libcamera/src/ipa/raspberrypi/raspberrypi.cpp
Naushir Patuck 1966b9a584 ipa: raspberrypi: Reduce the controller rate to 30fps
With the controller algorithms running at 60fps, there are some dropped frames
when running at very high famerates. Reducing this to 30fps eliminates all these
drops without any noticeable changes to the image quality.

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: David Plowman <david.plowman@raspberrypi.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
2022-02-10 09:45:34 +02:00

1397 lines
43 KiB
C++

/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019-2021, Raspberry Pi (Trading) Ltd.
*
* rpi.cpp - Raspberry Pi Image Processing Algorithms
*/
#include <algorithm>
#include <array>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>
#include <linux/bcm2835-isp.h>
#include <libcamera/base/log.h>
#include <libcamera/base/shared_fd.h>
#include <libcamera/base/span.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/framebuffer.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/raspberrypi.h>
#include <libcamera/ipa/raspberrypi_ipa_interface.h>
#include <libcamera/request.h>
#include "libcamera/internal/mapped_framebuffer.h"
#include "agc_algorithm.hpp"
#include "agc_status.h"
#include "alsc_status.h"
#include "awb_algorithm.hpp"
#include "awb_status.h"
#include "black_level_status.h"
#include "cam_helper.hpp"
#include "ccm_algorithm.hpp"
#include "ccm_status.h"
#include "contrast_algorithm.hpp"
#include "contrast_status.h"
#include "controller.hpp"
#include "denoise_algorithm.hpp"
#include "denoise_status.h"
#include "dpc_status.h"
#include "focus_status.h"
#include "geq_status.h"
#include "lux_status.h"
#include "metadata.hpp"
#include "noise_status.h"
#include "sharpen_algorithm.hpp"
#include "sharpen_status.h"
namespace libcamera {
using namespace std::literals::chrono_literals;
using utils::Duration;
/* Configure the sensor with these values initially. */
constexpr double defaultAnalogueGain = 1.0;
constexpr Duration defaultExposureTime = 20.0ms;
constexpr Duration defaultMinFrameDuration = 1.0s / 30.0;
constexpr Duration defaultMaxFrameDuration = 250.0s;
/*
* Determine the minimum allowable inter-frame duration to run the controller
* algorithms. If the pipeline handler provider frames at a rate higher than this,
* we rate-limit the controller Prepare() and Process() calls to lower than or
* equal to this rate.
*/
constexpr Duration controllerMinFrameDuration = 1.0s / 30.0;
LOG_DEFINE_CATEGORY(IPARPI)
class IPARPi : public ipa::RPi::IPARPiInterface
{
public:
IPARPi()
: controller_(), frameCount_(0), checkCount_(0), mistrustCount_(0),
lastRunTimestamp_(0), lsTable_(nullptr), firstStart_(true)
{
}
~IPARPi()
{
if (lsTable_)
munmap(lsTable_, ipa::RPi::MaxLsGridSize);
}
int init(const IPASettings &settings, ipa::RPi::SensorConfig *sensorConfig) override;
void start(const ControlList &controls, ipa::RPi::StartConfig *startConfig) override;
void stop() override {}
int configure(const IPACameraSensorInfo &sensorInfo,
const std::map<unsigned int, IPAStream> &streamConfig,
const std::map<unsigned int, ControlInfoMap> &entityControls,
const ipa::RPi::IPAConfig &data,
ControlList *controls) override;
void mapBuffers(const std::vector<IPABuffer> &buffers) override;
void unmapBuffers(const std::vector<unsigned int> &ids) override;
void signalStatReady(const uint32_t bufferId) override;
void signalQueueRequest(const ControlList &controls) override;
void signalIspPrepare(const ipa::RPi::ISPConfig &data) override;
private:
void setMode(const IPACameraSensorInfo &sensorInfo);
bool validateSensorControls();
bool validateIspControls();
void queueRequest(const ControlList &controls);
void returnEmbeddedBuffer(unsigned int bufferId);
void prepareISP(const ipa::RPi::ISPConfig &data);
void reportMetadata();
void fillDeviceStatus(const ControlList &sensorControls);
void processStats(unsigned int bufferId);
void applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration);
void applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls);
void applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls);
void applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls);
void applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls);
void applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls);
void applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls);
void applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls);
void applyDenoise(const struct DenoiseStatus *denoiseStatus, ControlList &ctrls);
void applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls);
void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
void resampleTable(uint16_t dest[], double const src[12][16], int destW, int destH);
std::map<unsigned int, MappedFrameBuffer> buffers_;
ControlInfoMap sensorCtrls_;
ControlInfoMap ispCtrls_;
ControlList libcameraMetadata_;
/* Camera sensor params. */
CameraMode mode_;
/* Raspberry Pi controller specific defines. */
std::unique_ptr<RPiController::CamHelper> helper_;
RPiController::Controller controller_;
RPiController::Metadata rpiMetadata_;
/*
* We count frames to decide if the frame must be hidden (e.g. from
* display) or mistrusted (i.e. not given to the control algos).
