In ctt_ccm.py the logging functionality of the Cam object was used. As we don't want to port over that class, it needs to be replaced anyways. While at it, also replace the eprint function as it doesn't add any value over the logging framework and misses the ability for easy log formatting. For nice output formatting add the coloredlogs library. Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com> Reviewed-by: Paul Elder <paul.elder@ideasonboard.com> Reviewed-by: Daniel Scally <dan.scally@ideasonboard.com>
248 lines
8.8 KiB
Python
248 lines
8.8 KiB
Python
# SPDX-License-Identifier: BSD-2-Clause
|
|
#
|
|
# Copyright (C) 2019, Raspberry Pi Ltd
|
|
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
|
|
#
|
|
# ALSC module for tuning Raspberry Pi
|
|
|
|
from .lsc import LSC
|
|
|
|
import libtuning as lt
|
|
import libtuning.utils as utils
|
|
|
|
from numbers import Number
|
|
import numpy as np
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class ALSCRaspberryPi(LSC):
|
|
# Override the type name so that the parser can match the entry in the
|
|
# config file.
|
|
type = 'alsc'
|
|
hr_name = 'ALSC (Raspberry Pi)'
|
|
out_name = 'rpi.alsc'
|
|
compatible = ['raspberrypi']
|
|
|
|
def __init__(self, *,
|
|
do_color: lt.Param,
|
|
luminance_strength: lt.Param,
|
|
**kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.do_color = do_color
|
|
self.luminance_strength = luminance_strength
|
|
|
|
self.output_range = (0, 3.999)
|
|
|
|
def validate_config(self, config: dict) -> bool:
|
|
if self not in config:
|
|
logger.error(f'{self.type} not in config')
|
|
return False
|
|
|
|
valid = True
|
|
|
|
conf = config[self]
|
|
|
|
lum_key = self.luminance_strength.name
|
|
color_key = self.do_color.name
|
|
|
|
if lum_key not in conf and self.luminance_strength.required:
|
|
logger.error(f'{lum_key} is not in config')
|
|
valid = False
|
|
|
|
if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1):
|
|
logger.warning(f'{lum_key} is not in range [0, 1]; defaulting to 0.5')
|
|
|
|
if color_key not in conf and self.do_color.required:
|
|
logger.error(f'{color_key} is not in config')
|
|
valid = False
|
|
|
|
return valid
|
|
|
|
# @return Image color temperature, flattened array of red calibration table
|
|
# (containing {sector size} elements), flattened array of blue
|
|
# calibration table, flattened array of green calibration
|
|
# table
|
|
|
|
def _do_single_alsc(self, image: lt.Image, do_alsc_colour: bool):
|
|
average_green = np.mean((image.channels[lt.Color.GR:lt.Color.GB + 1]), axis=0)
|
|
|
|
cg, g = self._lsc_single_channel(average_green, image)
|
|
|
|
if not do_alsc_colour:
|
|
return image.color, None, None, cg.flatten()
|
|
|
|
cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, g)
|
|
cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, g)
|
|
|
|
# \todo implement debug
|
|
|
|
return image.color, cr.flatten(), cb.flatten(), cg.flatten()
|
|
|
|
# @return Red shading table, Blue shading table, Green shading table,
|
|
# number of images processed
|
|
|
|
def _do_all_alsc(self, images: list, do_alsc_colour: bool, general_conf: dict) -> (list, list, list, Number, int):
|
|
# List of colour temperatures
|
|
list_col = []
|
|
# Associated calibration tables
|
|
list_cr = []
|
|
list_cb = []
|
|
list_cg = []
|
|
count = 0
|
|
for image in self._enumerate_lsc_images(images):
|
|
col, cr, cb, cg = self._do_single_alsc(image, do_alsc_colour)
|
|
list_col.append(col)
|
|
list_cr.append(cr)
|
|
list_cb.append(cb)
|
|
list_cg.append(cg)
|
|
count += 1
|
|
|
|
# Convert to numpy array for data manipulation
|
|
list_col = np.array(list_col)
|
|
list_cr = np.array(list_cr)
|
|
list_cb = np.array(list_cb)
|
|
list_cg = np.array(list_cg)
|
|
|
|
cal_cr_list = []
|
|
cal_cb_list = []
|
|
|
|
# Note: Calculation of average corners and center of the shading tables
|
|
# has been removed (which ctt had, as it was unused)
|
|
|
|
# Average all values for luminance shading and return one table for all temperatures
|
|
lum_lut = list(np.round(np.mean(list_cg, axis=0), 3))
|
|
|
|
if not do_alsc_colour:
|
|
return None, None, lum_lut, count
|
|
|
|
for ct in sorted(set(list_col)):
|
|
# Average tables for the same colour temperature
|
|
indices = np.where(list_col == ct)
|
|
ct = int(ct)
|
|
t_r = np.round(np.mean(list_cr[indices], axis=0), 3)
|
|
t_b = np.round(np.mean(list_cb[indices], axis=0), 3)
|
|
|
|
cr_dict = {
|
|
