libcamera/utils/tuning/config-example.yaml
Stefan Klug 60d60c1367 libtuning: module: awb: Add bayes AWB support
To support the bayesian AWB algorithm in libtuning, the necessary data
needs to be collected and written to the tuning file.

Extend libtuning to calculate and output that additional data.

Prior probabilities and AwbModes are manually specified and not
calculated in the tuning process. Add sample values from the RaspberryPi
tuning files to the example config file.

Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
2025-02-21 17:35:03 +01:00

54 lines
No EOL
1.2 KiB
YAML

general:
disable: []
plot: []
alsc:
do_alsc_colour: 1
luminance_strength: 0.5
awb:
# Algorithm can either be 'grey' or 'bayes'
algorithm: bayes
# Priors is only used for the bayes algorithm. They are defined in
# logarithmic space. A good staring point is:
# - lux: 0
# ct: [ 2000, 3000, 13000 ]
# probability: [ 1.0, 0.0, 0.0 ]
# - lux: 800
# ct: [ 2000, 6000, 13000 ]
# probability: [ 0.0, 2.0, 2.0 ]
# - lux: 1500
# ct: [ 2000, 4000, 6000, 6500, 7000, 13000 ]
# probability: [ 0.0, 1.0, 6.0, 7.0, 1.0, 1.0 ]
priors:
- lux: 0
ct: [ 2000, 13000 ]
probability: [ 0.0, 0.0 ]
AwbMode:
AwbAuto:
lo: 2500
hi: 8000
AwbIncandescent:
lo: 2500
hi: 3000
AwbTungsten:
lo: 3000
hi: 3500
AwbFluorescent:
lo: 4000
hi: 4700
AwbIndoor:
lo: 3000
hi: 5000
AwbDaylight:
lo: 5500
hi: 6500
AwbCloudy:
lo: 6500
hi: 8000
# One custom mode can be defined if needed
#AwbCustom:
# lo: 2000
# hi: 1300
macbeth:
small: 1
show: 0
# blacklevel: 32