*/
uint64_t frameCount_;
/* For checking the sequencing of Prepare/Process calls. */
uint64_t checkCount_;
/* How many frames we should avoid running control algos on. */
unsigned int mistrustCount_;
/* Number of frames that need to be dropped on startup. */
unsigned int dropFrameCount_;
/* Frame timestamp for the last run of the controller. */
uint64_t lastRunTimestamp_;
/* Do we run a Controller::process() for this frame? */
bool processPending_;
/* LS table allocation passed in from the pipeline handler. */
SharedFD lsTableHandle_;
void *lsTable_;
/* Distinguish the first camera start from others. */
bool firstStart_;
/* Frame duration (1/fps) limits. */
Duration minFrameDuration_;
Duration maxFrameDuration_;
/* Maximum gain code for the sensor. */
uint32_t maxSensorGainCode_;
};
int IPARPi::init(const IPASettings &settings, ipa::RPi::SensorConfig *sensorConfig)
{
/*
* Load the "helper" for this sensor. This tells us all the device specific stuff
* that the kernel driver doesn't. We only do this the first time; we don't need
* to re-parse the metadata after a simple mode-switch for no reason.
*/
helper_ = std::unique_ptr<RPiController::CamHelper>(RPiController::CamHelper::Create(settings.sensorModel));
if (!helper_) {
LOG(IPARPI, Error) << "Could not create camera helper for "
<< settings.sensorModel;
return -EINVAL;
}
/*
* Pass out the sensor config to the pipeline handler in order
* to setup the staggered writer class.
*/
int gainDelay, exposureDelay, vblankDelay, sensorMetadata;
helper_->GetDelays(exposureDelay, gainDelay, vblankDelay);
sensorMetadata = helper_->SensorEmbeddedDataPresent();
sensorConfig->gainDelay = gainDelay;
sensorConfig->exposureDelay = exposureDelay;
sensorConfig->vblankDelay = vblankDelay;
sensorConfig->sensorMetadata = sensorMetadata;
/* Load the tuning file for this sensor. */
controller_.Read(settings.configurationFile.c_str());
controller_.Initialise();
return 0;
}
void IPARPi::start(const ControlList &controls, ipa::RPi::StartConfig *startConfig)
{
RPiController::Metadata metadata;
ASSERT(startConfig);
if (!controls.empty()) {
/* We have been given some controls to action before start. */
queueRequest(controls);
}
controller_.SwitchMode(mode_, &metadata);
/* SwitchMode may supply updated exposure/gain values to use. */
AgcStatus agcStatus;
agcStatus.shutter_time = 0.0s;
agcStatus.analogue_gain = 0.0;
metadata.Get("agc.status", agcStatus);
if (agcStatus.shutter_time && agcStatus.analogue_gain) {
ControlList ctrls(sensorCtrls_);
applyAGC(&agcStatus, ctrls);
startConfig->controls = std::move(ctrls);
}
/*
* Initialise frame counts, and decide how many frames must be hidden or
* "mistrusted", which depends on whether this is a startup from cold,
* or merely a mode switch in a running system.
*/
frameCount_ = 0;
checkCount_ = 0;
if (firstStart_) {
dropFrameCount_ = helper_->HideFramesStartup();
mistrustCount_ = helper_->MistrustFramesStartup();
/*
* Query the AGC/AWB for how many frames they may take to
* converge sufficiently. Where these numbers are non-zero
* we must allow for the frames with bad statistics
* (mistrustCount_) that they won't see. But if zero (i.e.
* no convergence necessary), no frames need to be dropped.
*/
unsigned int agcConvergenceFrames = 0;
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (agc) {
agcConvergenceFrames = agc->GetConvergenceFrames();
if (agcConvergenceFrames)
agcConvergenceFrames += mistrustCount_;
}
unsigned int awbConvergenceFrames = 0;
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.GetAlgorithm("awb"));
if (awb) {
awbConvergenceFrames = awb->GetConvergenceFrames();
if (awbConvergenceFrames)
awbConvergenceFrames += mistrustCount_;
}
dropFrameCount_ = std::max({ dropFrameCount_, agcConvergenceFrames, awbConvergenceFrames });
LOG(IPARPI, Debug) << "Drop " << dropFrameCount_ << " frames on startup";
} else {
dropFrameCount_ = helper_->HideFramesModeSwitch();
mistrustCount_ = helper_->MistrustFramesModeSwitch();
}
startConfig->dropFrameCount = dropFrameCount_;
firstStart_ = false;
lastRunTimestamp_ = 0;
}
void IPARPi::setMode(const IPACameraSensorInfo &sensorInfo)
{
mode_.bitdepth = sensorInfo.bitsPerPixel;
mode_.width = sensorInfo.outputSize.width;
mode_.height = sensorInfo.outputSize.height;
mode_.sensor_width = sensorInfo.activeAreaSize.width;
mode_.sensor_height = sensorInfo.activeAreaSize.height;
mode_.crop_x = sensorInfo.analogCrop.x;
mode_.crop_y = sensorInfo.analogCrop.y;
/*
* Calculate scaling parameters. The scale_[xy] factors are determined
* by the ratio between the crop rectangle size and the output size.
*/
mode_.scale_x = sensorInfo.analogCrop.width / sensorInfo.outputSize.width;
mode_.scale_y = sensorInfo.analogCrop.height / sensorInfo.outputSize.height;
/*
* We're not told by the pipeline handler how scaling is split between
* binning and digital scaling. For now, as a heuristic, assume that
* downscaling up to 2 is achieved through binning, and that any
* additional scaling is achieved through digital scaling.
*
* \todo Get the pipeline handle to provide the full data
*/
mode_.bin_x = std::min(2, static_cast<int>(mode_.scale_x));
mode_.bin_y = std::min(2, static_cast<int>(mode_.scale_y));
/* The noise factor is the square root of the total binning factor. */
mode_.noise_factor = sqrt(mode_.bin_x * mode_.bin_y);
/*
* Calculate the line length as the ratio between the line length in
* pixels and the pixel rate.
