ipa: rkisp1: Introduce AGC

Now that we have IPAContext and Algorithm, we can implement a simple AGC
based on the IPU3 one. It is very similar, except that there is no
histogram used for an inter quantile mean. The RkISP1 is returning a 5x5
array (for V10) of luminance means. Estimating the relative luminance is
thus a simple mean of all the blocks already calculated by the ISP.

Signed-off-by: Jean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
This commit is contained in:
Jean-Michel Hautbois 2021-11-19 07:56:12 +01:00
parent af7f70b69a
commit fea85f84c2
6 changed files with 443 additions and 44 deletions

View file

@ -0,0 +1,285 @@
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* agc.cpp - AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/ipa/core_ipa_interface.h>
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::rkisp1::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*/
LOG_DEFINE_CATEGORY(RkISP1Agc)
/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kNumStartupFrames = 10;
/*
* Relative luminance target.
*
* It's a number that's chosen so that, when the camera points at a grey
* target, the resulting image brightness is considered right.
*
* \todo Why is the value different between IPU3 and RkISP1 ?
*/
static constexpr double kRelativeLuminanceTarget = 0.4;
Agc::Agc()
: frameCount_(0), filteredExposure_(0s)
{
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context,
[[maybe_unused]] const IPACameraSensorInfo &configInfo)
{
/* Configure the default exposure and gain. */
context.frameContext.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
context.frameContext.agc.exposure = 10ms / context.configuration.sensor.lineDuration;
/*
* According to the RkISP1 documentation:
* - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries,
* - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries.
*/
if (context.configuration.hw.revision < RKISP1_V12)
numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
else
numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
/* \todo Use actual frame index by populating it in the frameContext. */
frameCount_ = 0;
return 0;
}
/**
* \brief Apply a filter on the exposure value to limit the speed of changes
* \param[in] exposureValue The target exposure from the AGC algorithm
*
* The speed of the filter is adaptive, and will produce the target quicker
* during startup, or when the target exposure is within 20% of the most recent
* filter output.
*
* \return The filtered exposure
*/
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
{
double speed = 0.2;
/* Adapt instantly if we are in startup phase. */
if (frameCount_ < kNumStartupFrames)
speed = 1.0;
/*
* If we are close to the desired result, go faster to avoid making
* multiple micro-adjustments.
* \todo Make this customisable?
*/
if (filteredExposure_ < 1.2 * exposureValue &&
filteredExposure_ > 0.8 * exposureValue)
speed = sqrt(speed);
filteredExposure_ = speed * exposureValue +
filteredExposure_ * (1.0 - speed);
LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;
return filteredExposure_;
}
/**
* \brief Estimate the new exposure and gain values
* \param[inout] frameContext The shared IPA frame Context
* \param[in] yGain The gain calculated on the current brightness level
*/
void Agc::computeExposure(IPAContext &context, double yGain)
{
IPASessionConfiguration &configuration = context.configuration;
IPAFrameContext &frameContext = context.frameContext;
/* Get the effective exposure and gain applied on the sensor. */
uint32_t exposure = frameContext.sensor.exposure;
double analogueGain = frameContext.sensor.gain;
utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed;
utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed,
kMaxShutterSpeed);
double minAnalogueGain = std::max(configuration.agc.minAnalogueGain,
kMinAnalogueGain);
double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain,
kMaxAnalogueGain);
/* Consider within 1% of the target as correctly exposed. */
if (std::abs(yGain - 1.0) < 0.01)
return;
/* extracted from Rpi::Agc::computeTargetExposure. */
/* Calculate the shutter time in seconds. */
utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
/*
* Update the exposure value for the next computation using the values
* of exposure and gain really used by the sensor.
*/
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
<< " Shutter speed " << currentShutter
<< " Gain " << analogueGain
<< " Needed ev gain " << yGain;
/*
* Calculate the current exposure value for the scene as the latest
* exposure value applied multiplied by the new estimated gain.
*/
utils::Duration exposureValue = effectiveExposureValue * yGain;
/* Clamp the exposure value to the min and max authorized. */
utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
exposureValue = std::min(exposureValue, maxTotalExposure);
LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
<< ", maximum is " << maxTotalExposure;
/*
* Divide the exposure value as new exposure and gain values.
* \todo estimate if we need to desaturate
*/
exposureValue = filterExposure(exposureValue);
/*
* Push the shutter time up to the maximum first, and only then
* increase the gain.
*/
utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
minShutterSpeed, maxShutterSpeed);
double stepGain = std::clamp(exposureValue / shutterTime,
minAnalogueGain, maxAnalogueGain);
LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
<< shutterTime << " and "
<< stepGain;
/* Update the estimated exposure and gain. */
frameContext.agc.exposure = shutterTime / configuration.sensor.lineDuration;
frameContext.agc.gain = stepGain;
}
/**
* \brief Estimate the relative luminance of the frame with a given gain
* \param[in] ae The RkISP1 statistics and ISP results
* \param[in] gain The gain to apply to the frame
*
* This function estimates the average relative luminance of the frame that
* would be output by the sensor if an additional \a gain was applied.
*
* The estimation is based on the AE statistics for the current frame. Y
* averages for all cells are first multiplied by the gain, and then saturated
* to approximate the sensor behaviour at high brightness values. The
* approximation is quite rough, as it doesn't take into account non-linearities
* when approaching saturation. In this case, saturating after the conversion to
* YUV doesn't take into account the fact that the R, G and B components
* contribute differently to the relative luminance.
*
* \todo Have a dedicated YUV algorithm ?
*
* The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
* theoretical perfect reflector of 100% reference white.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Relative_luminance
*
* \return The relative luminance
*/
double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae,
double gain)
{
double ySum = 0.0;
/* Sum the averages, saturated to 255. */
for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++)
ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0);
/* \todo Weight with the AWB gains */
return ySum / numCells_ / 255;
}
/**
* \brief Process RkISP1 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] stats The RKISP1 statistics and ISP results
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context, const rkisp1_stat_buffer *stats)
{
const rkisp1_cif_isp_stat *params = &stats->params;
ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
const rkisp1_cif_isp_ae_stat *ae = &params->ae;
/*
* Estimate the gain needed to achieve a relative luminance target. To
* account for non-linearity caused by saturation, the value needs to be
* estimated in an iterative process, as multiplying by a gain will not
* increase the relative luminance by the same factor if some image
* regions are saturated.
*/
double yGain = 1.0;
double yTarget = kRelativeLuminanceTarget;
for (unsigned int i = 0; i < 8; i++) {
double yValue = estimateLuminance(ae, yGain);
double extra_gain = std::min(10.0, yTarget / (yValue + .001));
yGain *= extra_gain;
LOG(RkISP1Agc, Debug) << "Y value: " << yValue
<< ", Y target: " << yTarget
<< ", gives gain " << yGain;
if (extra_gain < 1.01)
break;
}
computeExposure(context, yGain);
frameCount_++;
}
} /* namespace ipa::rkisp1::algorithms */
} /* namespace libcamera */