'ct': ct,
|
|
'table': list(t_r)
|
|
}
|
|
cb_dict = {
|
|
'ct': ct,
|
|
'table': list(t_b)
|
|
}
|
|
cal_cr_list.append(cr_dict)
|
|
cal_cb_list.append(cb_dict)
|
|
|
|
return cal_cr_list, cal_cb_list, lum_lut, count
|
|
|
|
# @brief Calculate sigma from two adjacent gain tables
|
|
def _calcSigma(self, g1, g2):
|
|
g1 = np.reshape(g1, self.sector_shape[::-1])
|
|
g2 = np.reshape(g2, self.sector_shape[::-1])
|
|
|
|
# Apply gains to gain table
|
|
gg = g1 / g2
|
|
if np.mean(gg) < 1:
|
|
gg = 1 / gg
|
|
|
|
# For each internal patch, compute average difference between it and
|
|
# its 4 neighbours, then append to list
|
|
diffs = []
|
|
for i in range(self.sector_shape[1] - 2):
|
|
for j in range(self.sector_shape[0] - 2):
|
|
# Indexing is incremented by 1 since all patches on borders are
|
|
# not counted
|
|
diff = np.abs(gg[i + 1][j + 1] - gg[i][j + 1])
|
|
diff += np.abs(gg[i + 1][j + 1] - gg[i + 2][j + 1])
|
|
diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j])
|
|
diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j + 2])
|
|
diffs.append(diff / 4)
|
|
|
|
mean_diff = np.mean(diffs)
|
|
return np.round(mean_diff, 5)
|
|
|
|
# @brief Obtains sigmas for red and blue, effectively a measure of the
|
|
# 'error'
|
|
def _get_sigma(self, cal_cr_list, cal_cb_list):
|
|
# Provided colour alsc tables were generated for two different colour
|
|
# temperatures sigma is calculated by comparing two calibration temperatures
|
|
# adjacent in colour space
|
|
|
|
color_temps = [cal['ct'] for cal in cal_cr_list]
|
|
|
|
# Calculate sigmas for each adjacent color_temps and return worst one
|
|
sigma_rs = []
|
|
sigma_bs = []
|
|
for i in range(len(color_temps) - 1):
|
|
sigma_rs.append(self._calcSigma(cal_cr_list[i]['table'], cal_cr_list[i + 1]['table']))
|
|
sigma_bs.append(self._calcSigma(cal_cb_list[i]['table'], cal_cb_list[i + 1]['table']))
|
|
|
|
# Return maximum sigmas, not necessarily from the same colour
|
|
# temperature interval
|
|
sigma_r = max(sigma_rs) if sigma_rs else 0.005
|
|
sigma_b = max(sigma_bs) if sigma_bs else 0.005
|
|
|
|
return sigma_r, sigma_b
|
|
|
|
def process(self, config: dict, images: list, outputs: dict) -> dict:
|
|
output = {
|
|
'omega': 1.3,
|
|
'n_iter': 100,
|
|
'luminance_strength': 0.7
|
|
}
|
|
|
|
conf = config[self]
|
|
general_conf = config['general']
|
|
|
|
do_alsc_colour = self.do_color.get_value(conf)
|
|
|
|
# \todo I have no idea where this input parameter is used
|
|
luminance_strength = self.luminance_strength.get_value(conf)
|
|
if luminance_strength < 0 or luminance_strength > 1:
|
|
luminance_strength = 0.5
|
|
|
|
output['luminance_strength'] = luminance_strength
|
|
|
|
# \todo Validate images from greyscale camera and force grescale mode
|
|
# \todo Debug functionality
|
|
|
|
alsc_out = self._do_all_alsc(images, do_alsc_colour, general_conf)
|
|
# \todo Handle the second green lut
|
|
cal_cr_list, cal_cb_list, luminance_lut, count = alsc_out
|
|
|
|
if not do_alsc_colour:
|
|
output['luminance_lut'] = luminance_lut
|
|
output['n_iter'] = 0
|
|
return output
|
|
|
|
output['calibrations_Cr'] = cal_cr_list
|
|
output['calibrations_Cb'] = cal_cb_list
|
|
output['luminance_lut'] = luminance_lut
|
|
|
|
# The sigmas determine the strength of the adaptive algorithm, that
|
|
# cleans up any lens shading that has slipped through the alsc. These
|
|
# are determined by measuring a 'worst-case' difference between two
|
|
# alsc tables that are adjacent in colour space. If, however, only one
|
|
# colour temperature has been provided, then this difference can not be
|
|
# computed as only one table is available.
|
|
# To determine the sigmas you would have to estimate the error of an
|
|
# alsc table with only the image it was taken on as a check. To avoid
|
|
# circularity, dfault exaggerated sigmas are used, which can result in
|
|
# too much alsc and is therefore not advised.
|
|
# In general, just take another alsc picture at another colour
|
|
# temperature!
|
|
|
|
if count == 1:
|
|
output['sigma'] = 0.005
|
|
output['sigma_Cb'] = 0.005
|
|
logger.warning('Only one alsc calibration found; standard sigmas used for adaptive algorithm.')
|
|
return output
|
|
|
|
# Obtain worst-case scenario residual sigmas
|
|
sigma_r, sigma_b = self._get_sigma(cal_cr_list, cal_cb_list)
|
|
output['sigma'] = np.round(sigma_r, 5)
|
|
output['sigma_Cb'] = np.round(sigma_b, 5)
|
|
|
|
return output
|