*/
mode_.line_length = sensorInfo.lineLength * (1.0s / sensorInfo.pixelRate);
/*
* Set the frame length limits for the mode to ensure exposure and
* framerate calculations are clipped appropriately.
*/
mode_.min_frame_length = sensorInfo.minFrameLength;
mode_.max_frame_length = sensorInfo.maxFrameLength;
/*
* Some sensors may have different sensitivities in different modes;
* the CamHelper will know the correct value.
*/
mode_.sensitivity = helper_->GetModeSensitivity(mode_);
}
int IPARPi::configure(const IPACameraSensorInfo &sensorInfo,
[[maybe_unused]] const std::map<unsigned int, IPAStream> &streamConfig,
const std::map<unsigned int, ControlInfoMap> &entityControls,
const ipa::RPi::IPAConfig &ipaConfig,
ControlList *controls)
{
if (entityControls.size() != 2) {
LOG(IPARPI, Error) << "No ISP or sensor controls found.";
return -1;
}
sensorCtrls_ = entityControls.at(0);
ispCtrls_ = entityControls.at(1);
if (!validateSensorControls()) {
LOG(IPARPI, Error) << "Sensor control validation failed.";
return -1;
}
if (!validateIspControls()) {
LOG(IPARPI, Error) << "ISP control validation failed.";
return -1;
}
maxSensorGainCode_ = sensorCtrls_.at(V4L2_CID_ANALOGUE_GAIN).max().get<int32_t>();
/* Setup a metadata ControlList to output metadata. */
libcameraMetadata_ = ControlList(controls::controls);
/* Re-assemble camera mode using the sensor info. */
setMode(sensorInfo);
mode_.transform = static_cast<libcamera::Transform>(ipaConfig.transform);
/* Store the lens shading table pointer and handle if available. */
if (ipaConfig.lsTableHandle.isValid()) {
/* Remove any previous table, if there was one. */
if (lsTable_) {
munmap(lsTable_, ipa::RPi::MaxLsGridSize);
lsTable_ = nullptr;
}
/* Map the LS table buffer into user space. */
lsTableHandle_ = std::move(ipaConfig.lsTableHandle);
if (lsTableHandle_.isValid()) {
lsTable_ = mmap(nullptr, ipa::RPi::MaxLsGridSize, PROT_READ | PROT_WRITE,
MAP_SHARED, lsTableHandle_.get(), 0);
if (lsTable_ == MAP_FAILED) {
LOG(IPARPI, Error) << "dmaHeap mmap failure for LS table.";
lsTable_ = nullptr;
}
}
}
/* Pass the camera mode to the CamHelper to setup algorithms. */
helper_->SetCameraMode(mode_);
/*
* Initialise this ControlList correctly, even if empty, in case the IPA is
* running is isolation mode (passing the ControlList through the IPC layer).
*/
ControlList ctrls(sensorCtrls_);
if (firstStart_) {
/* Supply initial values for frame durations. */
applyFrameDurations(defaultMinFrameDuration, defaultMaxFrameDuration);
/* Supply initial values for gain and exposure. */
AgcStatus agcStatus;
agcStatus.shutter_time = defaultExposureTime;
agcStatus.analogue_gain = defaultAnalogueGain;
applyAGC(&agcStatus, ctrls);
}
ASSERT(controls);
*controls = std::move(ctrls);
return 0;
}
void IPARPi::mapBuffers(const std::vector<IPABuffer> &buffers)
{
for (const IPABuffer &buffer : buffers) {
const FrameBuffer fb(buffer.planes);
buffers_.emplace(buffer.id,
MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite));
}
}
void IPARPi::unmapBuffers(const std::vector<unsigned int> &ids)
{
for (unsigned int id : ids) {
auto it = buffers_.find(id);
if (it == buffers_.end())
continue;
buffers_.erase(id);
}
}
void IPARPi::signalStatReady(uint32_t bufferId)
{
if (++checkCount_ != frameCount_) /* assert here? */
LOG(IPARPI, Error) << "WARNING: Prepare/Process mismatch!!!";
if (processPending_ && frameCount_ > mistrustCount_)
processStats(bufferId);
reportMetadata();
statsMetadataComplete.emit(bufferId & ipa::RPi::MaskID, libcameraMetadata_);
}
void IPARPi::signalQueueRequest(const ControlList &controls)
{
queueRequest(controls);
}
void IPARPi::signalIspPrepare(const ipa::RPi::ISPConfig &data)
{
/*
* At start-up, or after a mode-switch, we may want to
* avoid running the control algos for a few frames in case
* they are "unreliable".
*/
prepareISP(data);
frameCount_++;
/* Ready to push the input buffer into the ISP. */
runIsp.emit(data.bayerBufferId & ipa::RPi::MaskID);
}
void IPARPi::reportMetadata()
{
std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);
/*
* Certain information about the current frame and how it will be
* processed can be extracted and placed into the libcamera metadata
* buffer, where an application could query it.