View file

@ -0,0 +1,46 @@
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* agc.h - RkISP1 AGC/AEC mean-based control algorithm
*/
#pragma once
#include <linux/rkisp1-config.h>
#include <libcamera/base/utils.h>
#include <libcamera/geometry.h>
#include "algorithm.h"
namespace libcamera {
struct IPACameraSensorInfo;
namespace ipa::rkisp1::algorithms {
class Agc : public Algorithm
{
public:
Agc();
~Agc() = default;
int configure(IPAContext &context, const IPACameraSensorInfo &configInfo) override;
void process(IPAContext &context, const rkisp1_stat_buffer *stats) override;
private:
void computeExposure(IPAContext &Context, double yGain);
utils::Duration filterExposure(utils::Duration exposureValue);
double estimateLuminance(const rkisp1_cif_isp_ae_stat *ae, double gain);
uint64_t frameCount_;
uint32_t numCells_;
utils::Duration filteredExposure_;
};
} /* namespace ipa::rkisp1::algorithms */
} /* namespace libcamera */

View file

@ -1,4 +1,5 @@
# SPDX-License-Identifier: CC0-1.0 # SPDX-License-Identifier: CC0-1.0
rkisp1_ipa_algorithms = files([ rkisp1_ipa_algorithms = files([
'agc.cpp',
]) ])

View file

@ -56,6 +56,21 @@ namespace libcamera::ipa::rkisp1 {
*/ */
/** /**
* \var IPASessionConfiguration::agc
* \brief AGC parameters configuration of the IPA
*
* \var IPASessionConfiguration::agc.minShutterSpeed
* \brief Minimum shutter speed supported with the configured sensor
*
* \var IPASessionConfiguration::agc.maxShutterSpeed
* \brief Maximum shutter speed supported with the configured sensor
*
* \var IPASessionConfiguration::agc.minAnalogueGain
* \brief Minimum analogue gain supported with the configured sensor
*
* \var IPASessionConfiguration::agc.maxAnalogueGain
* \brief Maximum analogue gain supported with the configured sensor
*
* \var IPASessionConfiguration::hw * \var IPASessionConfiguration::hw
* \brief RkISP1-specific hardware information * \brief RkISP1-specific hardware information
* *
@ -63,4 +78,39 @@ namespace libcamera::ipa::rkisp1 {
* \brief Hardware revision of the ISP * \brief Hardware revision of the ISP
*/ */
/**
* \var IPASessionConfiguration::sensor
* \brief Sensor-specific configuration of the IPA
*
* \var IPASessionConfiguration::sensor.lineDuration
* \brief Line duration in microseconds
*/
/**
* \var IPAFrameContext::agc
* \brief Context for the Automatic Gain Control algorithm
*
* The exposure and gain determined are expected to be applied to the sensor
* at the earliest opportunity.
*
* \var IPAFrameContext::agc.exposure
* \brief Exposure time expressed as a number of lines
*
* \var IPAFrameContext::agc.gain
* \brief Analogue gain multiplier
*
* The gain should be adapted to the sensor specific gain code before applying.
*/
/**
* \var IPAFrameContext::sensor
* \brief Effective sensor values
*
* \var IPAFrameContext::sensor.exposure
* \brief Exposure time expressed as a number of lines
*
* \var IPAFrameContext::sensor.gain
* \brief Analogue gain multiplier
*/
} /* namespace libcamera::ipa::rkisp1 */ } /* namespace libcamera::ipa::rkisp1 */

View file

@ -10,17 +10,39 @@
#include <linux/rkisp1-config.h> #include <linux/rkisp1-config.h>
#include <libcamera/base/utils.h>
namespace libcamera { namespace libcamera {
namespace ipa::rkisp1 { namespace ipa::rkisp1 {
struct IPASessionConfiguration { struct IPASessionConfiguration {
struct {
utils::Duration minShutterSpeed;
utils::Duration maxShutterSpeed;
double minAnalogueGain;
double maxAnalogueGain;
} agc;
struct {
utils::Duration lineDuration;
} sensor;
struct { struct {
rkisp1_cif_isp_version revision; rkisp1_cif_isp_version revision;
} hw; } hw;
}; };
struct IPAFrameContext { struct IPAFrameContext {
struct {
uint32_t exposure;
double gain;
} agc;
struct {
uint32_t exposure;
double gain;
} sensor;
}; };
struct IPAContext { struct IPAContext {

