libcamera/src/android/camera_device.cpp
Jacopo Mondi 63336863c9 android: camera_device: Handle COLOR_CORRECTION_ABERRATION_MODE
Register the ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES
static metadata property inspecting the values retuned by the pipeline
handler.

Reserve in the static metadata pack enough space to support all the 3
available color correction aberration modes Android defines.

Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Signed-off-by: Jacopo Mondi <jacopo@jmondi.org>
2020-10-26 17:51:56 +01:00

1701 lines
50 KiB
C++

/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2019, Google Inc.
*
* camera_device.cpp - libcamera Android Camera Device
*/
#include "camera_device.h"
#include "camera_ops.h"
#include "post_processor.h"
#include <sys/mman.h>
#include <tuple>
#include <vector>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>
#include "libcamera/internal/formats.h"
#include "libcamera/internal/log.h"
#include "libcamera/internal/utils.h"
#include "camera_metadata.h"
#include "system/graphics.h"
using namespace libcamera;
namespace {
/*
* \var camera3Resolutions
* \brief The list of image resolutions defined as mandatory to be supported by
* the Android Camera3 specification
*/
const std::vector<Size> camera3Resolutions = {
{ 320, 240 },
{ 640, 480 },
{ 1280, 720 },
{ 1920, 1080 }
};
/*
* \struct Camera3Format
* \brief Data associated with an Android format identifier
* \var libcameraFormats List of libcamera pixel formats compatible with the
* Android format
* \var name The human-readable representation of the Android format code
*/
struct Camera3Format {
std::vector<PixelFormat> libcameraFormats;
bool mandatory;
const char *name;
};
/*
* \var camera3FormatsMap
* \brief Associate Android format code with ancillary data
*/
const std::map<int, const Camera3Format> camera3FormatsMap = {
{
HAL_PIXEL_FORMAT_BLOB, {
{ formats::MJPEG },
true,
"BLOB"
}
}, {
HAL_PIXEL_FORMAT_YCbCr_420_888, {
{ formats::NV12, formats::NV21 },
true,
"YCbCr_420_888"
}
}, {
/*
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
* usage flag. For now, copy the YCbCr_420 configuration.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
{ formats::NV12, formats::NV21 },
true,
"IMPLEMENTATION_DEFINED"
}
}, {
HAL_PIXEL_FORMAT_RAW10, {
{
formats::SBGGR10_CSI2P,
formats::SGBRG10_CSI2P,
formats::SGRBG10_CSI2P,
formats::SRGGB10_CSI2P
},
false,
"RAW10"
}
}, {
HAL_PIXEL_FORMAT_RAW12, {
{
formats::SBGGR12_CSI2P,
formats::SGBRG12_CSI2P,
formats::SGRBG12_CSI2P,
formats::SRGGB12_CSI2P
},
false,
"RAW12"
}
}, {
HAL_PIXEL_FORMAT_RAW16, {
{
formats::SBGGR16,
formats::SGBRG16,
formats::SGRBG16,
formats::SRGGB16
},
false,
"RAW16"
}
}, {
HAL_PIXEL_FORMAT_RAW_OPAQUE, {
{
formats::SBGGR10_IPU3,
formats::SGBRG10_IPU3,
formats::SGRBG10_IPU3,
formats::SRGGB10_IPU3
},
false,
"RAW_OPAQUE"
}
},
};
} /* namespace */
LOG_DECLARE_CATEGORY(HAL)
MappedCamera3Buffer::MappedCamera3Buffer(const buffer_handle_t camera3buffer,
int flags)
{
maps_.reserve(camera3buffer->numFds);
error_ = 0;
for (int i = 0; i < camera3buffer->numFds; i++) {
if (camera3buffer->data[i] == -1)
continue;
off_t length = lseek(camera3buffer->data[i], 0, SEEK_END);
if (length < 0) {
error_ = -errno;
LOG(HAL, Error) << "Failed to query plane length";
break;
}
void *address = mmap(nullptr, length, flags, MAP_SHARED,
camera3buffer->data[i], 0);
if (address == MAP_FAILED) {
error_ = -errno;
LOG(HAL, Error) << "Failed to mmap plane";
break;
}
maps_.emplace_back(static_cast<uint8_t *>(address),
static_cast<size_t>(length));
}
}
/*
* \struct Camera3RequestDescriptor
*
* A utility structure that groups information about a capture request to be
* later re-used at request complete time to notify the framework.