*/
DeviceStatus *deviceStatus = rpiMetadata_.GetLocked<DeviceStatus>("device.status");
if (deviceStatus) {
libcameraMetadata_.set(controls::ExposureTime,
deviceStatus->shutter_speed.get<std::micro>());
libcameraMetadata_.set(controls::AnalogueGain, deviceStatus->analogue_gain);
libcameraMetadata_.set(controls::FrameDuration,
helper_->Exposure(deviceStatus->frame_length).get<std::micro>());
}
AgcStatus *agcStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
if (agcStatus) {
libcameraMetadata_.set(controls::AeLocked, agcStatus->locked);
libcameraMetadata_.set(controls::DigitalGain, agcStatus->digital_gain);
}
LuxStatus *luxStatus = rpiMetadata_.GetLocked<LuxStatus>("lux.status");
if (luxStatus)
libcameraMetadata_.set(controls::Lux, luxStatus->lux);
AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
if (awbStatus) {
libcameraMetadata_.set(controls::ColourGains, { static_cast<float>(awbStatus->gain_r),
static_cast<float>(awbStatus->gain_b) });
libcameraMetadata_.set(controls::ColourTemperature, awbStatus->temperature_K);
}
BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
libcameraMetadata_.set(controls::SensorBlackLevels,
{ static_cast<int32_t>(blackLevelStatus->black_level_r),
static_cast<int32_t>(blackLevelStatus->black_level_g),
static_cast<int32_t>(blackLevelStatus->black_level_g),
static_cast<int32_t>(blackLevelStatus->black_level_b) });
FocusStatus *focusStatus = rpiMetadata_.GetLocked<FocusStatus>("focus.status");
if (focusStatus && focusStatus->num == 12) {
/*
* We get a 4x3 grid of regions by default. Calculate the average
* FoM over the central two positions to give an overall scene FoM.
* This can change later if it is not deemed suitable.
*/
int32_t focusFoM = (focusStatus->focus_measures[5] + focusStatus->focus_measures[6]) / 2;
libcameraMetadata_.set(controls::FocusFoM, focusFoM);
}
CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
if (ccmStatus) {
float m[9];
for (unsigned int i = 0; i < 9; i++)
m[i] = ccmStatus->matrix[i];
libcameraMetadata_.set(controls::ColourCorrectionMatrix, m);
}
}
bool IPARPi::validateSensorControls()
{
static const uint32_t ctrls[] = {
V4L2_CID_ANALOGUE_GAIN,
V4L2_CID_EXPOSURE,
V4L2_CID_VBLANK,
};
for (auto c : ctrls) {
if (sensorCtrls_.find(c) == sensorCtrls_.end()) {
LOG(IPARPI, Error) << "Unable to find sensor control "
<< utils::hex(c);
return false;
}
}
return true;
}
bool IPARPi::validateIspControls()
{
static const uint32_t ctrls[] = {
V4L2_CID_RED_BALANCE,
V4L2_CID_BLUE_BALANCE,
V4L2_CID_DIGITAL_GAIN,
V4L2_CID_USER_BCM2835_ISP_CC_MATRIX,
V4L2_CID_USER_BCM2835_ISP_GAMMA,
V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL,
V4L2_CID_USER_BCM2835_ISP_GEQ,
V4L2_CID_USER_BCM2835_ISP_DENOISE,
V4L2_CID_USER_BCM2835_ISP_SHARPEN,
V4L2_CID_USER_BCM2835_ISP_DPC,
V4L2_CID_USER_BCM2835_ISP_LENS_SHADING,
V4L2_CID_USER_BCM2835_ISP_CDN,
};
for (auto c : ctrls) {
if (ispCtrls_.find(c) == ispCtrls_.end()) {
LOG(IPARPI, Error) << "Unable to find ISP control "
<< utils::hex(c);
return false;
}
}
return true;
}
/*
* Converting between enums (used in the libcamera API) and the names that
* we use to identify different modes. Unfortunately, the conversion tables
* must be kept up-to-date by hand.
*/
static const std::map<int32_t, std::string> MeteringModeTable = {
{ controls::MeteringCentreWeighted, "centre-weighted" },
{ controls::MeteringSpot, "spot" },
{ controls::MeteringMatrix, "matrix" },
{ controls::MeteringCustom, "custom" },
};
static const std::map<int32_t, std::string> ConstraintModeTable = {
{ controls::ConstraintNormal, "normal" },
{ controls::ConstraintHighlight, "highlight" },
{ controls::ConstraintCustom, "custom" },
};
static const std::map<int32_t, std::string> ExposureModeTable = {
{ controls::ExposureNormal, "normal" },
{ controls::ExposureShort, "short" },
{ controls::ExposureLong, "long" },
{ controls::ExposureCustom, "custom" },
};
static const std::map<int32_t, std::string> AwbModeTable = {
{ controls::AwbAuto, "normal" },
{ controls::AwbIncandescent, "incandescent" },
{ controls::AwbTungsten, "tungsten" },
{ controls::AwbFluorescent, "fluorescent" },
{ controls::AwbIndoor, "indoor" },
{ controls::AwbDaylight, "daylight" },
{ controls::AwbCloudy, "cloudy" },
{ controls::AwbCustom, "custom" },
};
static const std::map<int32_t, RPiController::DenoiseMode> DenoiseModeTable = {
{ controls::draft::NoiseReductionModeOff, RPiController::DenoiseMode::Off },
{ controls::draft::NoiseReductionModeFast, RPiController::DenoiseMode::ColourFast },
{ controls::draft::NoiseReductionModeHighQuality, RPiController::DenoiseMode::ColourHighQuality },
{ controls::draft::NoiseReductionModeMinimal, RPiController::DenoiseMode::ColourOff },
{ controls::draft::NoiseReductionModeZSL, RPiController::DenoiseMode::ColourHighQuality },
};
void IPARPi::queueRequest(const ControlList &controls)
{
/* Clear the return metadata buffer. */
libcameraMetadata_.clear();
for (auto const &ctrl : controls) {
LOG(IPARPI, Info) << "Request ctrl: "
<< controls::controls.at(ctrl.first)->name()
<< " = " << ctrl.second.toString();
switch (ctrl.first) {
case controls::AE_ENABLE: {
RPiController::Algorithm *agc = controller_.GetAlgorithm("agc");
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_ENABLE - no AGC algorithm";
break;
}
if (ctrl.second.get<bool>() == false)
agc->Pause();
else
agc->Resume();
libcameraMetadata_.set(controls::AeEnable, ctrl.second.get<bool>());
break;
}
case controls::EXPOSURE_TIME: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set EXPOSURE_TIME - no AGC algorithm";
break;
}
