Working on SoftISP
The version of the v4l2-controls.h header file shipped by libcamera had deviated from the upstream one, as it included definitions for v4l2 controls that report camera properties, which were not accepted upstream at the time the header file was updated. Now that the controls definition has been accepted in the master branch of the linux-media kernel tree, update include/linux/v4l2-controls.h with the upstream-accepted definition of the control ids that describe camera properties. The control definition has been imported from the Linux kernel header files generated from the most recent linux-media master branch, at revision ad3a44cbd1b2e ("media: i2c: imx219: Parse and register properties") Instead of updating the whole header, just update the definition of V4L2 controls that describe camera properties. A full header update will be performed at a future Linux kernel release. Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Jacopo Mondi <jacopo@jmondi.org> |
||
---|---|---|
Documentation | ||
include | ||
LICENSES | ||
package/gentoo/media-libs/libcamera | ||
src | ||
test | ||
utils | ||
.clang-format | ||
.gitignore | ||
meson.build | ||
meson_options.txt | ||
README.rst |
.. SPDX-License-Identifier: CC-BY-SA-4.0 .. section-begin-libcamera =========== libcamera =========== **A complex camera support library for Linux, Android, and ChromeOS** Cameras are complex devices that need heavy hardware image processing operations. Control of the processing is based on advanced algorithms that must run on a programmable processor. This has traditionally been implemented in a dedicated MCU in the camera, but in embedded devices algorithms have been moved to the main CPU to save cost. Blurring the boundary between camera devices and Linux often left the user with no other option than a vendor-specific closed-source solution. To address this problem the Linux media community has very recently started collaboration with the industry to develop a camera stack that will be open-source-friendly while still protecting vendor core IP. libcamera was born out of that collaboration and will offer modern camera support to Linux-based systems, including traditional Linux distributions, ChromeOS and Android. .. section-end-libcamera .. section-begin-getting-started Getting Started --------------- To fetch the sources, build and install: :: git clone git://linuxtv.org/libcamera.git cd libcamera meson build ninja -C build install Dependencies ~~~~~~~~~~~~ The following Debian/Ubuntu packages are required for building libcamera. Other distributions may have differing package names: A C++ toolchain: [required] Either {g++, clang} for libcamera: [required] meson (>= 0.47) ninja-build python3-yaml If your distribution doesn't provide a recent enough version of meson, you can install or upgrade it using pip3. .. code:: pip3 install --user meson pip3 install --user --upgrade meson for device hotplug enumeration: [optional] pkg-config libudev-dev for documentation: [optional] python3-sphinx doxygen for gstreamer: [optional] libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev for IPA module signing: [required] libgnutls28-dev openssl for qcam: [optional] qtbase5-dev libqt5core5a libqt5gui5 libqt5widgets5 Using GStreamer plugin ~~~~~~~~~~~~~~~~~~~~~~ To use GStreamer plugin from source tree, set the following environment so that GStreamer can find it. export GST_PLUGIN_PATH=$(pwd)/build/src/gstreamer The debugging tool `gst-launch-1.0` can be used to construct and pipeline and test it. The following pipeline will stream from the camera named "Camera 1" onto the default video display element on your system. .. code:: gst-launch-1.0 libcamerasrc camera-name="Camera 1" ! videoconvert ! autovideosink .. section-end-getting-started