*/
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
Camera *camera, unsigned int frameNumber, unsigned int numBuffers)
: frameNumber_(frameNumber), numBuffers_(numBuffers)
{
buffers_ = new camera3_stream_buffer_t[numBuffers];
/*
* FrameBuffer instances created by wrapping a camera3 provided dmabuf
* are emplaced in this vector of unique_ptr<> for lifetime management.
*/
frameBuffers_.reserve(numBuffers);
/*
* Create the libcamera::Request unique_ptr<> to tie its lifetime
* to the descriptor's one. Set the descriptor's address as the
* request's cookie to retrieve it at completion time.
*/
request_ = std::make_unique<CaptureRequest>(camera,
reinterpret_cast<uint64_t>(this));
}
CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
{
delete[] buffers_;
}
/*
* \class CameraDevice
*
* The CameraDevice class wraps a libcamera::Camera instance, and implements
* the camera3_device_t interface, bridging calls received from the Android
* camera service to the CameraDevice.
*
* The class translates parameters and operations from the Camera HALv3 API to
* the libcamera API to provide static information for a Camera, create request
* templates for it, process capture requests and then deliver capture results
* back to the framework using the designated callbacks.
*/
CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
: id_(id), running_(false), camera_(camera), staticMetadata_(nullptr),
facing_(CAMERA_FACING_FRONT), orientation_(0)
{
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
/*
* \todo Determine a more accurate value for this during
* streamConfiguration.
*/
maxJpegBufferSize_ = 13 << 20; /* 13631488 from USB HAL */
}
CameraDevice::~CameraDevice()
{
if (staticMetadata_)
delete staticMetadata_;
for (auto &it : requestTemplates_)
delete it.second;
}
std::shared_ptr<CameraDevice> CameraDevice::create(unsigned int id,
const std::shared_ptr<Camera> &cam)
{
CameraDevice *camera = new CameraDevice(id, cam);
return std::shared_ptr<CameraDevice>(camera);
}
/*
* Initialize the camera static information.
* This method is called before the camera device is opened.
*/
int CameraDevice::initialize()
{
/* Initialize orientation and facing side of the camera. */
const ControlList &properties = camera_->properties();
if (properties.contains(properties::Location)) {
int32_t location = properties.get(properties::Location);
switch (location) {
case properties::CameraLocationFront:
facing_ = CAMERA_FACING_FRONT;
break;
case properties::CameraLocationBack:
facing_ = CAMERA_FACING_BACK;
break;
case properties::CameraLocationExternal:
facing_ = CAMERA_FACING_EXTERNAL;
break;
}
}
/*
* The Android orientation metadata specifies its rotation correction
* value in clockwise direction whereas libcamera specifies the
* rotation property in anticlockwise direction. Read the libcamera's
* rotation property (anticlockwise) and compute the corresponding
* value for clockwise direction as required by the Android orientation
* metadata.
*/
if (properties.contains(properties::Rotation)) {
int rotation = properties.get(properties::Rotation);
orientation_ = (360 - rotation) % 360;
}
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
return ret;
}
ret = initializeStreamConfigurations();
camera_->release();
return ret;
}
std::vector<Size> CameraDevice::getYUVResolutions(CameraConfiguration *cameraConfig,
const PixelFormat &pixelFormat,
const std::vector<Size> &resolutions)
{
std::vector<Size> supportedResolutions;
StreamConfiguration &cfg = cameraConfig->at(0);
for (const Size &res : resolutions) {
cfg.pixelFormat = pixelFormat;
cfg.size = res;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Valid) {
LOG(HAL, Debug) << cfg.toString() << " not supported";
continue;
}
LOG(HAL, Debug) << cfg.toString() << " supported";
supportedResolutions.push_back(res);
}
return supportedResolutions;
}
std::vector<Size> CameraDevice::getRawResolutions(const libcamera::PixelFormat &pixelFormat)
{
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
StreamConfiguration &cfg = cameraConfig->at(0);
const StreamFormats &formats = cfg.formats();
std::vector<Size> supportedResolutions = formats.sizes(pixelFormat);
return supportedResolutions;
}
/*
* Initialize the format conversion map to translate from Android format
* identifier to libcamera pixel formats and fill in the list of supported
* stream configurations to be reported to the Android camera framework through
* the static stream configuration metadata.
*/
int CameraDevice::initializeStreamConfigurations()
{
/*
* Get the maximum output resolutions
* \todo Get this from the camera properties once defined
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StillCapture });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get maximum resolution";
return -EINVAL;
}
StreamConfiguration &cfg = cameraConfig->at(0);
/*
* \todo JPEG - Adjust the maximum available resolution by taking the
* JPEG encoder requirements into account (alignment and aspect ratio).
