Working on SoftISP
Find a file
Jacopo Mondi 13d85e632a ipa: rkisp1: Fail hard on empty CameraSensorInfo
The RkISP1 pipeline and IPA module allows for the CameraSensorInfo to be
empty, probably to accommodate some sensor used in a test platform that
does not provide the mandatory libcamera requirements.

As the \todo item in the IPA reports, there is a possibility that the
received CameraSensorInfo is empty and it should be checked before
accessing it, but currently such requirement is not enforced in the
code.

This allows to assume all the test platforms in use have now
successfully moved their sensor driver to comply with the minimum
requirements and provide a populated CameraSensorInfo to the IPA.

As the safety check is not enforced, and as we don't want to allow
faulty sensors to send empty CameraSensorInfo to the IPA, remove the
\todo item in the IPA and fail hard in the pipeline handler if the
sensor does not comply with libcamera requirements.

Signed-off-by: Jacopo Mondi <jacopo@jmondi.org>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
2022-11-23 18:44:36 +01:00
.reuse Documentation: theme: Specify license of search.png 2022-09-30 21:51:14 +03:00
Documentation libcamera: Move IPA sensor controls validation to CameraSensor 2022-11-23 18:44:35 +01:00
include ipa: rkisp1: Use IPAConfig in IPA::configure() 2022-11-23 18:44:36 +01:00
LICENSES Documentation: theme: Specify license of search.png 2022-09-30 21:51:14 +03:00
package/gentoo/media-libs/libcamera libcamera: Standardize URLs to git repositories 2021-09-24 13:25:33 +03:00
src ipa: rkisp1: Fail hard on empty CameraSensorInfo 2022-11-23 18:44:36 +01:00
subprojects libcamera: Add missing SPDX headers for miscellaneous CC0-1.0 contents 2022-09-30 21:51:23 +03:00
test test: camera_reconfigure: Qualify move() with std:: namespace 2022-11-08 17:51:02 +02:00
utils utils: raspberrypi: ctt: Fix alsc green averaging 2022-10-20 11:40:29 +09:00
.clang-format clang-format: Remove unsupported option 2021-08-27 14:04:21 +01:00
.clang-tidy libcamera: Add missing SPDX headers for miscellaneous CC0-1.0 contents 2022-09-30 21:51:23 +03:00
.gitignore libcamera: Restrict .gitignore build/ and patches/ to the root directory 2021-12-14 12:03:12 +02:00
COPYING.rst libcamera: Summarize licensing terms in COPYING.rst 2020-06-26 15:18:25 +03:00
meson.build libcamera v0.0.2 2022-11-18 17:25:28 +00:00
meson_options.txt libcamera: pipeline: Add IMX8 ISI pipeline 2022-11-17 11:46:30 +01:00
README.rst libcamera: Make IPA module signing recommended instead of mandatory 2022-08-09 16:05:58 +03:00

.. SPDX-License-Identifier: CC-BY-SA-4.0

.. section-begin-libcamera

===========
 libcamera
===========

**A complex camera support library for Linux, Android, and ChromeOS**

Cameras are complex devices that need heavy hardware image processing
operations. Control of the processing is based on advanced algorithms that must
run on a programmable processor. This has traditionally been implemented in a
dedicated MCU in the camera, but in embedded devices algorithms have been moved
to the main CPU to save cost. Blurring the boundary between camera devices and
Linux often left the user with no other option than a vendor-specific
closed-source solution.

To address this problem the Linux media community has very recently started
collaboration with the industry to develop a camera stack that will be
open-source-friendly while still protecting vendor core IP. libcamera was born
out of that collaboration and will offer modern camera support to Linux-based
systems, including traditional Linux distributions, ChromeOS and Android.

.. section-end-libcamera
.. section-begin-getting-started

Getting Started
---------------

To fetch the sources, build and install:

::

  git clone https://git.libcamera.org/libcamera/libcamera.git
  cd libcamera
  meson build
  ninja -C build install