/* The control provides units of microseconds. */
agc->SetFixedShutter(ctrl.second.get<int32_t>() * 1.0us);
libcameraMetadata_.set(controls::ExposureTime, ctrl.second.get<int32_t>());
break;
}
case controls::ANALOGUE_GAIN: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set ANALOGUE_GAIN - no AGC algorithm";
break;
}
agc->SetFixedAnalogueGain(ctrl.second.get<float>());
libcameraMetadata_.set(controls::AnalogueGain,
ctrl.second.get<float>());
break;
}
case controls::AE_METERING_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_METERING_MODE - no AGC algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (MeteringModeTable.count(idx)) {
agc->SetMeteringMode(MeteringModeTable.at(idx));
libcameraMetadata_.set(controls::AeMeteringMode, idx);
} else {
LOG(IPARPI, Error) << "Metering mode " << idx
<< " not recognised";
}
break;
}
case controls::AE_CONSTRAINT_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_CONSTRAINT_MODE - no AGC algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (ConstraintModeTable.count(idx)) {
agc->SetConstraintMode(ConstraintModeTable.at(idx));
libcameraMetadata_.set(controls::AeConstraintMode, idx);
} else {
LOG(IPARPI, Error) << "Constraint mode " << idx
<< " not recognised";
}
break;
}
case controls::AE_EXPOSURE_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_EXPOSURE_MODE - no AGC algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (ExposureModeTable.count(idx)) {
agc->SetExposureMode(ExposureModeTable.at(idx));
libcameraMetadata_.set(controls::AeExposureMode, idx);
} else {
LOG(IPARPI, Error) << "Exposure mode " << idx
<< " not recognised";
}
break;
}
case controls::EXPOSURE_VALUE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set EXPOSURE_VALUE - no AGC algorithm";
break;
}
/*
* The SetEv() function takes in a direct exposure multiplier.
* So convert to 2^EV
*/
double ev = pow(2.0, ctrl.second.get<float>());
agc->SetEv(ev);
libcameraMetadata_.set(controls::ExposureValue,
ctrl.second.get<float>());
break;
}
case controls::AWB_ENABLE: {
RPiController::Algorithm *awb = controller_.GetAlgorithm("awb");
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set AWB_ENABLE - no AWB algorithm";
break;
}
if (ctrl.second.get<bool>() == false)
awb->Pause();
else
awb->Resume();
libcameraMetadata_.set(controls::AwbEnable,
ctrl.second.get<bool>());
break;
}
case controls::AWB_MODE: {
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.GetAlgorithm("awb"));
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set AWB_MODE - no AWB algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (AwbModeTable.count(idx)) {
awb->SetMode(AwbModeTable.at(idx));
libcameraMetadata_.set(controls::AwbMode, idx);
} else {
LOG(IPARPI, Error) << "AWB mode " << idx
<< " not recognised";
}
break;
}
case controls::COLOUR_GAINS: {
auto gains = ctrl.second.get<Span<const float>>();
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.GetAlgorithm("awb"));
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set COLOUR_GAINS - no AWB algorithm";
break;
}
awb->SetManualGains(gains[0], gains[1]);
if (gains[0] != 0.0f && gains[1] != 0.0f)
/* A gain of 0.0f will switch back to auto mode. */
libcameraMetadata_.set(controls::ColourGains,
{ gains[0], gains[1] });
break;
}
case controls::BRIGHTNESS: {
RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
controller_.GetAlgorithm("contrast"));
if (!contrast) {
LOG(IPARPI, Warning)
<< "Could not set BRIGHTNESS - no contrast algorithm";
break;
}
contrast->SetBrightness(ctrl.second.get<float>() * 65536);
libcameraMetadata_.set(controls::Brightness,
ctrl.second.get<float>());
break;
}
case controls::CONTRAST: {
RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
controller_.GetAlgorithm("contrast"));
if (!contrast) {
LOG(IPARPI, Warning)
<< "Could not set CONTRAST - no contrast algorithm";
break;
}
contrast->SetContrast(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Contrast,
ctrl.second.get<float>());
break;
}
case controls::SATURATION: {
RPiController::CcmAlgorithm *ccm = dynamic_cast<RPiController::CcmAlgorithm *>(
controller_.GetAlgorithm("ccm"));
if (!ccm) {
LOG(IPARPI, Warning)
<< "Could not set SATURATION - no ccm algorithm";
break;
}
ccm->SetSaturation(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Saturation,
ctrl.second.get<float>());
break;
}
case controls::SHARPNESS: {
RPiController::SharpenAlgorithm *sharpen = dynamic_cast<RPiController::SharpenAlgorithm *>(
controller_.GetAlgorithm("sharpen"));
if (!sharpen) {
LOG(IPARPI, Warning)
<< "Could not set SHARPNESS - no sharpen algorithm";
break;
}
sharpen->SetStrength(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Sharpness,
ctrl.second.get<float>());
break;
}
case controls::SCALER_CROP: {
/* We do nothing with this, but should avoid the warning below. */
break;
}
case controls::FRAME_DURATION_LIMITS: {
auto frameDurations = ctrl.second.get<Span<const int64_t>>();
applyFrameDurations(frameDurations[0] * 1.0us, frameDurations[1] * 1.0us);
break;
}
case controls::NOISE_REDUCTION_MODE: {
RPiController::DenoiseAlgorithm *sdn = dynamic_cast<RPiController::DenoiseAlgorithm *>(
controller_.GetAlgorithm("SDN"));
if (!sdn) {
LOG(IPARPI, Warning)
<< "Could not set NOISE_REDUCTION_MODE - no SDN algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
auto mode = DenoiseModeTable.find(idx);
if (mode != DenoiseModeTable.end()) {
sdn->SetMode(mode->second);
/*
* \todo If the colour denoise is not going to run due to an
* analysis image resolution or format mismatch, we should
* report the status correctly in the metadata.