*/
const Size maxRes = cfg.size;
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
/*
* Build the list of supported image resolutions.
*
* The resolutions listed in camera3Resolution are mandatory to be
* supported, up to the camera maximum resolution.
*
* Augment the list by adding resolutions calculated from the camera
* maximum one.
*/
std::vector<Size> cameraResolutions;
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
std::back_inserter(cameraResolutions),
[&](const Size &res) { return res < maxRes; });
/*
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
* resolution.
*/
for (unsigned int divider = 2;; divider <<= 1) {
Size derivedSize{
maxRes.width / divider,
maxRes.height / divider,
};
if (derivedSize.width < 320 ||
derivedSize.height < 240)
break;
cameraResolutions.push_back(derivedSize);
}
cameraResolutions.push_back(maxRes);
/* Remove duplicated entries from the list of supported resolutions. */
std::sort(cameraResolutions.begin(), cameraResolutions.end());
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
cameraResolutions.erase(last, cameraResolutions.end());
/*
* Build the list of supported camera formats.
*
* To each Android format a list of compatible libcamera formats is
* associated. The first libcamera format that tests successful is added
* to the format translation map used when configuring the streams.
* It is then tested against the list of supported camera resolutions to
* build the stream configuration map reported through the camera static
* metadata.
*/
for (const auto &format : camera3FormatsMap) {
int androidFormat = format.first;
const Camera3Format &camera3Format = format.second;
const std::vector<PixelFormat> &libcameraFormats =
camera3Format.libcameraFormats;
LOG(HAL, Debug) << "Trying to map Android format "
<< camera3Format.name;
/*
* JPEG is always supported, either produced directly by the
* camera, or encoded in the HAL.
*/
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
formatsMap_[androidFormat] = formats::MJPEG;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< formats::MJPEG.toString()
<< " (fixed mapping)";
continue;
}
/*
* Test the libcamera formats that can produce images
* compatible with the format defined by Android.
*/
PixelFormat mappedFormat;
for (const PixelFormat &pixelFormat : libcameraFormats) {
LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
/*
* The stream configuration size can be adjusted,
* not the pixel format.
*
* \todo This could be simplified once all pipeline
* handlers will report the StreamFormats list of
* supported formats.
*/
cfg.pixelFormat = pixelFormat;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Invalid &&
cfg.pixelFormat == pixelFormat) {
mappedFormat = pixelFormat;
break;
}
}
if (!mappedFormat.isValid()) {
/* If the format is not mandatory, skip it. */
if (!camera3Format.mandatory)
continue;
LOG(HAL, Error)
<< "Failed to map mandatory Android format "
<< camera3Format.name << " ("
<< utils::hex(androidFormat) << "): aborting";
return -EINVAL;
}
/*
* Record the mapping and then proceed to generate the
* stream configurations map, by testing the image resolutions.
*/
formatsMap_[androidFormat] = mappedFormat;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< mappedFormat.toString();
std::vector<Size> resolutions;
const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
resolutions = getRawResolutions(mappedFormat);
else
resolutions = getYUVResolutions(cameraConfig.get(),
mappedFormat,
cameraResolutions);
for (const Size &res : resolutions) {
streamConfigurations_.push_back({ res, androidFormat });
/*
* If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
* from which JPEG is produced, add an entry for
* the JPEG stream.
*
* \todo Wire the JPEG encoder to query the supported
* sizes provided a list of formats it can encode.
*
* \todo Support JPEG streams produced by the Camera
* natively.
*/
if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888)
streamConfigurations_.push_back(
{ res, HAL_PIXEL_FORMAT_BLOB });
}
}
LOG(HAL, Debug) << "Collected stream configuration map: ";
for (const auto &entry : streamConfigurations_)
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
<< utils::hex(entry.androidFormat) << " }";
return 0;
}
/*
* Open a camera device. The static information on the camera shall have been
* initialized with a call to CameraDevice::initialize().
*/
int CameraDevice::open(const hw_module_t *hardwareModule)
{
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to acquire the camera";
return ret;
}
/* Initialize the hw_device_t in the instance camera3_module_t. */
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
camera3Device_.common.module = (hw_module_t *)hardwareModule;
camera3Device_.common.close = hal_dev_close;
/*
* The camera device operations. These actually implement
* the Android Camera HALv3 interface.
