||
* \brief Enum to represent a 2D plane transform
|
||||
*
|
||||
* The Transform can take 8 distinct values, representing the usual 2D plane
|
||||
* transforms listed below. Each of these transforms can be constructed
|
||||
* out of 3 basic operations, namely a horizontal flip (mirror), a vertical
|
||||
* flip, and a transposition (about the main diagonal). The transforms are
|
||||
* encoded such that a single bit indicates the presence of each of the 3
|
||||
* basic operations:
|
||||
*
|
||||
* - bit 0 - presence of a horizontal flip
|
||||
* - bit 1 - presence of a vertical flip
|
||||
* - bit 2 - presence of a transposition.
|
||||
*
|
||||
* We regard these 3 basic operations as being applied in a specific order:
|
||||
* first the two flip operations (actually they commute, so the order between
|
||||
* them is unimportant) and finally any transpose operation.
|
||||
*
|
||||
* Functions are provided to manipulate directly the bits within the transform
|
||||
* encoding, but there are also higher-level functions to invert and compose
|
||||
* transforms. Transforms are composed according to the usual mathematical
|
||||
* convention such that the right transform is applied first, and the left
|
||||
* transform is applied second.
|
||||
*
|
||||
* Finally, we have a total of 8 distinct transformations, as follows (a
|
||||
* couple of them have additional synonyms for convenience). We illustrate each
|
||||
* with its nominal effect on a rectangle with vertices labelled A, B, C and D.
|
||||
*
|
||||
* **Identity**
|
||||
*
|
||||
* Identity transform.
|
||||
~~~
|
||||
A-B A-B
|
||||
Input image | | goes to output image | |
|
||||
C-D C-D
|
||||
~~~
|
||||
* Numeric value: 0 (no bits set).
|
||||
*
|
||||
* **Rot0**
|
||||
*
|
||||
* Synonym for `Identity` (zero degree rotation).
|
||||
*
|
||||
* **HFlip**
|
||||
*
|
||||
* Horizontal flip.
|
||||
~~~
|
||||
A-B B-A
|
||||
Input image | | goes to output image | |
|
||||
C-D D-C
|
||||
~~~
|
||||
* Numeric value: 1 (horizontal flip bit set only).
|
||||
*
|
||||
* **VFlip**
|
||||
*
|
||||
* Vertical flip.
|
||||
~~~
|
||||
A-B C-D
|
||||
Input image | | goes to output image | |
|
||||
C-D A-B
|
||||
~~~
|
||||
* Numeric value: 2 (vertical flip bit set only).
|
||||
*
|
||||
* **HVFlip**
|
||||
*
|
||||
* Horizontal and vertical flip (identical to a 180 degree rotation).
|
||||
~~~
|
||||
A-B D-C
|
||||
Input image | | goes to output image | |
|
||||
C-D B-A
|
||||
~~~
|
||||
* Numeric value: 3 (horizontal and vertical flip bits set).
|
||||
*
|
||||
* **Rot180**
|
||||
*
|
||||
* Synonym for `HVFlip` (180 degree rotation).
|
||||
*
|
||||
* **Transpose**
|
||||
*
|
||||
* Transpose (about the main diagonal).
|
||||
~~~
|
||||
A-B A-C
|
||||
Input image | | goes to output image | |
|
||||
C-D B-D
|
||||
~~~
|
||||
* Numeric value: 4 (transpose bit set only).
|
||||
*
|
||||
* **Rot270**
|
||||
*
|
||||
* Rotation by 270 degrees clockwise (90 degrees anticlockwise).
|
||||
~~~
|
||||
A-B B-D
|
||||
Input image | | goes to output image | |
|
||||
C-D A-C
|
||||
~~~
|
||||
* Numeric value: 5 (transpose and horizontal flip bits set).
|
||||
*
|
||||
* **Rot90**
|
||||
*
|
||||
* Rotation by 90 degrees clockwise (270 degrees anticlockwise).
|
||||
~~~
|
||||
A-B C-A
|
||||
Input image | | goes to output image | |
|
||||
C-D D-B
|
||||
~~~
|
||||
* Numeric value: 6 (transpose and vertical flip bits set).
|
||||
*
|
||||
* **Rot180Transpose**
|
||||
*
|
||||
* Rotation by 180 degrees followed by transpose (alternatively, transposition
|
||||
* about the "opposite diagonal").
|
||||
~~~
|
||||
A-B D-B
|
||||
Input image | | goes to output image | |
|
||||
C-D C-A
|
||||
~~~
|
||||
* Numeric value: 7 (all bits set).
|
||||
*
|
||||
* \sa https://en.wikipedia.org/wiki/Examples_of_groups#dihedral_group_of_order_8
|
||||
*
|
||||
* The set of 2D plane transforms is also known as the symmetry group of a
|
||||
* square, described in the link. Note that the group can be generated by
|
||||
* only 2 elements (the horizontal flip and a 90 degree rotation, for
|
||||
* example), however, the encoding used here makes the presence of the vertical
|
||||
* flip explicit.
