Working on SoftISP
As the ELF parsing code uses non-const pointers to the ELF mapping, we have to map the module in private read-write mode. This causes issues with valgrind, due to the IPA manager mapping the module in shared read-only mode and valgrind having trouble loading debugging symbols later at dlopen time due to conflicting mappings. This is likely a bug in valgrind (reported as [1]), but we can easily work around it by using shared read-only mappings only. As such a mapping shouldn't be less efficient than private read-write mappings, switch the mapping type. This requires modifying the ELF parsing functions to operate on const memory, which is a good idea anyway as they're not supposed to modify the ELF file. [1] https://bugs.kde.org/show_bug.cgi?id=422601 Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Niklas Söderlund <niklas.soderlund@ragnatech.se> Reviewed-by: Paul Elder <paul.elder@ideasonboard.com> |
||
---|---|---|
.reuse | ||
Documentation | ||
include | ||
LICENSES | ||
package/gentoo/media-libs/libcamera | ||
src | ||
test | ||
utils | ||
.clang-format | ||
.gitignore | ||
meson.build | ||
meson_options.txt | ||
README.rst |
.. SPDX-License-Identifier: CC-BY-SA-4.0 .. section-begin-libcamera =========== libcamera =========== **A complex camera support library for Linux, Android, and ChromeOS** Cameras are complex devices that need heavy hardware image processing operations. Control of the processing is based on advanced algorithms that must run on a programmable processor. This has traditionally been implemented in a dedicated MCU in the camera, but in embedded devices algorithms have been moved to the main CPU to save cost. Blurring the boundary between camera devices and Linux often left the user with no other option than a vendor-specific closed-source solution. To address this problem the Linux media community has very recently started collaboration with the industry to develop a camera stack that will be open-source-friendly while still protecting vendor core IP. libcamera was born out of that collaboration and will offer modern camera support to Linux-based systems, including traditional Linux distributions, ChromeOS and Android. .. section-end-libcamera .. section-begin-getting-started Getting Started --------------- To fetch the sources, build and install: :: git clone git://linuxtv.org/libcamera.git cd libcamera meson build ninja -C build install Dependencies ~~~~~~~~~~~~ The following Debian/Ubuntu packages are required for building libcamera. Other distributions may have differing package names: A C++ toolchain: [required] Either {g++, clang} for libcamera: [required] meson (>= 0.47) ninja-build python3-yaml If your distribution doesn't provide a recent enough version of meson, you can install or upgrade it using pip3. .. code:: pip3 install --user meson pip3 install --user --upgrade meson for device hotplug enumeration: [optional] pkg-config libudev-dev for documentation: [optional] python3-sphinx doxygen for gstreamer: [optional] libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev for IPA module signing: [required] libgnutls28-dev openssl for qcam: [optional] qtbase5-dev libqt5core5a libqt5gui5 libqt5widgets5 Using GStreamer plugin ~~~~~~~~~~~~~~~~~~~~~~ To use GStreamer plugin from source tree, set the following environment so that GStreamer can find it. export GST_PLUGIN_PATH=$(pwd)/build/src/gstreamer The debugging tool `gst-launch-1.0` can be used to construct and pipeline and test it. The following pipeline will stream from the camera named "Camera 1" onto the default video display element on your system. .. code:: gst-launch-1.0 libcamerasrc camera-name="Camera 1" ! videoconvert ! autovideosink .. section-end-getting-started