*/
camera3Device_.ops = &hal_dev_ops;
camera3Device_.priv = this;
return 0;
}
void CameraDevice::close()
{
streams_.clear();
worker_.stop();
camera_->stop();
camera_->release();
running_ = false;
}
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
callbacks_ = callbacks;
}
std::tuple<uint32_t, uint32_t> CameraDevice::calculateStaticMetadataSize()
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 51 entries, 687 bytes of static metadata
*/
uint32_t numEntries = 51;
uint32_t byteSize = 693;
/*
* Calculate space occupation in bytes for dynamically built metadata
* entries.
*
* Each stream configuration entry requires 52 bytes:
* 4 32bits integers for ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS
* 4 64bits integers for ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS
*/
byteSize += streamConfigurations_.size() * 48;
return std::make_tuple(numEntries, byteSize);
}
/*
* Return static information for the camera.
*/
const camera_metadata_t *CameraDevice::getStaticMetadata()
{
if (staticMetadata_)
return staticMetadata_->get();
/*
* The here reported metadata are enough to implement a basic capture
* example application, but a real camera implementation will require
* more.
*/
uint32_t numEntries;
uint32_t byteSize;
std::tie(numEntries, byteSize) = calculateStaticMetadataSize();
staticMetadata_ = new CameraMetadata(numEntries, byteSize);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
const ControlInfoMap &controlsInfo = camera_->controls();
/* Color correction static metadata. */
{
std::vector<uint8_t> data(3);
const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
data.data(), data.size());
}
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes.data(),
aeAvailableAntiBandingModes.size());
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes.data(),
aeAvailableModes.size());
std::vector<int32_t> availableAeFpsTarget = {
15, 30,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget.data(),
availableAeFpsTarget.size());
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange.data(),
aeCompensationRange.size());
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep, 1);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes.data(),
availableAfModes.size());
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects.data(),
availableEffects.size());
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes.data(),
availableSceneModes.size());
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes.data(),
availableStabilizationModes.size());
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes.data(),
availableAwbModes.size());
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions.data(),
availableMaxRegions.size());
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride.data(),
sceneModesOverride.size());
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
&aeLockAvailable, 1);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
&awbLockAvailable, 1);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
&availableControlModes, 1);
/* JPEG static metadata. */
std::vector<int32_t> availableThumbnailSizes = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
availableThumbnailSizes.data(),
availableThumbnailSizes.size());
/*
* \todo Calculate the maximum JPEG buffer size by asking the encoder
* giving the maximum frame size required.
*/
staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, &maxJpegBufferSize_, 1);
/* Sensor static metadata. */
int32_t pixelArraySize[] = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
&pixelArraySize, 2);
int32_t sensorSizes[] = {
0, 0, 2560, 1920,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
&sensorSizes, 4);
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
&sensitivityRange, 2);
uint16_t filterArr = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_GRBG;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&filterArr, 1);
int64_t exposureTimeRange[] = {
100000, 200000000,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
&exposureTimeRange, 2);
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, &orientation_, 1);
std::vector<int32_t> testPatterModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatterModes.data(),
testPatterModes.size());
std::vector<float> physicalSize = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize.data(),
physicalSize.size());
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
&timestampSource, 1);
/* Statistics static metadata. */
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
&faceDetectMode, 1);
int32_t maxFaceCount = 0;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
&maxFaceCount, 1);
/* Sync static metadata. */
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
&flashAvailable, 1);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures.data(),
lensApertures.size());
uint8_t lensFacing;
switch (facing_) {
default:
case CAMERA_FACING_FRONT:
lensFacing = ANDROID_LENS_FACING_FRONT;
break;
case CAMERA_FACING_BACK:
lensFacing = ANDROID_LENS_FACING_BACK;
break;
case CAMERA_FACING_EXTERNAL:
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
break;
}
staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);
std::vector<float> lensFocalLenghts = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLenghts.data(),
lensFocalLenghts.size());
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations.data(),
opticalStabilizations.size());
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
&hypeFocalDistance, 1);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
&minFocusDistance, 1);
/* Noise reduction modes. */
{
std::vector<uint8_t> data(5);
const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
data.data(), data.size());
}
/* Scaler static metadata. */
float maxDigitalZoom = 1;
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
&maxDigitalZoom, 1);
std::vector<uint32_t> availableStreamConfigurations;
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
availableStreamConfigurations.push_back(entry.androidFormat);
availableStreamConfigurations.push_back(entry.resolution.width);
availableStreamConfigurations.push_back(entry.resolution.height);