*/
libcameraMetadata_.set(controls::draft::NoiseReductionMode, idx);
} else {
LOG(IPARPI, Error) << "Noise reduction mode " << idx
<< " not recognised";
}
break;
}
default:
LOG(IPARPI, Warning)
<< "Ctrl " << controls::controls.at(ctrl.first)->name()
<< " is not handled.";
break;
}
}
}
void IPARPi::returnEmbeddedBuffer(unsigned int bufferId)
{
embeddedComplete.emit(bufferId & ipa::RPi::MaskID);
}
void IPARPi::prepareISP(const ipa::RPi::ISPConfig &data)
{
int64_t frameTimestamp = data.controls.get(controls::SensorTimestamp);
RPiController::Metadata lastMetadata;
Span<uint8_t> embeddedBuffer;
lastMetadata = std::move(rpiMetadata_);
fillDeviceStatus(data.controls);
if (data.embeddedBufferPresent) {
/*
* Pipeline handler has supplied us with an embedded data buffer,
* we must pass it to the CamHelper for parsing.
*/
auto it = buffers_.find(data.embeddedBufferId);
ASSERT(it != buffers_.end());
embeddedBuffer = it->second.planes()[0];
}
/*
* This may overwrite the DeviceStatus using values from the sensor
* metadata, and may also do additional custom processing.
*/
helper_->Prepare(embeddedBuffer, rpiMetadata_);
/* Done with embedded data now, return to pipeline handler asap. */
if (data.embeddedBufferPresent)
returnEmbeddedBuffer(data.embeddedBufferId);
/* Allow a 10% margin on the comparison below. */
Duration delta = (frameTimestamp - lastRunTimestamp_) * 1.0ns;
if (lastRunTimestamp_ && frameCount_ > dropFrameCount_ &&
delta < controllerMinFrameDuration * 0.9) {
/*
* Ensure we merge the previous frame's metadata with the current
* frame. This will not overwrite exposure/gain values for the
* current frame, or any other bits of metadata that were added
* in helper_->Prepare().
*/
rpiMetadata_.Merge(lastMetadata);
processPending_ = false;
return;
}
lastRunTimestamp_ = frameTimestamp;
processPending_ = true;
ControlList ctrls(ispCtrls_);
controller_.Prepare(&rpiMetadata_);
/* Lock the metadata buffer to avoid constant locks/unlocks. */
std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);
AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
if (awbStatus)
applyAWB(awbStatus, ctrls);
CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
if (ccmStatus)
applyCCM(ccmStatus, ctrls);
AgcStatus *dgStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
if (dgStatus)
applyDG(dgStatus, ctrls);
AlscStatus *lsStatus = rpiMetadata_.GetLocked<AlscStatus>("alsc.status");
if (lsStatus)
applyLS(lsStatus, ctrls);
ContrastStatus *contrastStatus = rpiMetadata_.GetLocked<ContrastStatus>("contrast.status");
if (contrastStatus)
applyGamma(contrastStatus, ctrls);
BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
applyBlackLevel(blackLevelStatus, ctrls);
GeqStatus *geqStatus = rpiMetadata_.GetLocked<GeqStatus>("geq.status");
if (geqStatus)
applyGEQ(geqStatus, ctrls);
DenoiseStatus *denoiseStatus = rpiMetadata_.GetLocked<DenoiseStatus>("denoise.status");
if (denoiseStatus)
applyDenoise(denoiseStatus, ctrls);
SharpenStatus *sharpenStatus = rpiMetadata_.GetLocked<SharpenStatus>("sharpen.status");
if (sharpenStatus)
applySharpen(sharpenStatus, ctrls);
DpcStatus *dpcStatus = rpiMetadata_.GetLocked<DpcStatus>("dpc.status");
if (dpcStatus)
applyDPC(dpcStatus, ctrls);
if (!ctrls.empty())
setIspControls.emit(ctrls);
}
void IPARPi::fillDeviceStatus(const ControlList &sensorControls)
{
DeviceStatus deviceStatus = {};
int32_t exposureLines = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
int32_t gainCode = sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
int32_t vblank = sensorControls.get(V4L2_CID_VBLANK).get<int32_t>();
deviceStatus.shutter_speed = helper_->Exposure(exposureLines);
deviceStatus.analogue_gain = helper_->Gain(gainCode);
deviceStatus.frame_length = mode_.height + vblank;
LOG(IPARPI, Debug) << "Metadata - " << deviceStatus;
rpiMetadata_.Set("device.status", deviceStatus);
}
void IPARPi::processStats(unsigned int bufferId)
{
auto it = buffers_.find(bufferId);
if (it == buffers_.end()) {
LOG(IPARPI, Error) << "Could not find stats buffer!";
return;
}
Span<uint8_t> mem = it->second.planes()[0];
bcm2835_isp_stats *stats = reinterpret_cast<bcm2835_isp_stats *>(mem.data());
RPiController::StatisticsPtr statistics = std::make_shared<bcm2835_isp_stats>(*stats);
helper_->Process(statistics, rpiMetadata_);
controller_.Process(statistics, &rpiMetadata_);
struct AgcStatus agcStatus;
if (rpiMetadata_.Get("agc.status", agcStatus) == 0) {
ControlList ctrls(sensorCtrls_);
applyAGC(&agcStatus, ctrls);
setDelayedControls.emit(ctrls);
}
}
void IPARPi::applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls)
{
LOG(IPARPI, Debug) << "Applying WB R: " << awbStatus->gain_r << " B: "
<< awbStatus->gain_b;
ctrls.set(V4L2_CID_RED_BALANCE,
static_cast<int32_t>(awbStatus->gain_r * 1000));
ctrls.set(V4L2_CID_BLUE_BALANCE,
static_cast<int32_t>(awbStatus->gain_b * 1000));
}
void IPARPi::applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration)
{
const Duration minSensorFrameDuration = mode_.min_frame_length * mode_.line_length;
const Duration maxSensorFrameDuration = mode_.max_frame_length * mode_.line_length;
/*
* This will only be applied once AGC recalculations occur.
