utils: libtuning: modules: alsc: Add rkisp1 LSC module
Add an LSC module for RkISP1. Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
parent
280e4acf94
commit
f715a75843
2 changed files with 113 additions and 0 deletions
|
@ -4,3 +4,4 @@
|
||||||
|
|
||||||
from libtuning.modules.lsc.lsc import LSC
|
from libtuning.modules.lsc.lsc import LSC
|
||||||
from libtuning.modules.lsc.raspberrypi import ALSCRaspberryPi
|
from libtuning.modules.lsc.raspberrypi import ALSCRaspberryPi
|
||||||
|
from libtuning.modules.lsc.rkisp1 import LSCRkISP1
|
||||||
|
|
112
utils/tuning/libtuning/modules/lsc/rkisp1.py
Normal file
112
utils/tuning/libtuning/modules/lsc/rkisp1.py
Normal file
|
@ -0,0 +1,112 @@
|
||||||
|
# SPDX-License-Identifier: BSD-2-Clause
|
||||||
|
#
|
||||||
|
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||||
|
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
|
||||||
|
#
|
||||||
|
# rkisp1.py - LSC module for tuning rkisp1
|
||||||
|
|
||||||
|
from .lsc import LSC
|
||||||
|
|
||||||
|
import libtuning as lt
|
||||||
|
import libtuning.utils as utils
|
||||||
|
|
||||||
|
from numbers import Number
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class LSCRkISP1(LSC):
|
||||||
|
hr_name = 'LSC (RkISP1)'
|
||||||
|
out_name = 'LensShadingCorrection'
|
||||||
|
# \todo Not sure if this is useful. Probably will remove later.
|
||||||
|
compatible = ['rkisp1']
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
|
# We don't actually need anything from the config file
|
||||||
|
def validate_config(self, config: dict) -> bool:
|
||||||
|
return True
|
||||||
|
|
||||||
|
# @return Image color temperature, flattened array of red calibration table
|
||||||
|
# (containing {sector size} elements), flattened array of blue
|
||||||
|
# calibration table, flattened array of (red's) green calibration
|
||||||
|
# table, flattened array of (blue's) green calibration table
|
||||||
|
|
||||||
|
def _do_single_lsc(self, image: lt.Image):
|
||||||
|
cgr, gr = self._lsc_single_channel(image.channels[lt.Color.GR], image)
|
||||||
|
cgb, gb = self._lsc_single_channel(image.channels[lt.Color.GB], image)
|
||||||
|
|
||||||
|
# \todo Should these ratio against the average of both greens or just
|
||||||
|
# each green like we've done here?
|
||||||
|
cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, gr)
|
||||||
|
cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, gb)
|
||||||
|
|
||||||
|
return image.color, cr.flatten(), cb.flatten(), cgr.flatten(), cgb.flatten()
|
||||||
|
|
||||||
|
# @return List of dictionaries of color temperature, red table, red's green
|
||||||
|
# table, blue's green table, and blue table
|
||||||
|
|
||||||
|
def _do_all_lsc(self, images: list) -> list:
|
||||||
|
output_list = []
|
||||||
|
output_map_func = lt.gradient.Linear().map
|
||||||
|
|
||||||
|
# List of colour temperatures
|
||||||
|
list_col = []
|
||||||
|
# Associated calibration tables
|
||||||
|
list_cr = []
|
||||||
|
list_cb = []
|
||||||
|
list_cgr = []
|
||||||
|
list_cgb = []
|
||||||
|
for image in self._enumerate_lsc_images(images):
|
||||||
|
col, cr, cb, cgr, cgb = self._do_single_lsc(image)
|
||||||
|
list_col.append(col)
|
||||||
|
list_cr.append(cr)
|
||||||
|
list_cb.append(cb)
|
||||||
|
list_cgr.append(cgr)
|
||||||
|
list_cgb.append(cgb)
|
||||||
|
|
||||||
|
# Convert to numpy array for data manipulation
|
||||||
|
list_col = np.array(list_col)
|
||||||
|
list_cr = np.array(list_cr)
|
||||||
|
list_cb = np.array(list_cb)
|
||||||
|
list_cgr = np.array(list_cgr)
|
||||||
|
list_cgb = np.array(list_cgb)
|
||||||
|
|
||||||
|
for color_temperature in sorted(set(list_col)):
|
||||||
|
# Average tables for the same colour temperature
|
||||||
|
indices = np.where(list_col == color_temperature)
|
||||||
|
color_temperature = int(color_temperature)
|
||||||
|
|
||||||
|
tables = []
|
||||||
|
for lis in [list_cr, list_cgr, list_cgb, list_cb]:
|
||||||
|
table = np.mean(lis[indices], axis=0)
|
||||||
|
table = output_map_func((1, 3.999), (1024, 4095), table)
|
||||||
|
table = np.round(table).astype('int32').tolist()
|
||||||
|
tables.append(table)
|
||||||
|
|
||||||
|
entry = {
|
||||||
|
'ct': color_temperature,
|
||||||
|
'r': tables[0],
|
||||||
|
'gr': tables[1],
|
||||||
|
'gb': tables[2],
|
||||||
|
'b': tables[3],
|
||||||
|
}
|
||||||
|
|
||||||
|
output_list.append(entry)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
def process(self, config: dict, images: list, outputs: dict) -> dict:
|
||||||
|
output = {}
|
||||||
|
|
||||||
|
# \todo This should actually come from self.sector_{x,y}_gradient
|
||||||
|
size_gradient = lt.gradient.Linear(lt.Remainder.Float)
|
||||||
|
output['x-size'] = size_gradient.distribute(0.5, 8)
|
||||||
|
output['y-size'] = size_gradient.distribute(0.5, 8)
|
||||||
|
|
||||||
|
output['sets'] = self._do_all_lsc(images)
|
||||||
|
|
||||||
|
# \todo Validate images from greyscale camera and force grescale mode
|
||||||
|
# \todo Debug functionality
|
||||||
|
|
||||||
|
return output
|
Loading…
Add table
Add a link
Reference in a new issue