availableStreamConfigurations.push_back(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations.data(),
availableStreamConfigurations.size());
std::vector<int64_t> availableStallDurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations.data(),
availableStallDurations.size());
/* \todo Collect the minimum frame duration from the camera. */
std::vector<int64_t> minFrameDurations;
minFrameDurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
minFrameDurations.push_back(entry.androidFormat);
minFrameDurations.push_back(entry.resolution.width);
minFrameDurations.push_back(entry.resolution.height);
minFrameDurations.push_back(33333333);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations.data(),
minFrameDurations.size());
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
/* Info static metadata. */
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
&supportedHWLevel, 1);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
&partialResultCount, 1);
{
/* Default the value to 2 if not reported by the camera. */
uint8_t maxPipelineDepth = 2;
const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
if (infoMap != controlsInfo.end())
maxPipelineDepth = infoMap->second.max().get<int32_t>();
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
&maxPipelineDepth, 1);
}
/* LIMITED does not support reprocessing. */
uint32_t maxNumInputStreams = 0;
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
&maxNumInputStreams, 1);
std::vector<uint8_t> availableCapabilities = {
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
};
/* Report if camera supports RAW. */
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
if (cameraConfig && !cameraConfig->empty()) {
const PixelFormatInfo &info =
PixelFormatInfo::info(cameraConfig->at(0).pixelFormat);
if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
}
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
availableCapabilities.data(),
availableCapabilities.size());
std::vector<int32_t> availableCharacteristicsKeys = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_JPEG_MAX_SIZE,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
availableCharacteristicsKeys.data(),
availableCharacteristicsKeys.size());
std::vector<int32_t> availableRequestKeys = {
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_FLASH_MODE,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
availableRequestKeys.data(),
availableRequestKeys.size());
std::vector<int32_t> availableResultKeys = {
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_LENS_STATE,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
ANDROID_JPEG_SIZE,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_ORIENTATION,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
availableResultKeys.data(),
availableResultKeys.size());
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
return staticMetadata_->get();
}
CameraMetadata *CameraDevice::requestTemplatePreview()
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 20 entries, 35 bytes
*/
CameraMetadata *requestTemplate = new CameraMetadata(20, 35);
if (!requestTemplate->isValid()) {
delete requestTemplate;
return nullptr;
}
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
&aeMode, 1);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
&aeExposureCompensation, 1);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
&aePrecaptureTrigger, 1);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
&aeLock, 1);
std::vector<int32_t> aeFpsTarget = {
15, 30,
};
requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
aeFpsTarget.data(),
aeFpsTarget.size());
uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
&aeAntibandingMode, 1);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
&afTrigger, 1);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
&awbMode, 1);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
&awbLock, 1);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE,
&flashMode, 1);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
&faceDetectMode, 1);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
&noiseReduction, 1);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
&aberrationMode, 1);
uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_MODE, &controlMode, 1);
float lensAperture = 2.53 / 100;
requestTemplate->addEntry(ANDROID_LENS_APERTURE, &lensAperture, 1);
uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
&opticalStabilization, 1);
uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
&captureIntent, 1);
return requestTemplate;
}
/*
* Produce a metadata pack to be used as template for a capture request.
*/
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
auto it = requestTemplates_.find(type);
if (it != requestTemplates_.end())
return it->second->get();
/* Use the capture intent matching the requested template type. */
CameraMetadata *requestTemplate;
uint8_t captureIntent;
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
break;
case CAMERA3_TEMPLATE_MANUAL:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
break;
default:
LOG(HAL, Error) << "Invalid template request type: " << type;
return nullptr;
}
requestTemplate = requestTemplatePreview();
if (!requestTemplate || !requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to construct request template";
delete requestTemplate;
return nullptr;
}
requestTemplate->updateEntry(ANDROID_CONTROL_CAPTURE_INTENT,
&captureIntent, 1);
requestTemplates_[type] = requestTemplate;
return requestTemplate->get();
}
PixelFormat CameraDevice::toPixelFormat(int format)
{
/* Translate Android format code to libcamera pixel format. */
auto it = formatsMap_.find(format);
if (it == formatsMap_.end()) {
LOG(HAL, Error) << "Requested format " << utils::hex(format)
<< " not supported";
return PixelFormat();
}
return it->second;
}
/*
* Inspect the stream_list to produce a list of StreamConfiguration to
* be use to configure the Camera.
*/
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
/*
* Generate an empty configuration, and construct a StreamConfiguration
* for each camera3_stream to add to it.
