libcamera/src/ipa/ipu3/algorithms/agc.cpp
Jean-Michel Hautbois 5614c95794 ipa: ipu3: agc: Limit the number of saturated cells
When the histogram is calculated, we check if a cell is saturated or not
before cumulating its green value. This is wrong, and it can lead to an
empty histogram in case of a fully saturated frame.

Use a constant to limit the amount of pixels within a cell before
considering it saturated. If at the end of the loop we still have an
empty histogram, then make it a fully saturated one.

Bug: https://bugs.libcamera.org/show_bug.cgi?id=84
Signed-off-by: Jean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
2021-11-15 10:49:13 +01:00

283 lines
9 KiB
C++

/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* ipu3_agc.cpp - AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/ipa/core_ipa_interface.h>
#include "libipa/histogram.h"
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::ipu3::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*
* This algorithm calculates a shutter time and an analogue gain so that the
* average value of the green channel of the brightest 2% of pixels approaches
* 0.5. The AWB gains are not used here, and all cells in the grid have the same
* weight, like an average-metering case. In this metering mode, the camera uses
* light information from the entire scene and creates an average for the final
* exposure setting, giving no weighting to any particular portion of the
* metered area.
*
* Reference: Battiato, Messina & Castorina. (2008). Exposure
* Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12.
*/
LOG_DEFINE_CATEGORY(IPU3Agc)
/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kInitialFrameMinAECount = 4;
/* Number of frames to wait between new gain/shutter time estimations */
static constexpr uint32_t kFrameSkipCount = 6;
/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
/* Histogram constants */
static constexpr uint32_t knumHistogramBins = 256;
/* Target value to reach for the top 2% of the histogram */
static constexpr double kEvGainTarget = 0.5;
/*
* Maximum ratio of saturated pixels in a cell for the cell to be considered
* non-saturated and counted by the AGC algorithm.
*/
static constexpr uint32_t kMinCellsPerZoneRatio = 255 * 20 / 100;
Agc::Agc()
: frameCount_(0), lastFrame_(0), iqMean_(0.0), lineDuration_(0s),
minExposureLines_(0), maxExposureLines_(0), filteredExposure_(0s),
currentExposure_(0s), prevExposureValue_(0s)
{
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context, const IPAConfigInfo &configInfo)
{
stride_ = context.configuration.grid.stride;
/* \todo use the IPAContext to provide the limits */
lineDuration_ = configInfo.sensorInfo.lineLength * 1.0s
/ configInfo.sensorInfo.pixelRate;
/* \todo replace the exposure in lines storage with time based ones. */
minExposureLines_ = context.configuration.agc.minShutterSpeed / lineDuration_;
maxExposureLines_ = std::min(context.configuration.agc.maxShutterSpeed / lineDuration_,
kMaxShutterSpeed / lineDuration_);
minAnalogueGain_ = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
maxAnalogueGain_ = std::min(context.configuration.agc.maxAnalogueGain, kMaxAnalogueGain);
/* Configure the default exposure and gain. */
context.frameContext.agc.gain = minAnalogueGain_;
context.frameContext.agc.exposure = minExposureLines_;
prevExposureValue_ = context.frameContext.agc.gain
* context.frameContext.agc.exposure
* lineDuration_;
return 0;
}
/**
* \brief Estimate the mean value of the top 2% of the histogram
* \param[in] stats The statistics computed by the ImgU
* \param[in] grid The grid used to store the statistics in the IPU3
*/
void Agc::measureBrightness(const ipu3_uapi_stats_3a *stats,
const ipu3_uapi_grid_config &grid)
{
/* Initialise the histogram array */
uint32_t hist[knumHistogramBins] = { 0 };
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
uint32_t cellPosition = cellY * stride_ + cellX;
const ipu3_uapi_awb_set_item *cell =
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
&stats->awb_raw_buffer.meta_data[cellPosition]
);
if (cell->sat_ratio <= kMinCellsPerZoneRatio) {
uint8_t gr = cell->Gr_avg;
uint8_t gb = cell->Gb_avg;
/*
* Store the average green value to estimate the
* brightness. Even the overexposed pixels are
* taken into account.
*/
hist[(gr + gb) / 2]++;
}
}
}