* The values may be clamped based on the sensor mode capabilities as well.
*/
minFrameDuration_ = minFrameDuration ? minFrameDuration : defaultMaxFrameDuration;
maxFrameDuration_ = maxFrameDuration ? maxFrameDuration : defaultMinFrameDuration;
minFrameDuration_ = std::clamp(minFrameDuration_,
minSensorFrameDuration, maxSensorFrameDuration);
maxFrameDuration_ = std::clamp(maxFrameDuration_,
minSensorFrameDuration, maxSensorFrameDuration);
maxFrameDuration_ = std::max(maxFrameDuration_, minFrameDuration_);
/* Return the validated limits via metadata. */
libcameraMetadata_.set(controls::FrameDurationLimits,
{ static_cast<int64_t>(minFrameDuration_.get<std::micro>()),
static_cast<int64_t>(maxFrameDuration_.get<std::micro>()) });
/*
* Calculate the maximum exposure time possible for the AGC to use.
* GetVBlanking() will update maxShutter with the largest exposure
* value possible.
*/
Duration maxShutter = Duration::max();
helper_->GetVBlanking(maxShutter, minFrameDuration_, maxFrameDuration_);
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
agc->SetMaxShutter(maxShutter);
}
void IPARPi::applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls)
{
int32_t gainCode = helper_->GainCode(agcStatus->analogue_gain);
/*
* Ensure anything larger than the max gain code will not be passed to
* DelayedControls. The AGC will correctly handle a lower gain returned
* by the sensor, provided it knows the actual gain used.
*/
gainCode = std::min<int32_t>(gainCode, maxSensorGainCode_);
/* GetVBlanking might clip exposure time to the fps limits. */
Duration exposure = agcStatus->shutter_time;
int32_t vblanking = helper_->GetVBlanking(exposure, minFrameDuration_, maxFrameDuration_);
int32_t exposureLines = helper_->ExposureLines(exposure);
LOG(IPARPI, Debug) << "Applying AGC Exposure: " << exposure
<< " (Shutter lines: " << exposureLines << ", AGC requested "
<< agcStatus->shutter_time << ") Gain: "
<< agcStatus->analogue_gain << " (Gain Code: "
<< gainCode << ")";
/*
* Due to the behavior of V4L2, the current value of VBLANK could clip the
* exposure time without us knowing. The next time though this function should
* clip exposure correctly.
*/
ctrls.set(V4L2_CID_VBLANK, vblanking);
ctrls.set(V4L2_CID_EXPOSURE, exposureLines);
ctrls.set(V4L2_CID_ANALOGUE_GAIN, gainCode);
}
void IPARPi::applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls)
{
ctrls.set(V4L2_CID_DIGITAL_GAIN,
static_cast<int32_t>(dgStatus->digital_gain * 1000));
}
void IPARPi::applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls)
{
bcm2835_isp_custom_ccm ccm;
for (int i = 0; i < 9; i++) {
ccm.ccm.ccm[i / 3][i % 3].den = 1000;
ccm.ccm.ccm[i / 3][i % 3].num = 1000 * ccmStatus->matrix[i];
}
ccm.enabled = 1;
ccm.ccm.offsets[0] = ccm.ccm.offsets[1] = ccm.ccm.offsets[2] = 0;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ccm),
sizeof(ccm) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_CC_MATRIX, c);
}
void IPARPi::applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls)
{
struct bcm2835_isp_gamma gamma;
gamma.enabled = 1;
for (int i = 0; i < CONTRAST_NUM_POINTS; i++) {
gamma.x[i] = contrastStatus->points[i].x;
gamma.y[i] = contrastStatus->points[i].y;
}
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&gamma),
sizeof(gamma) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_GAMMA, c);
}
void IPARPi::applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls)
{
bcm2835_isp_black_level blackLevel;
blackLevel.enabled = 1;
blackLevel.black_level_r = blackLevelStatus->black_level_r;
blackLevel.black_level_g = blackLevelStatus->black_level_g;
blackLevel.black_level_b = blackLevelStatus->black_level_b;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&blackLevel),
sizeof(blackLevel) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL, c);
}
void IPARPi::applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls)
{
bcm2835_isp_geq geq;
geq.enabled = 1;
geq.offset = geqStatus->offset;
geq.slope.den = 1000;
geq.slope.num = 1000 * geqStatus->slope;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&geq),
sizeof(geq) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_GEQ, c);
}
void IPARPi::applyDenoise(const struct DenoiseStatus *denoiseStatus, ControlList &ctrls)
{
using RPiController::DenoiseMode;
bcm2835_isp_denoise denoise;
DenoiseMode mode = static_cast<DenoiseMode>(denoiseStatus->mode);
denoise.enabled = mode != DenoiseMode::Off;
denoise.constant = denoiseStatus->noise_constant;
denoise.slope.num = 1000 * denoiseStatus->noise_slope;