*/
config_ = camera_->generateConfiguration();
if (!config_) {
LOG(HAL, Error) << "Failed to generate camera configuration";
return -EINVAL;
}
/*
* Clear and remove any existing configuration from previous calls, and
* ensure the required entries are available without further
* reallocation.
*/
streams_.clear();
streams_.reserve(stream_list->num_streams);
/* First handle all non-MJPEG streams. */
camera3_stream_t *jpegStream = nullptr;
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
camera3_stream_t *stream = stream_list->streams[i];
Size size(stream->width, stream->height);
PixelFormat format = toPixelFormat(stream->format);
LOG(HAL, Info) << "Stream #" << i
<< ", direction: " << stream->stream_type
<< ", width: " << stream->width
<< ", height: " << stream->height
<< ", format: " << utils::hex(stream->format)
<< " (" << format.toString() << ")";
if (!format.isValid())
return -EINVAL;
/* Defer handling of MJPEG streams until all others are known. */
if (stream->format == HAL_PIXEL_FORMAT_BLOB) {
if (jpegStream) {
LOG(HAL, Error)
<< "Multiple JPEG streams are not supported";
return -EINVAL;
}
jpegStream = stream;
continue;
}
StreamConfiguration streamConfiguration;
streamConfiguration.size = size;
streamConfiguration.pixelFormat = format;
config_->addConfiguration(streamConfiguration);
streams_.emplace_back(this, CameraStream::Type::Direct,
stream, config_->size() - 1);
stream->priv = static_cast<void *>(&streams_.back());
}
/* Now handle the MJPEG streams, adding a new stream if required. */
if (jpegStream) {
CameraStream::Type type;
int index = -1;
/* Search for a compatible stream in the non-JPEG ones. */
for (unsigned int i = 0; i < config_->size(); i++) {
StreamConfiguration &cfg = config_->at(i);
/*
* \todo The PixelFormat must also be compatible with
* the encoder.
*/
if (cfg.size.width != jpegStream->width ||
cfg.size.height != jpegStream->height)
continue;
LOG(HAL, Info)
<< "Android JPEG stream mapped to libcamera stream " << i;
type = CameraStream::Type::Mapped;
index = i;
break;
}
/*
* Without a compatible match for JPEG encoding we must
* introduce a new stream to satisfy the request requirements.
*/
if (index < 0) {
StreamConfiguration streamConfiguration;
/*
* \todo The pixelFormat should be a 'best-fit' choice
* and may require a validation cycle. This is not yet
* handled, and should be considered as part of any
* stream configuration reworks.
*/
streamConfiguration.size.width = jpegStream->width;
streamConfiguration.size.height = jpegStream->height;
streamConfiguration.pixelFormat = formats::NV12;
LOG(HAL, Info) << "Adding " << streamConfiguration.toString()
<< " for MJPEG support";
type = CameraStream::Type::Internal;
config_->addConfiguration(streamConfiguration);
index = config_->size() - 1;
}
streams_.emplace_back(this, type, jpegStream, index);
jpegStream->priv = static_cast<void *>(&streams_.back());
}
switch (config_->validate()) {
case CameraConfiguration::Valid:
break;
case CameraConfiguration::Adjusted:
LOG(HAL, Info) << "Camera configuration adjusted";
for (const StreamConfiguration &cfg : *config_)
LOG(HAL, Info) << " - " << cfg.toString();
config_.reset();
return -EINVAL;
case CameraConfiguration::Invalid:
LOG(HAL, Info) << "Camera configuration invalid";
config_.reset();
return -EINVAL;
}
/*
* Once the CameraConfiguration has been adjusted/validated
* it can be applied to the camera.
*/
int ret = camera_->configure(config_.get());
if (ret) {
LOG(HAL, Error) << "Failed to configure camera '"
<< camera_->id() << "'";
return ret;
}
/*
* Configure the HAL CameraStream instances using the associated
* StreamConfiguration and set the number of required buffers in
* the Android camera3_stream_t.
