Previously, the exposure value was calculated based on the estimated shutter time and gain applied. Now that we have the real values for the current frame, use those before estimating the next one and rename the variable accordingly. As the exposure value is updated in the beginning of the computation, there is no need to initialize effectiveExposureValue anymore in the configure call, and it can be a local variable and not a class variable anymore. Signed-off-by: Jean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: Umang Jain <umang.jain@ideasonboard.com> Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
361 lines
12 KiB
C++
361 lines
12 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
||
/*
|
||
* Copyright (C) 2021, Ideas On Board
|
||
*
|
||
* ipu3_agc.cpp - AGC/AEC mean-based control algorithm
|
||
*/
|
||
|
||
#include "agc.h"
|
||
|
||
#include <algorithm>
|
||
#include <chrono>
|
||
#include <cmath>
|
||
|
||
#include <libcamera/base/log.h>
|
||
|
||
#include <libcamera/ipa/core_ipa_interface.h>
|
||
|
||
#include "libipa/histogram.h"
|
||
|
||
/**
|
||
* \file agc.h
|
||
*/
|
||
|
||
namespace libcamera {
|
||
|
||
using namespace std::literals::chrono_literals;
|
||
|
||
namespace ipa::ipu3::algorithms {
|
||
|
||
/**
|
||
* \class Agc
|
||
* \brief A mean-based auto-exposure algorithm
|
||
*
|
||
* This algorithm calculates a shutter time and an analogue gain so that the
|
||
* average value of the green channel of the brightest 2% of pixels approaches
|
||
* 0.5. The AWB gains are not used here, and all cells in the grid have the same
|
||
* weight, like an average-metering case. In this metering mode, the camera uses
|
||
* light information from the entire scene and creates an average for the final
|
||
* exposure setting, giving no weighting to any particular portion of the
|
||
* metered area.
|
||
*
|
||
* Reference: Battiato, Messina & Castorina. (2008). Exposure
|
||
* Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12.
|
||
*/
|
||
|
||
LOG_DEFINE_CATEGORY(IPU3Agc)
|
||
|
||
/* Limits for analogue gain values */
|
||
static constexpr double kMinAnalogueGain = 1.0;
|
||
static constexpr double kMaxAnalogueGain = 8.0;
|
||
|
||
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
|
||
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
|
||
|
||
/* Histogram constants */
|
||
static constexpr uint32_t knumHistogramBins = 256;
|
||
|
||
/* Target value to reach for the top 2% of the histogram */
|
||
static constexpr double kEvGainTarget = 0.5;
|
||
|
||
/*
|
||
* Maximum ratio of saturated pixels in a cell for the cell to be considered
|
||
* non-saturated and counted by the AGC algorithm.
|
||
*/
|
||
static constexpr uint32_t kMinCellsPerZoneRatio = 255 * 20 / 100;
|
||
|
||
/* Number of frames to wait before calculating stats on minimum exposure */
|
||
static constexpr uint32_t kNumStartupFrames = 10;
|
||
|
||
/* Maximum luminance used for brightness normalization */
|
||
static constexpr uint32_t kMaxLuminance = 255;
|
||
|
||
/*
|
||
* Normalized luma value target.
|
||
*
|
||
* It's a number that's chosen so that, when the camera points at a grey
|
||
* target, the resulting image brightness is considered right.
|
||
*/
|
||
static constexpr double kNormalizedLumaTarget = 0.16;
|
||
|
||
Agc::Agc()
|
||
: frameCount_(0), iqMean_(0.0), lineDuration_(0s), minExposureLines_(0),
|
||
maxExposureLines_(0), filteredExposure_(0s), currentExposure_(0s)
|
||
{
|
||
}
|
||
|
||
/**
|
||
* \brief Configure the AGC given a configInfo
|
||
* \param[in] context The shared IPA context
|
||
* \param[in] configInfo The IPA configuration data
|
||
*
|
||
* \return 0
|
||
*/
|
||
int Agc::configure(IPAContext &context, const IPAConfigInfo &configInfo)
|
||
{
|
||
stride_ = context.configuration.grid.stride;
|
||
|
||
/* \todo use the IPAContext to provide the limits */
|
||
lineDuration_ = configInfo.sensorInfo.lineLength * 1.0s
|
||
/ configInfo.sensorInfo.pixelRate;
|
||
|
||
/* \todo replace the exposure in lines storage with time based ones. */
|
||
minExposureLines_ = context.configuration.agc.minShutterSpeed / lineDuration_;
|
||
maxExposureLines_ = std::min(context.configuration.agc.maxShutterSpeed / lineDuration_,
|
||
kMaxShutterSpeed / lineDuration_);
|
||
|
||
minAnalogueGain_ = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
|
||
maxAnalogueGain_ = std::min(context.configuration.agc.maxAnalogueGain, kMaxAnalogueGain);
|
||
|
||
/* Configure the default exposure and gain. */
|
||
context.frameContext.agc.gain = minAnalogueGain_;
|
||
context.frameContext.agc.exposure = minExposureLines_;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* \brief Estimate the mean value of the top 2% of the histogram
|
||
* \param[in] stats The statistics computed by the ImgU
|
||
* \param[in] grid The grid used to store the statistics in the IPU3
|
||
*/
|
||
void Agc::measureBrightness(const ipu3_uapi_stats_3a *stats,
|
||
const ipu3_uapi_grid_config &grid)
|
||
{
|
||
/* Initialise the histogram array */
|
||
uint32_t hist[knumHistogramBins] = { 0 };
|
||
|
||
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
|
||
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
|
||
uint32_t cellPosition = cellY * stride_ + cellX;
|
||
|
||
const ipu3_uapi_awb_set_item *cell =
|
||
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
|
||
&stats->awb_raw_buffer.meta_data[cellPosition]
|
||
);
|
||
|
||
if (cell->sat_ratio <= kMinCellsPerZoneRatio) {
|
||
uint8_t gr = cell->Gr_avg;
|
||
uint8_t gb = cell->Gb_avg;
|
||
/*
|
||
* Store the average green value to estimate the
|
||
* brightness. Even the overexposed pixels are
|
||
* taken into account.