Histogram cumulativeHist = Histogram(Span<uint32_t>(hist));
/* Estimate the quantile mean of the top 2% of the histogram */
if (cumulativeHist.total() == 0) {
/* Force the value as histogram is empty */
iqMean_ = knumHistogramBins - 0.5;
} else {
iqMean_ = cumulativeHist.interQuantileMean(0.98, 1.0);
}
}
/**
* \brief Apply a filter on the exposure value to limit the speed of changes
*/
void Agc::filterExposure()
{
double speed = 0.2;
if (filteredExposure_ == 0s) {
/* DG stands for digital gain.*/
filteredExposure_ = currentExposure_;
} else {
/*
* If we are close to the desired result, go faster to avoid making
* multiple micro-adjustments.
* \todo Make this customisable?
*/
if (filteredExposure_ < 1.2 * currentExposure_ &&
filteredExposure_ > 0.8 * currentExposure_)
speed = sqrt(speed);
filteredExposure_ = speed * currentExposure_ +
filteredExposure_ * (1.0 - speed);
}
LOG(IPU3Agc, Debug) << "After filtering, total_exposure " << filteredExposure_;
}
/**
* \brief Estimate the new exposure and gain values
* \param[inout] frameContext The shared IPA frame Context
*/
void Agc::computeExposure(IPAFrameContext &frameContext)
{
/* Algorithm initialization should wait for first valid frames */
/* \todo - have a number of frames given by DelayedControls ?
* - implement a function for IIR */
if ((frameCount_ < kInitialFrameMinAECount) || (frameCount_ - lastFrame_ < kFrameSkipCount))
return;
lastFrame_ = frameCount_;
/* Are we correctly exposed ? */
if (std::abs(iqMean_ - kEvGainTarget * knumHistogramBins) <= 1) {
LOG(IPU3Agc, Debug) << "We are well exposed (iqMean = "
<< iqMean_ << ")";
return;
}
/* Get the effective exposure and gain applied on the sensor. */
uint32_t exposure = frameContext.sensor.exposure;
double analogueGain = frameContext.sensor.gain;
/* Estimate the gain needed to have the proportion wanted */
double evGain = kEvGainTarget * knumHistogramBins / iqMean_;
/* extracted from Rpi::Agc::computeTargetExposure */
/* Calculate the shutter time in seconds */
utils::Duration currentShutter = exposure * lineDuration_;
LOG(IPU3Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
<< " Shutter speed " << currentShutter
<< " Gain " << analogueGain
<< " Needed ev gain " << evGain;
/*
* Calculate the current exposure value for the scene as the latest
* exposure value applied multiplied by the new estimated gain.
*/
currentExposure_ = prevExposureValue_ * evGain;
utils::Duration minShutterSpeed = minExposureLines_ * lineDuration_;
utils::Duration maxShutterSpeed = maxExposureLines_ * lineDuration_;
/* Clamp the exposure value to the min and max authorized */
utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain_;
currentExposure_ = std::min(currentExposure_, maxTotalExposure);
LOG(IPU3Agc, Debug) << "Target total exposure " << currentExposure_
<< ", maximum is " << maxTotalExposure;
/* \todo: estimate if we need to desaturate */
filterExposure();
/* Divide the exposure value as new exposure and gain values */
utils::Duration exposureValue = filteredExposure_;
utils::Duration shutterTime = minShutterSpeed;
/*
* Push the shutter time up to the maximum first, and only then
* increase the gain.
*/
shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain_,
minShutterSpeed, maxShutterSpeed);
double stepGain = std::clamp(exposureValue / shutterTime,
minAnalogueGain_, maxAnalogueGain_);
LOG(IPU3Agc, Debug) << "Divided up shutter and gain are "
<< shutterTime << " and "
<< stepGain;
/* Update the estimated exposure and gain. */
frameContext.agc.exposure = shutterTime / lineDuration_;
frameContext.agc.gain = stepGain;
/*
* Update the exposure value for the next process call.
*
* \todo Obtain the values of the exposure time and analog gain
* that were actually used by the sensor, either from embedded
* data when available, or from the delayed controls
* infrastructure in case a slow down caused a mismatch.
*/
prevExposureValue_ = shutterTime * analogueGain;
}
/**
* \brief Process IPU3 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] stats The IPU3 statistics and ISP results
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context, const ipu3_uapi_stats_3a *stats)
{
measureBrightness(stats, context.configuration.grid.bdsGrid);
computeExposure(context.frameContext);
frameCount_++;
}
} /* namespace ipa::ipu3::algorithms */
} /* namespace libcamera */