*/
for (CameraStream &cameraStream : streams_) {
ret = cameraStream.configure();
if (ret) {
LOG(HAL, Error) << "Failed to configure camera stream";
return ret;
}
}
return 0;
}
FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
{
std::vector<FrameBuffer::Plane> planes;
for (int i = 0; i < camera3buffer->numFds; i++) {
/* Skip unused planes. */
if (camera3buffer->data[i] == -1)
break;
FrameBuffer::Plane plane;
plane.fd = FileDescriptor(camera3buffer->data[i]);
if (!plane.fd.isValid()) {
LOG(HAL, Error) << "Failed to obtain FileDescriptor ("
<< camera3buffer->data[i] << ") "
<< " on plane " << i;
return nullptr;
}
off_t length = lseek(plane.fd.fd(), 0, SEEK_END);
if (length == -1) {
LOG(HAL, Error) << "Failed to query plane length";
return nullptr;
}
plane.length = length;
planes.push_back(std::move(plane));
}
return new FrameBuffer(std::move(planes));
}
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
if (!camera3Request->num_output_buffers) {
LOG(HAL, Error) << "No output buffers provided";
return -EINVAL;
}
/* Start the camera if that's the first request we handle. */
if (!running_) {
worker_.start();
int ret = camera_->start();
if (ret) {
LOG(HAL, Error) << "Failed to start camera";
return ret;
}
running_ = true;
}
/*
* Queue a request for the Camera with the provided dmabuf file
* descriptors.
*/
const camera3_stream_buffer_t *camera3Buffers =
camera3Request->output_buffers;
/*
* Save the request descriptors for use at completion time.
* The descriptor and the associated memory reserved here are freed
* at request complete time.
*/
Camera3RequestDescriptor *descriptor =
new Camera3RequestDescriptor(camera_.get(), camera3Request->frame_number,
camera3Request->num_output_buffers);
LOG(HAL, Debug) << "Queueing Request to libcamera with "
<< descriptor->numBuffers_ << " HAL streams";
for (unsigned int i = 0; i < descriptor->numBuffers_; ++i) {
camera3_stream *camera3Stream = camera3Buffers[i].stream;
CameraStream *cameraStream =
static_cast<CameraStream *>(camera3Buffers[i].stream->priv);
/*
* Keep track of which stream the request belongs to and store
* the native buffer handles.
*/
descriptor->buffers_[i].stream = camera3Buffers[i].stream;
descriptor->buffers_[i].buffer = camera3Buffers[i].buffer;
std::stringstream ss;
ss << i << " - (" << camera3Stream->width << "x"
<< camera3Stream->height << ")"
<< "[" << utils::hex(camera3Stream->format) << "] -> "
<< "(" << cameraStream->configuration().size.toString() << ")["
<< cameraStream->configuration().pixelFormat.toString() << "]";
/*
* Inspect the camera stream type, create buffers opportunely
* and add them to the Request if required.
*/
FrameBuffer *buffer = nullptr;
switch (cameraStream->type()) {
case CameraStream::Type::Mapped:
/*
* Mapped streams don't need buffers added to the
* Request.
*/
LOG(HAL, Debug) << ss.str() << " (mapped)";
continue;
case CameraStream::Type::Direct:
/*
* Create a libcamera buffer using the dmabuf
* descriptors of the camera3Buffer for each stream and
* associate it with the Camera3RequestDescriptor for
* lifetime management only.
*/
buffer = createFrameBuffer(*camera3Buffers[i].buffer);
descriptor->frameBuffers_.emplace_back(buffer);
LOG(HAL, Debug) << ss.str() << " (direct)";
break;
case CameraStream::Type::Internal:
/*
* Get the frame buffer from the CameraStream internal
* buffer pool.
*
* The buffer has to be returned to the CameraStream
* once it has been processed.
*/
buffer = cameraStream->getBuffer();
LOG(HAL, Debug) << ss.str() << " (internal)";
break;
}
if (!buffer) {
LOG(HAL, Error) << "Failed to create buffer";
delete descriptor;
return -ENOMEM;
}
descriptor->request_->addBuffer(cameraStream->stream(), buffer,
camera3Buffers[i].acquire_fence);
}
/* Queue the request to the CameraWorker. */
worker_.queueRequest(descriptor->request_.get());
return 0;
}
void CameraDevice::requestComplete(Request *request)
{
const Request::BufferMap &buffers = request->buffers();
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
std::unique_ptr<CameraMetadata> resultMetadata;
Camera3RequestDescriptor *descriptor =
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
if (request->status() != Request::RequestComplete) {
LOG(HAL, Error) << "Request not successfully completed: "
<< request->status();
status = CAMERA3_BUFFER_STATUS_ERROR;
}
/*
* \todo The timestamp used for the metadata is currently always taken
* from the first buffer (which may be the first stream) in the Request.
* It might be appropriate to return a 'correct' (as determined by
* pipeline handlers) timestamp in the Request itself.