View file

@ -25,6 +25,7 @@
#include <libcamera/internal/mapped_framebuffer.h> #include <libcamera/internal/mapped_framebuffer.h>
#include "algorithms/agc.h"
#include "algorithms/algorithm.h" #include "algorithms/algorithm.h"
#include "libipa/camera_sensor_helper.h" #include "libipa/camera_sensor_helper.h"
@ -34,6 +35,8 @@ namespace libcamera {
LOG_DEFINE_CATEGORY(IPARkISP1) LOG_DEFINE_CATEGORY(IPARkISP1)
using namespace std::literals::chrono_literals;
namespace ipa::rkisp1 { namespace ipa::rkisp1 {
class IPARkISP1 : public IPARkISP1Interface class IPARkISP1 : public IPARkISP1Interface
@ -66,16 +69,13 @@ private:
/* Camera sensor controls. */ /* Camera sensor controls. */
bool autoExposure_; bool autoExposure_;
uint32_t exposure_;
uint32_t minExposure_; uint32_t minExposure_;
uint32_t maxExposure_; uint32_t maxExposure_;
uint32_t gain_;
uint32_t minGain_; uint32_t minGain_;
uint32_t maxGain_; uint32_t maxGain_;
/* revision-specific data */ /* revision-specific data */
rkisp1_cif_isp_version hwRevision_; rkisp1_cif_isp_version hwRevision_;
unsigned int hwAeMeanMax_;
unsigned int hwHistBinNMax_; unsigned int hwHistBinNMax_;
unsigned int hwGammaOutMaxSamples_; unsigned int hwGammaOutMaxSamples_;
unsigned int hwHistogramWeightGridsSize_; unsigned int hwHistogramWeightGridsSize_;
@ -95,13 +95,11 @@ int IPARkISP1::init(const IPASettings &settings, unsigned int hwRevision)
/* \todo Add support for other revisions */ /* \todo Add support for other revisions */
switch (hwRevision) { switch (hwRevision) {
case RKISP1_V10: case RKISP1_V10:
hwAeMeanMax_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
hwHistBinNMax_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10; hwHistBinNMax_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10;
hwGammaOutMaxSamples_ = RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES_V10; hwGammaOutMaxSamples_ = RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES_V10;
hwHistogramWeightGridsSize_ = RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE_V10; hwHistogramWeightGridsSize_ = RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE_V10;
break; break;
case RKISP1_V12: case RKISP1_V12:
hwAeMeanMax_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
hwHistBinNMax_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12; hwHistBinNMax_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12;
hwGammaOutMaxSamples_ = RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES_V12; hwGammaOutMaxSamples_ = RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES_V12;
hwHistogramWeightGridsSize_ = RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE_V12; hwHistogramWeightGridsSize_ = RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE_V12;
@ -126,6 +124,9 @@ int IPARkISP1::init(const IPASettings &settings, unsigned int hwRevision)
return -ENODEV; return -ENODEV;
} }
/* Construct our Algorithms */
algorithms_.push_back(std::make_unique<algorithms::Agc>());
return 0; return 0;
} }
@ -167,11 +168,9 @@ int IPARkISP1::configure([[maybe_unused]] const IPACameraSensorInfo &info,
minExposure_ = itExp->second.min().get<int32_t>(); minExposure_ = itExp->second.min().get<int32_t>();
maxExposure_ = itExp->second.max().get<int32_t>(); maxExposure_ = itExp->second.max().get<int32_t>();
exposure_ = minExposure_;
minGain_ = itGain->second.min().get<int32_t>(); minGain_ = itGain->second.min().get<int32_t>();
maxGain_ = itGain->second.max().get<int32_t>(); maxGain_ = itGain->second.max().get<int32_t>();
gain_ = minGain_;
LOG(IPARkISP1, Info) LOG(IPARkISP1, Info)
<< "Exposure: " << minExposure_ << "-" << maxExposure_ << "Exposure: " << minExposure_ << "-" << maxExposure_