denoise.slope.den = 1000;
denoise.strength.num = 1000 * denoiseStatus->strength;
denoise.strength.den = 1000;
/* Set the CDN mode to match the SDN operating mode. */
bcm2835_isp_cdn cdn;
switch (mode) {
case DenoiseMode::ColourFast:
cdn.enabled = 1;
cdn.mode = CDN_MODE_FAST;
break;
case DenoiseMode::ColourHighQuality:
cdn.enabled = 1;
cdn.mode = CDN_MODE_HIGH_QUALITY;
break;
default:
cdn.enabled = 0;
}
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&denoise),
sizeof(denoise) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_DENOISE, c);
c = ControlValue(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&cdn),
sizeof(cdn) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_CDN, c);
}
void IPARPi::applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls)
{
bcm2835_isp_sharpen sharpen;
sharpen.enabled = 1;
sharpen.threshold.num = 1000 * sharpenStatus->threshold;
sharpen.threshold.den = 1000;
sharpen.strength.num = 1000 * sharpenStatus->strength;
sharpen.strength.den = 1000;
sharpen.limit.num = 1000 * sharpenStatus->limit;
sharpen.limit.den = 1000;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&sharpen),
sizeof(sharpen) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_SHARPEN, c);
}
void IPARPi::applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls)
{
bcm2835_isp_dpc dpc;
dpc.enabled = 1;
dpc.strength = dpcStatus->strength;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&dpc),
sizeof(dpc) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_DPC, c);
}
void IPARPi::applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls)
{
/*
* Program lens shading tables into pipeline.
* Choose smallest cell size that won't exceed 63x48 cells.
*/
const int cellSizes[] = { 16, 32, 64, 128, 256 };
unsigned int numCells = std::size(cellSizes);
unsigned int i, w, h, cellSize;
for (i = 0; i < numCells; i++) {
cellSize = cellSizes[i];
w = (mode_.width + cellSize - 1) / cellSize;
h = (mode_.height + cellSize - 1) / cellSize;
if (w < 64 && h <= 48)
break;
}
if (i == numCells) {
LOG(IPARPI, Error) << "Cannot find cell size";
return;
}
/* We're going to supply corner sampled tables, 16 bit samples. */
w++, h++;
bcm2835_isp_lens_shading ls = {
.enabled = 1,
.grid_cell_size = cellSize,
.grid_width = w,
.grid_stride = w,
.grid_height = h,
/* .dmabuf will be filled in by pipeline handler. */
.dmabuf = 0,
.ref_transform = 0,
.corner_sampled = 1,
.gain_format = GAIN_FORMAT_U4P10
};
if (!lsTable_ || w * h * 4 * sizeof(uint16_t) > ipa::RPi::MaxLsGridSize) {
LOG(IPARPI, Error) << "Do not have a correctly allocate lens shading table!";
return;
}
if (lsStatus) {
/* Format will be u4.10 */
uint16_t *grid = static_cast<uint16_t *>(lsTable_);
resampleTable(grid, lsStatus->r, w, h);
resampleTable(grid + w * h, lsStatus->g, w, h);
std::memcpy(grid + 2 * w * h, grid + w * h, w * h * sizeof(uint16_t));
resampleTable(grid + 3 * w * h, lsStatus->b, w, h);
}
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ls),
sizeof(ls) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING, c);
}
/*
* Resamples a 16x12 table with central sampling to destW x destH with corner
* sampling.
*/
void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
int destW, int destH)
{
/*
* Precalculate and cache the x sampling locations and phases to
* save recomputing them on every row.
*/
assert(destW > 1 && destH > 1 && destW <= 64);
int xLo[64], xHi[64];
double xf[64];
double x = -0.5, xInc = 16.0 / (destW - 1);
for (int i = 0; i < destW; i++, x += xInc) {
xLo[i] = floor(x);
xf[i] = x - xLo[i];
xHi[i] = xLo[i] < 15 ? xLo[i] + 1 : 15;
xLo[i] = xLo[i] > 0 ? xLo[i] : 0;
}
/* Now march over the output table generating the new values. */
double y = -0.5, yInc = 12.0 / (destH - 1);
for (int j = 0; j < destH; j++, y += yInc) {
int yLo = floor(y);
double yf = y - yLo;
int yHi = yLo < 11 ? yLo + 1 : 11;
yLo = yLo > 0 ? yLo : 0;
double const *rowAbove = src[yLo];
double const *rowBelow = src[yHi];
for (int i = 0; i < destW; i++) {
double above = rowAbove[xLo[i]] * (1 - xf[i]) + rowAbove[xHi[i]] * xf[i];
double below = rowBelow[xLo[i]] * (1 - xf[i]) + rowBelow[xHi[i]] * xf[i];
int result = floor(1024 * (above * (1 - yf) + below * yf) + .5);
*(dest++) = result > 16383 ? 16383 : result; /* want u4.10 */
}
}
}
/*
* External IPA module interface
*/
extern "C" {
const struct IPAModuleInfo ipaModuleInfo = {
IPA_MODULE_API_VERSION,
1,
"PipelineHandlerRPi",
"raspberrypi",
};
IPAInterface *ipaCreate()
{
return new IPARPi();
}
} /* extern "C" */
} /* namespace libcamera */