libcamera/src/android/camera_stream.cpp
Laurent Pinchart 640bf94d02 android: camera_stream: Pass StreamBuffer to process()
Now that we have a proper structure to model a stream buffer, pass it to
CameraStream::process() instead of the camera3_stream_buffer_t. This
will allow accessing other members of StreamBuffer in subsequent
commits.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Jacopo Mondi <jacopo@jmondi.org>
Reviewed-by: Hirokazu Honda <hiroh@chromium.org>
Signed-off-by: Umang Jain <umang.jain@ideasonboard.com>
2021-10-19 19:15:33 +05:30

206 lines
5.1 KiB
C++

/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2020, Google Inc.
*
* camera_stream.cpp - Camera HAL stream
*/
#include "camera_stream.h"
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <unistd.h>
#include <libcamera/formats.h>
#include "jpeg/post_processor_jpeg.h"
#include "yuv/post_processor_yuv.h"
#include "camera_buffer.h"
#include "camera_capabilities.h"
#include "camera_device.h"
#include "camera_metadata.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
/*
* \class CameraStream
* \brief Map a camera3_stream_t to a StreamConfiguration
*
* The CameraStream class maps a camera3_stream_t provided by Android
* camera framework to a libcamera::StreamConfiguration.
*
* The StreamConfiguration is represented by its index as recorded in the
* CameraConfiguration and not by pointer as StreamConfiguration is subject to
* relocation.
*
* A single StreamConfiguration may be used to deliver one or more streams to
* the Android framework. The mapping type between a camera3 stream to a
* StreamConfiguration is described by the CameraStream::Type.
*
* CameraStream handles all the aspects of producing a stream with the size
* and format requested by the camera3 stream from the data produced by
* the associated libcamera::Stream, including the creation of the encoder
* and buffer allocation.
*/
CameraStream::CameraStream(CameraDevice *const cameraDevice,
CameraConfiguration *config, Type type,
camera3_stream_t *camera3Stream, unsigned int index)
: cameraDevice_(cameraDevice), config_(config), type_(type),
camera3Stream_(camera3Stream), index_(index)
{
}
const StreamConfiguration &CameraStream::configuration() const
{
return config_->at(index_);
}
Stream *CameraStream::stream() const
{
return configuration().stream();
}
int CameraStream::configure()
{
if (type_ == Type::Internal || type_ == Type::Mapped) {
const PixelFormat outFormat =
cameraDevice_->capabilities()->toPixelFormat(camera3Stream_->format);
StreamConfiguration output = configuration();
output.pixelFormat = outFormat;
output.size.width = camera3Stream_->width;
output.size.height = camera3Stream_->height;
switch (outFormat) {
case formats::NV12:
postProcessor_ = std::make_unique<PostProcessorYuv>();
break;
case formats::MJPEG:
postProcessor_ = std::make_unique<PostProcessorJpeg>(cameraDevice_);
break;
default:
LOG(HAL, Error) << "Unsupported format: " << outFormat;
return -EINVAL;
}
int ret = postProcessor_->configure(configuration(), output);
if (ret)
return ret;
}
if (type_ == Type::Internal) {
allocator_ = std::make_unique<FrameBufferAllocator>(cameraDevice_->camera());
mutex_ = std::make_unique<std::mutex>();
int ret = allocator_->allocate(stream());
if (ret < 0)
return ret;
/* Save a pointer to the reserved frame buffers */
for (const auto &frameBuffer : allocator_->buffers(stream()))
buffers_.push_back(frameBuffer.get());
}
camera3Stream_->max_buffers = configuration().bufferCount;
return 0;
}
int CameraStream::waitFence(int fence)
{
/*
* \todo The implementation here is copied from camera_worker.cpp
* and both should be removed once libcamera is instrumented to handle
* fences waiting in the core.
*
* \todo Better characterize the timeout. Currently equal to the one
* used by the Rockchip Camera HAL on ChromeOS.
*/
constexpr unsigned int timeoutMs = 300;
struct pollfd fds = { fence, POLLIN, 0 };
do {
int ret = poll(&fds, 1, timeoutMs);
if (ret == 0)
return -ETIME;
if (ret > 0) {
if (fds.revents & (POLLERR | POLLNVAL))
return -EINVAL;
return 0;
}
} while (errno == EINTR || errno == EAGAIN);
return -errno;
}
int CameraStream::process(const FrameBuffer &source,
Camera3RequestDescriptor::StreamBuffer &dest,
Camera3RequestDescriptor *request)
{
/* Handle waiting on fences on the destination buffer. */
int fence = dest.buffer.acquire_fence;
if (fence != -1) {
int ret = waitFence(fence);
::close(fence);
dest.buffer.acquire_fence = -1;
if (ret < 0) {
LOG(HAL, Error) << "Failed waiting for fence: "
<< fence << ": " << strerror(-ret);
return ret;
}
}
if (!postProcessor_)
return 0;
/*
* \todo Buffer mapping and processing should be moved to a
* separate thread.
*/
const StreamConfiguration &output = configuration();
CameraBuffer destBuffer(*dest.buffer.buffer, output.pixelFormat,
output.size, PROT_READ | PROT_WRITE);
if (!destBuffer.isValid()) {
LOG(HAL, Error) << "Failed to create destination buffer";
return -EINVAL;
}
return postProcessor_->process(source, &destBuffer, request);
}
FrameBuffer *CameraStream::getBuffer()
{
if (!allocator_)
return nullptr;
std::lock_guard<std::mutex> locker(*mutex_);
if (buffers_.empty()) {
LOG(HAL, Error) << "Buffer underrun";
return nullptr;
}
FrameBuffer *buffer = buffers_.back();
buffers_.pop_back();
return buffer;
}
void CameraStream::putBuffer(FrameBuffer *buffer)
{
if (!allocator_)
return;
std::lock_guard<std::mutex> locker(*mutex_);
buffers_.push_back(buffer);
}