@ -183,6 +182,26 @@ int IPARkISP1::configure([[maybe_unused]] const IPACameraSensorInfo &info,
/* Set the hardware revision for the algorithms. */ /* Set the hardware revision for the algorithms. */
context_.configuration.hw.revision = hwRevision_; context_.configuration.hw.revision = hwRevision_;
context_.configuration.sensor.lineDuration = info.lineLength * 1.0s / info.pixelRate;
/*
* When the AGC computes the new exposure values for a frame, it needs
* to know the limits for shutter speed and analogue gain.
* As it depends on the sensor, update it with the controls.
*
* \todo take VBLANK into account for maximum shutter speed
*/
context_.configuration.agc.minShutterSpeed = minExposure_ * context_.configuration.sensor.lineDuration;
context_.configuration.agc.maxShutterSpeed = maxExposure_ * context_.configuration.sensor.lineDuration;
context_.configuration.agc.minAnalogueGain = camHelper_->gain(minGain_);
context_.configuration.agc.maxAnalogueGain = camHelper_->gain(maxGain_);
for (auto const &algo : algorithms_) {
int ret = algo->configure(context_, info);
if (ret)
return ret;
}
return 0; return 0;
} }
@ -227,6 +246,11 @@ void IPARkISP1::processEvent(const RkISP1Event &event)
reinterpret_cast<rkisp1_stat_buffer *>( reinterpret_cast<rkisp1_stat_buffer *>(
mappedBuffers_.at(bufferId).planes()[0].data()); mappedBuffers_.at(bufferId).planes()[0].data());
context_.frameContext.sensor.exposure =
event.sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
context_.frameContext.sensor.gain =
camHelper_->gain(event.sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>());
updateStatistics(frame, stats); updateStatistics(frame, stats);
break; break;
} }
@ -271,44 +295,12 @@ void IPARkISP1::queueRequest(unsigned int frame, rkisp1_params_cfg *params,
void IPARkISP1::updateStatistics(unsigned int frame, void IPARkISP1::updateStatistics(unsigned int frame,
const rkisp1_stat_buffer *stats) const rkisp1_stat_buffer *stats)
{ {
const rkisp1_cif_isp_stat *params = &stats->params;
unsigned int aeState = 0; unsigned int aeState = 0;
if (stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP) { for (auto const &algo : algorithms_)
const rkisp1_cif_isp_ae_stat *ae = &params->ae; algo->process(context_, stats);
const unsigned int target = 60; setControls(frame);
unsigned int value = 0;
unsigned int num = 0;
for (unsigned int i = 0; i < hwAeMeanMax_; i++) {
if (ae->exp_mean[i] <= 15)
continue;
value += ae->exp_mean[i];
num++;
}
value /= num;
double factor = (double)target / value;
if (frame % 3 == 0) {
double exposure;
exposure = factor * exposure_ * gain_ / minGain_;
exposure_ = std::clamp<uint64_t>((uint64_t)exposure,
minExposure_,
maxExposure_);
exposure = exposure / exposure_ * minGain_;
gain_ = std::clamp<uint64_t>((uint64_t)exposure,
minGain_, maxGain_);
setControls(frame + 1);
}
aeState = fabs(factor - 1.0f) < 0.05f ? 2 : 1;
}
metadataReady(frame, aeState); metadataReady(frame, aeState);
} }
@ -318,9 +310,12 @@ void IPARkISP1::setControls(unsigned int frame)
RkISP1Action op; RkISP1Action op;
op.op = ActionV4L2Set; op.op = ActionV4L2Set;
uint32_t exposure = context_.frameContext.agc.exposure;
uint32_t gain = camHelper_->gainCode(context_.frameContext.agc.gain);
ControlList ctrls(ctrls_); ControlList ctrls(ctrls_);
ctrls.set(V4L2_CID_EXPOSURE, static_cast<int32_t>(exposure_)); ctrls.set(V4L2_CID_EXPOSURE, static_cast<int32_t>(exposure));
ctrls.set(V4L2_CID_ANALOGUE_GAIN, static_cast<int32_t>(gain_)); ctrls.set(V4L2_CID_ANALOGUE_GAIN, static_cast<int32_t>(gain));
op.sensorControls = ctrls; op.sensorControls = ctrls;
queueFrameAction.emit(frame, op); queueFrameAction.emit(frame, op);