|
||
*/
|
||
hist[(gr + gb) / 2]++;
|
||
}
|
||
}
|
||
}
|
||
|
||
Histogram cumulativeHist = Histogram(Span<uint32_t>(hist));
|
||
/* Estimate the quantile mean of the top 2% of the histogram */
|
||
if (cumulativeHist.total() == 0) {
|
||
/* Force the value as histogram is empty */
|
||
iqMean_ = knumHistogramBins - 0.5;
|
||
} else {
|
||
iqMean_ = cumulativeHist.interQuantileMean(0.98, 1.0);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* \brief Apply a filter on the exposure value to limit the speed of changes
|
||
*/
|
||
void Agc::filterExposure()
|
||
{
|
||
double speed = 0.2;
|
||
|
||
/* Adapt instantly if we are in startup phase */
|
||
if (frameCount_ < kNumStartupFrames)
|
||
speed = 1.0;
|
||
|
||
if (filteredExposure_ == 0s) {
|
||
/* DG stands for digital gain.*/
|
||
filteredExposure_ = currentExposure_;
|
||
} else {
|
||
/*
|
||
* If we are close to the desired result, go faster to avoid making
|
||
* multiple micro-adjustments.
|
||
* \todo Make this customisable?
|
||
*/
|
||
if (filteredExposure_ < 1.2 * currentExposure_ &&
|
||
filteredExposure_ > 0.8 * currentExposure_)
|
||
speed = sqrt(speed);
|
||
|
||
filteredExposure_ = speed * currentExposure_ +
|
||
filteredExposure_ * (1.0 - speed);
|
||
}
|
||
|
||
LOG(IPU3Agc, Debug) << "After filtering, total_exposure " << filteredExposure_;
|
||
}
|
||
|
||
/**
|
||
* \brief Estimate the new exposure and gain values
|
||
* \param[inout] frameContext The shared IPA frame Context
|
||
* \param[in] currentYGain The gain calculated on the current brightness level
|
||
*/
|
||
void Agc::computeExposure(IPAFrameContext &frameContext, double currentYGain)
|
||
{
|
||
/* Get the effective exposure and gain applied on the sensor. */
|
||
uint32_t exposure = frameContext.sensor.exposure;
|
||
double analogueGain = frameContext.sensor.gain;
|
||
|
||
/*
|
||
* Estimate the gain needed to have the proportion of pixels in a given
|
||
* desired range. iqMean_ returns the mean value of the top 2% of the
|
||
* cumulative histogram, and we want it to be as close as possible to a
|
||
* configured target.
|
||
*/
|
||
double evGain = kEvGainTarget * knumHistogramBins / iqMean_;
|
||
|
||
if (evGain < currentYGain)
|
||
evGain = currentYGain;
|
||
|
||
/* Consider within 1% of the target as correctly exposed */
|
||
if (std::abs(evGain - 1.0) < 0.01)
|
||
LOG(IPU3Agc, Debug) << "We are well exposed (iqMean = "
|
||
<< iqMean_ << ")";
|
||
|
||
/* extracted from Rpi::Agc::computeTargetExposure */
|
||
|
||
/* Calculate the shutter time in seconds */
|
||
utils::Duration currentShutter = exposure * lineDuration_;
|
||
|
||
/*
|
||
* Update the exposure value for the next computation using the values
|
||
* of exposure and gain really used by the sensor.
|
||
*/
|
||
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
|
||
|
||
LOG(IPU3Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
|
||
<< " Shutter speed " << currentShutter
|
||
<< " Gain " << analogueGain
|
||
<< " Needed ev gain " << evGain;
|
||
|
||
/*
|
||
* Calculate the current exposure value for the scene as the latest
|
||
* exposure value applied multiplied by the new estimated gain.