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator &(Transform t0, Transform t1)
|
||||
* \brief Apply bitwise AND operator between the bits in the two transforms
|
||||
* \param[in] t0 The first transform
|
||||
* \param[in] t1 The second transform
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator |(Transform t0, Transform t1)
|
||||
* \brief Apply bitwise OR operator between the bits in the two transforms
|
||||
* \param[in] t0 The first transform
|
||||
* \param[in] t1 The second transform
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator ^(Transform t0, Transform t1)
|
||||
* \brief Apply bitwise XOR operator between the bits in the two transforms
|
||||
* \param[in] t0 The first transform
|
||||
* \param[in] t1 The second transform
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator &=(Transform &t0, Transform t1)
|
||||
* \brief Apply bitwise AND-assignment operator between the bits in the two
|
||||
* transforms
|
||||
* \param[in] t0 The first transform
|
||||
* \param[in] t1 The second transform
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator |=(Transform &t0, Transform t1)
|
||||
* \brief Apply bitwise OR-assignment operator between the bits in the two
|
||||
* transforms
|
||||
* \param[in] t0 The first transform
|
||||
* \param[in] t1 The second transform
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator ^=(Transform &t0, Transform t1)
|
||||
* \brief Apply bitwise XOR-assignment operator between the bits in the two
|
||||
* transforms
|
||||
* \param[in] t0 The first transform
|
||||
* \param[in] t1 The second transform
|
||||
*/
|
||||
|
||||
/**
|
||||
* \brief Compose two transforms together
|
||||
* \param[in] t1 The second transform
|
||||
* \param[in] t0 The first transform
|
||||
*
|
||||
* Composing transforms follows the usual mathematical convention for
|
||||
* composing functions. That is, when performing `t1 * t0`, \a t0 is applied
|
||||
* first, and then \a t1.
|
||||
* For example, `Transpose * HFlip` performs `HFlip` first and then the
|
||||
* `Transpose` yielding `Rot270`, as shown below.
|
||||
~~~
|
||||
A-B B-A B-D
|
||||
Input image | | -> HFLip -> | | -> Transpose -> | | = Rot270
|
||||
C-D D-C A-C
|
||||
~~~
|
||||
* Note that composition is generally non-commutative for Transforms,
|
||||
* and not the same as XOR-ing the underlying bit representations.
|
||||
*/
|
||||
Transform operator*(Transform t1, Transform t0)
|
||||
{
|
||||
/*
|
||||
* Reorder the operations so that we imagine doing t0's transpose
|
||||
* (if any) after t1's flips. The effect is to swap t1's hflips for
|
||||
* vflips and vice versa, after which we can just xor all the bits.
|
||||
*/
|
||||
Transform reordered = t1;
|
||||
if (!!(t0 & Transform::Transpose)) {
|
||||
reordered = t1 & Transform::Transpose;
|
||||
if (!!(t1 & Transform::HFlip))
|
||||
reordered |= Transform::VFlip;
|
||||
if (!!(t1 & Transform::VFlip))
|
||||
reordered |= Transform::HFlip;
|
||||
}
|
||||
|
||||
return reordered ^ t0;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Invert a transform
|
||||
* \param[in] t The transform to be inverted
|
||||
*
|
||||
* That is, we return the transform such that `t * (-t)` and `(-t) * t` both
|
||||
* yield the identity transform.
|
||||
*/
|
||||
Transform operator-(Transform t)
|
||||
{
|
||||
/* All are self-inverses, except for Rot270 and Rot90. */
|
||||
static const Transform inverses[] = {
|
||||
Transform::Identity,
|
||||
Transform::HFlip,
|
||||
Transform::VFlip,
|
||||
Transform::HVFlip,
|
||||
Transform::Transpose,
|
||||
Transform::Rot90,
|
||||
Transform::Rot270,
|
||||
Transform::Rot180Transpose
|
||||
};
|
||||
|
||||
return inverses[static_cast<int>(t)];
|
||||
}
|
||||
|
||||
/**
|
||||
* \fn operator!(Transform t)
|
||||
* \brief Return `true` if the transform is the `Identity`, otherwise `false`
|
||||
* \param[in] t The transform to be tested
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn operator~(Transform t)
|
||||
* \brief Return the transform with all the bits inverted individually
|
||||
* \param[in] t The transform of which the bits will be inverted
|
||||
*
|
||||
* This inverts the bits that encode the transform in a bitwise manner. Note
|
||||
* that this is not the proper inverse of transform \a t (for which use \a
|
||||
* operator-).
|
||||
*/
|
||||
|
||||
/**
|
||||
* \brief Return the transform representing a rotation of the given angle
|
||||
* clockwise
|
||||
* \param[in] angle The angle of rotation in a clockwise sense. Negative values
|
||||
* can be used to represent anticlockwise rotations
|
||||
* \param[out] success Set to `true` if the angle is a multiple of 90 degrees,
|
||||
* otherwise `false`
|
||||
* \return The transform corresponding to the rotation if \a success was set to
|
||||
* `true`, otherwise the `Identity` transform
|
||||
*/
|
||||
Transform transformFromRotation(int angle, bool *success)
|
||||
{
|
||||
angle = angle % 360;
|
||||
if (angle < 0)
|
||||
angle += 360;
|
||||
|
||||
if (success != nullptr)
|
||||
*success = true;
|
||||
|
||||
switch (angle) {
|
||||
case 0:
|
||||
return Transform::Identity;
|
||||
case 90:
|
||||
return Transform::Rot90;
|
||||
case 180:
|
||||
return Transform::Rot180;
|
||||
case 270:
|
||||
return Transform::Rot270;
|
||||
}
|
||||
|
||||
if (success != nullptr)
|
||||
*success = false;
|
||||
|
||||
return Transform::Identity;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Return a character string describing the transform
|
||||
* \param[in] t The transform to be described.
|
||||
*/
|
||||
const char *transformToString(Transform t)
|
||||
{
|
||||
static const char *strings[] = {
|
||||
"identity",
|
||||
"hflip",
|
||||
"vflip",
|
||||
"hvflip",
|
||||
"transpose",
|
||||
"rot270",
|
||||
"rot90",
|
||||
"rot180transpose"
|
||||
};
|
||||
|
||||
return strings[static_cast<int>(t)];
|
||||
}
|
||||
|
||||
} /* namespace libcamera */
|
Loading…
Add table
Add a link
Reference in a new issue