*/
uint64_t timestamp = buffers.at(0)->metadata().timestamp;
resultMetadata = getResultMetadata(descriptor->frameNumber_, timestamp);
/* Handle any JPEG compression. */
for (unsigned int i = 0; i < descriptor->numBuffers_; ++i) {
CameraStream *cameraStream =
static_cast<CameraStream *>(descriptor->buffers_[i].stream->priv);
if (cameraStream->camera3Stream().format != HAL_PIXEL_FORMAT_BLOB)
continue;
FrameBuffer *buffer = request->findBuffer(cameraStream->stream());
if (!buffer) {
LOG(HAL, Error) << "Failed to find a source stream buffer";
continue;
}
/*
* \todo Buffer mapping and compression should be moved to a
* separate thread.
*/
MappedCamera3Buffer mapped(*descriptor->buffers_[i].buffer,
PROT_READ | PROT_WRITE);
if (!mapped.isValid()) {
LOG(HAL, Error) << "Failed to mmap android blob buffer";
continue;
}
int ret = cameraStream->process(*buffer, &mapped,
resultMetadata.get());
if (ret) {
status = CAMERA3_BUFFER_STATUS_ERROR;
continue;
}
/*
* Return the FrameBuffer to the CameraStream now that we're
* done processing it.
*/
if (cameraStream->type() == CameraStream::Type::Internal)
cameraStream->putBuffer(buffer);
}
/* Prepare to call back the Android camera stack. */
camera3_capture_result_t captureResult = {};
captureResult.frame_number = descriptor->frameNumber_;
captureResult.num_output_buffers = descriptor->numBuffers_;
for (unsigned int i = 0; i < descriptor->numBuffers_; ++i) {
descriptor->buffers_[i].acquire_fence = -1;
descriptor->buffers_[i].release_fence = -1;
descriptor->buffers_[i].status = status;
}
captureResult.output_buffers =
const_cast<const camera3_stream_buffer_t *>(descriptor->buffers_);
if (status == CAMERA3_BUFFER_STATUS_OK) {
notifyShutter(descriptor->frameNumber_, timestamp);
captureResult.partial_result = 1;
captureResult.result = resultMetadata->get();
}
if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
/* \todo Improve error handling. In case we notify an error
* because the metadata generation fails, a shutter event has
* already been notified for this frame number before the error
* is here signalled. Make sure the error path plays well with
* the camera stack state machine.
*/
notifyError(descriptor->frameNumber_,
descriptor->buffers_[0].stream);
}
callbacks_->process_capture_result(callbacks_, &captureResult);
delete descriptor;
}
std::string CameraDevice::logPrefix() const
{
return "'" + camera_->id() + "'";
}
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_SHUTTER;
notify.message.shutter.frame_number = frameNumber;
notify.message.shutter.timestamp = timestamp;
callbacks_->notify(callbacks_, &notify);
}
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
{
camera3_notify_msg_t notify = {};
/*
* \todo Report and identify the stream number or configuration to
* clarify the stream that failed.
*/
LOG(HAL, Error) << "Error occurred on frame " << frameNumber << " ("
<< toPixelFormat(stream->format).toString() << ")";
notify.type = CAMERA3_MSG_ERROR;
notify.message.error.error_stream = stream;
notify.message.error.frame_number = frameNumber;
notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
callbacks_->notify(callbacks_, &notify);
}
/*
* Produce a set of fixed result metadata.
*/
std::unique_ptr<CameraMetadata>
CameraDevice::getResultMetadata([[maybe_unused]] int frame_number,
int64_t timestamp)
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 18 entries, 62 bytes
*/
std::unique_ptr<CameraMetadata> resultMetadata =
std::make_unique<CameraMetadata>(18, 62);
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
return nullptr;
}
const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &ae_state, 1);
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &af_state, 1);
const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &awb_state, 1);
const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &awb_lock, 1);
const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
resultMetadata->addEntry(ANDROID_LENS_STATE, &lens_state, 1);
int32_t sensorSizes[] = {
0, 0, 2560, 1920,
};
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, sensorSizes, 4);
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, &timestamp, 1);
/* 33.3 msec */
const int64_t rolling_shutter_skew = 33300000;
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
&rolling_shutter_skew, 1);
/* 16.6 msec */
const int64_t exposure_time = 16600000;
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
const uint8_t lens_shading_map_mode =
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
&lens_shading_map_mode, 1);
const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
&scene_flicker, 1);
/*
* Return the result metadata pack even is not valid: get() will return
* nullptr.
*/
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to construct result metadata";
}
return resultMetadata;
}