|
||
*/
|
||
currentExposure_ = effectiveExposureValue * evGain;
|
||
utils::Duration minShutterSpeed = minExposureLines_ * lineDuration_;
|
||
utils::Duration maxShutterSpeed = maxExposureLines_ * lineDuration_;
|
||
|
||
/* Clamp the exposure value to the min and max authorized */
|
||
utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain_;
|
||
currentExposure_ = std::min(currentExposure_, maxTotalExposure);
|
||
LOG(IPU3Agc, Debug) << "Target total exposure " << currentExposure_
|
||
<< ", maximum is " << maxTotalExposure;
|
||
|
||
/* \todo: estimate if we need to desaturate */
|
||
filterExposure();
|
||
|
||
/* Divide the exposure value as new exposure and gain values */
|
||
utils::Duration exposureValue = filteredExposure_;
|
||
utils::Duration shutterTime = minShutterSpeed;
|
||
|
||
/*
|
||
* Push the shutter time up to the maximum first, and only then
|
||
* increase the gain.
|
||
*/
|
||
shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain_,
|
||
minShutterSpeed, maxShutterSpeed);
|
||
double stepGain = std::clamp(exposureValue / shutterTime,
|
||
minAnalogueGain_, maxAnalogueGain_);
|
||
LOG(IPU3Agc, Debug) << "Divided up shutter and gain are "
|
||
<< shutterTime << " and "
|
||
<< stepGain;
|
||
|
||
/* Update the estimated exposure and gain. */
|
||
frameContext.agc.exposure = shutterTime / lineDuration_;
|
||
frameContext.agc.gain = stepGain;
|
||
}
|
||
|
||
/**
|
||
* \brief Estimate the average brightness of the frame
|
||
* \param[in] frameContext The shared IPA frame context
|
||
* \param[in] grid The grid used to store the statistics in the IPU3
|
||
* \param[in] stats The IPU3 statistics and ISP results
|
||
* \param[in] currentYGain The gain calculated on the current brightness level
|
||
* \return The normalized luma
|
||
*
|
||
* Luma is the weighted sum of gamma-compressed R′G′B′ components of a color
|
||
* video. The luma values are normalized as 0.0 to 1.0, with 1.0 being a
|
||
* theoretical perfect reflector of 100% reference white. We use the Rec. 601
|
||
* luma here.
|
||
*
|
||
* More detailed information can be found in:
|
||
* https://en.wikipedia.org/wiki/Luma_(video)
|
||
*/
|
||
double Agc::computeInitialY(IPAFrameContext &frameContext,
|
||
const ipu3_uapi_grid_config &grid,
|
||
const ipu3_uapi_stats_3a *stats,
|
||
double currentYGain)
|
||
{
|
||
double redSum = 0, greenSum = 0, blueSum = 0;
|
||
|
||
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
|
||
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
|
||
uint32_t cellPosition = cellY * stride_ + cellX;
|
||
|
||
const ipu3_uapi_awb_set_item *cell =
|
||
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
|
||
&stats->awb_raw_buffer.meta_data[cellPosition]
|
||
);
|
||
|
||
redSum += cell->R_avg * currentYGain;
|
||
greenSum += (cell->Gr_avg + cell->Gb_avg) / 2 * currentYGain;
|
||
blueSum += cell->B_avg * currentYGain;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Estimate the sum of the brightness values, weighted with the gains
|
||
* applied on the channels in AWB as the Rec. 601 luma.
|
||
*/
|
||
double Y_sum = redSum * frameContext.awb.gains.red * .299 +
|
||
greenSum * frameContext.awb.gains.green * .587 +
|
||
blueSum * frameContext.awb.gains.blue * .114;
|
||
|
||
/* Return the normalized relative luminance. */
|
||
return Y_sum / (grid.height * grid.width) / kMaxLuminance;
|
||
}
|
||
|
||
/**
|
||
* \brief Process IPU3 statistics, and run AGC operations
|
||
* \param[in] context The shared IPA context
|
||
* \param[in] stats The IPU3 statistics and ISP results
|
||
*
|
||
* Identify the current image brightness, and use that to estimate the optimal
|
||
* new exposure and gain for the scene.
|
||
*/
|
||
void Agc::process(IPAContext &context, const ipu3_uapi_stats_3a *stats)
|
||
{
|
||
measureBrightness(stats, context.configuration.grid.bdsGrid);
|
||
|
||
double currentYGain = 1.0;
|
||
double targetY = kNormalizedLumaTarget;
|
||
|
||
/*
|
||
* Do this calculation a few times as brightness increase can be
|
||
* non-linear when there are saturated regions.
|
||
*/
|
||
for (int i = 0; i < 8; i++) {
|
||
double initialY = computeInitialY(context.frameContext,
|
||
context.configuration.grid.bdsGrid,
|
||
stats, currentYGain);
|
||
double extra_gain = std::min(10.0, targetY / (initialY + .001));
|
||
|
||
currentYGain *= extra_gain;
|
||
LOG(IPU3Agc, Debug) << "Initial Y " << initialY
|
||
<< " target " << targetY
|
||
<< " gives gain " << currentYGain;
|
||
if (extra_gain < 1.01)
|
||
break;
|
||
}
|
||
|
||
computeExposure(context.frameContext, currentYGain);
|
||
frameCount_++;
|
||
}
|
||
|
||
} /* namespace ipa::ipu3::algorithms */
|
||
|
||
} /* namespace libcamera */
|