Many signals used in internal and public APIs carry the emitter pointer as a signal argument. This was done to allow slots connected to multiple signal instances to differentiate between emitters. While starting from a good intention of facilitating the implementation of slots, it turned out to be a bad API design as the signal isn't meant to know what it will be connected to, and thus shouldn't carry parameters that are solely meant to support a use case specific to the connected slot. These pointers turn out to be unused in all slots but one. In the only case where it is needed, it can be obtained by wrapping the slot in a lambda function when connecting the signal. Do so, and drop the emitter pointer from all signals. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Umang Jain <umang.jain@ideasonboard.com>
211 lines
4 KiB
C++
211 lines
4 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/*
|
|
* Copyright (C) 2019, Google Inc.
|
|
*
|
|
* timer.cpp - Timer test
|
|
*/
|
|
|
|
#include <chrono>
|
|
#include <iostream>
|
|
|
|
#include <libcamera/base/event_dispatcher.h>
|
|
#include <libcamera/base/thread.h>
|
|
#include <libcamera/base/timer.h>
|
|
|
|
#include "test.h"
|
|
|
|
using namespace std;
|
|
using namespace libcamera;
|
|
|
|
class ManagedTimer : public Timer
|
|
{
|
|
public:
|
|
ManagedTimer()
|
|
: Timer(), count_(0)
|
|
{
|
|
timeout.connect(this, &ManagedTimer::timeoutHandler);
|
|
}
|
|
|
|
void start(int msec)
|
|
{
|
|
count_ = 0;
|
|
start_ = std::chrono::steady_clock::now();
|
|
expiration_ = std::chrono::steady_clock::time_point();
|
|
|
|
Timer::start(msec);
|
|
}
|
|
|
|
void start(std::chrono::steady_clock::time_point deadline)
|
|
{
|
|
count_ = 0;
|
|
start_ = std::chrono::steady_clock::now();
|
|
expiration_ = std::chrono::steady_clock::time_point();
|
|
|
|
Timer::start(deadline);
|
|
}
|
|
|
|
int jitter()
|
|
{
|
|
std::chrono::steady_clock::duration duration = expiration_ - deadline();
|
|
return abs(std::chrono::duration_cast<std::chrono::milliseconds>(duration).count());
|
|
}
|
|
|
|
bool hasFailed()
|
|
{
|
|
return isRunning() || count_ != 1 || jitter() > 50;
|
|
}
|
|
|
|
private:
|
|
void timeoutHandler()
|
|
{
|
|
expiration_ = std::chrono::steady_clock::now();
|
|
count_++;
|
|
}
|
|
|
|
unsigned int count_;
|
|
std::chrono::steady_clock::time_point start_;
|
|
std::chrono::steady_clock::time_point expiration_;
|
|
};
|
|
|
|
class TimerTest : public Test
|
|
{
|
|
protected:
|
|
int init()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int run()
|
|
{
|
|
EventDispatcher *dispatcher = Thread::current()->eventDispatcher();
|
|
ManagedTimer timer;
|
|
ManagedTimer timer2;
|
|
|
|
/* Timer expiration. */
|
|
timer.start(1000);
|
|
|
|
if (!timer.isRunning()) {
|
|
cout << "Timer expiration test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.hasFailed()) {
|
|
cout << "Timer expiration test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/*
|
|
* 32 bit wrap test
|
|
* Nanosecond resolution in a 32 bit value wraps at 4.294967
|
|
* seconds (0xFFFFFFFF / 1000000)
|
|
*/
|
|
timer.start(4295);
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.hasFailed()) {
|
|
cout << "Timer expiration test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/* Timer restart. */
|
|
timer.start(500);
|
|
|
|
if (!timer.isRunning()) {
|
|
cout << "Timer restart test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.hasFailed()) {
|
|
cout << "Timer restart test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/* Timer restart before expiration. */
|
|
timer.start(50);
|
|
timer.start(100);
|
|
timer.start(150);
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.hasFailed()) {
|
|
cout << "Timer restart before expiration test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/* Timer with absolute deadline. */
|
|
timer.start(std::chrono::steady_clock::now() + std::chrono::milliseconds(200));
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.hasFailed()) {
|
|
cout << "Absolute deadline test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/* Two timers. */
|
|
timer.start(1000);
|
|
timer2.start(300);
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (!timer.isRunning()) {
|
|
cout << "Two timers test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
if (timer2.jitter() > 50) {
|
|
cout << "Two timers test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.jitter() > 50) {
|
|
cout << "Two timers test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/* Restart timer before expiration. */
|
|
timer.start(1000);
|
|
timer2.start(300);
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer2.jitter() > 50) {
|
|
cout << "Two timers test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
timer.start(1000);
|
|
|
|
dispatcher->processEvents();
|
|
|
|
if (timer.jitter() > 50) {
|
|
cout << "Two timers test failed" << endl;
|
|
return TestFail;
|
|
}
|
|
|
|
/*
|
|
* Test that dynamically allocated timers are stopped when
|
|
* deleted. This will result in a crash on failure.
|
|
*/
|
|
ManagedTimer *dyntimer = new ManagedTimer();
|
|
dyntimer->start(100);
|
|
delete dyntimer;
|
|
|
|
timer.start(200);
|
|
dispatcher->processEvents();
|
|
|
|
return TestPass;
|
|
}
|
|
|
|
void cleanup()
|
|
{
|
|
}
|
|
};
|
|
|
|
TEST_REGISTER(TimerTest)
|