Dependencies
~~~~~~~~~~~~

The following Debian/Ubuntu packages are required for building libcamera.
Other distributions may have differing package names:

A C++ toolchain: [required]
        Either {g++, clang}

Meson Build system: [required]
        meson (>= 0.56) ninja-build pkg-config

        If your distribution doesn't provide a recent enough version of meson,
        you can install or upgrade it using pip3.

        .. code::

            pip3 install --user meson
            pip3 install --user --upgrade meson

for the libcamera core: [required]
        libyaml-dev python3-yaml python3-ply python3-jinja2

for IPA module signing: [recommended]
        Either libgnutls28-dev or libssl-dev, openssl

        Without IPA module signing, all IPA modules will be isolated in a
        separate process. This adds an unnecessary extra overhead at runtime.

for improved debugging: [optional]
        libdw-dev libunwind-dev

        libdw and libunwind provide backtraces to help debugging assertion
        failures. Their functions overlap, libdw provides the most detailed
        information, and libunwind is not needed if both libdw and the glibc
        backtrace() function are available.

for device hotplug enumeration: [optional]
        libudev-dev

for documentation: [optional]
        python3-sphinx doxygen graphviz texlive-latex-extra

for gstreamer: [optional]
        libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev

for cam: [optional]
        libevent-dev is required to support cam, however the following
        optional dependencies bring more functionality to the cam test
        tool:

        - libdrm-dev: Enables the KMS sink
        - libjpeg-dev: Enables MJPEG on the SDL sink
        - libsdl2-dev: Enables the SDL sink

for qcam: [optional]
        qtbase5-dev libqt5core5a libqt5gui5 libqt5widgets5 qttools5-dev-tools libtiff-dev

for tracing with lttng: [optional]
        liblttng-ust-dev python3-jinja2 lttng-tools

for android: [optional]
        libexif-dev libjpeg-dev

for lc-compliance: [optional]
        libevent-dev

Basic testing with cam utility
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``cam`` utility can be used for basic testing. You can list the cameras
detected on the system with ``cam -l``, and capture ten frames from the first
camera and save them to disk with ``cam -c 1 --capture=10 --file``. See
``cam -h`` for more information about the ``cam`` tool.

In case of problems, a detailed debug log can be obtained from libcamera by
setting the ``LIBCAMERA_LOG_LEVELS`` environment variable:

.. code::

    :~$ LIBCAMERA_LOG_LEVELS=*:DEBUG cam -l

Using GStreamer plugin
~~~~~~~~~~~~~~~~~~~~~~

To use GStreamer plugin from source tree, set the following environment so that
GStreamer can find it. This isn't necessary when libcamera is installed.

  export GST_PLUGIN_PATH=$(pwd)/build/src/gstreamer

The debugging tool ``gst-launch-1.0`` can be used to construct a pipeline and
test it. The following pipeline will stream from the camera named "Camera 1"
onto the OpenGL accelerated display element on your system.

.. code::

  gst-launch-1.0 libcamerasrc camera-name="Camera 1" ! glimagesink

To show the first camera found you can omit the camera-name property, or you
can list the cameras and their capabilities using:

.. code::

  gst-device-monitor-1.0 Video

This will also show the supported stream sizes which can be manually selected
if desired with a pipeline such as:

.. code::

  gst-launch-1.0 libcamerasrc ! 'video/x-raw,width=1280,height=720' ! \
        glimagesink

The libcamerasrc element has two log categories, named libcamera-provider (for
the video device provider) and libcamerasrc (for the operation of the camera).
All corresponding debug messages can be enabled by setting the ``GST_DEBUG``
environment variable to ``libcamera*:7``.

Presently, to prevent element negotiation failures it is required to specify
the colorimetry and framerate as part of your pipeline construction. For
instance, to capture and encode as a JPEG stream and receive on another device
the following example could be used as a starting point:

.. code::

   gst-launch-1.0 libcamerasrc ! \
        video/x-raw,colorimetry=bt709,format=NV12,width=1280,height=720,framerate=30/1 ! \
        jpegenc ! multipartmux ! \
        tcpserversink host=0.0.0.0 port=5000

Which can be received on another device over the network with:

.. code::

   gst-launch-1.0 tcpclientsrc host=$DEVICE_IP port=5000 ! \
        multipartdemux ! jpegdec ! autovideosink

.. section-end-getting-started

Troubleshooting
~~~~~~~~~~~~~~~

Several users have reported issues with meson installation, crux of the issue
is a potential version mismatch between the version that root uses, and the
version that the normal user uses. On calling `ninja -C build`, it can't find
the build.ninja module. This is a snippet of the error message.

::

  ninja: Entering directory `build'
  ninja: error: loading 'build.ninja': No such file or directory

This can be solved in two ways:

1) Don't install meson again if it is already installed system-wide.

2) If a version of meson which is different from the system-wide version is
already installed, uninstall that meson using pip3, and install again without
the --user argument.