libcamera/src/ipa/raspberrypi/controller/rpi/agc.cpp
David Plowman 9db94a3635 libcamera: ipa: raspberrypi: agc: Improve centre-weighted luminance calucation
Previously the calculation computed Y for each region before returning
the weighted average, which "baked in" the over-importance of small
statistics regions. The revised calculation will treat all pixels
equally when the region weights are the same, making it easier to
use. With the previous scheme, proper "average" metering was difficult
to implement.

Signed-off-by: David Plowman <david.plowman@raspberrypi.com>
Reviewed-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
2020-11-23 14:24:24 +00:00

636 lines
22 KiB
C++

/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* agc.cpp - AGC/AEC control algorithm
*/
#include <map>
#include "linux/bcm2835-isp.h"
#include "libcamera/internal/log.h"
#include "../awb_status.h"
#include "../device_status.h"
#include "../histogram.hpp"
#include "../lux_status.h"
#include "../metadata.hpp"
#include "agc.hpp"
using namespace RPiController;
using namespace libcamera;
LOG_DEFINE_CATEGORY(RPiAgc)
#define NAME "rpi.agc"
#define PIPELINE_BITS 13 // seems to be a 13-bit pipeline
void AgcMeteringMode::Read(boost::property_tree::ptree const &params)
{
int num = 0;
for (auto &p : params.get_child("weights")) {
if (num == AGC_STATS_SIZE)
throw std::runtime_error("AgcConfig: too many weights");
weights[num++] = p.second.get_value<double>();
}
if (num != AGC_STATS_SIZE)
throw std::runtime_error("AgcConfig: insufficient weights");
}
static std::string
read_metering_modes(std::map<std::string, AgcMeteringMode> &metering_modes,
boost::property_tree::ptree const &params)
{
std::string first;
for (auto &p : params) {
AgcMeteringMode metering_mode;
metering_mode.Read(p.second);
metering_modes[p.first] = std::move(metering_mode);
if (first.empty())
first = p.first;
}
return first;
}
static int read_double_list(std::vector<double> &list,
boost::property_tree::ptree const &params)
{
for (auto &p : params)
list.push_back(p.second.get_value<double>());
return list.size();
}
void AgcExposureMode::Read(boost::property_tree::ptree const &params)
{
int num_shutters =
read_double_list(shutter, params.get_child("shutter"));
int num_ags = read_double_list(gain, params.get_child("gain"));
if (num_shutters < 2 || num_ags < 2)
throw std::runtime_error(
"AgcConfig: must have at least two entries in exposure profile");
if (num_shutters != num_ags)
throw std::runtime_error(
"AgcConfig: expect same number of exposure and gain entries in exposure profile");
}
static std::string
read_exposure_modes(std::map<std::string, AgcExposureMode> &exposure_modes,
boost::property_tree::ptree const &params)
{
std::string first;
for (auto &p : params) {
AgcExposureMode exposure_mode;
exposure_mode.Read(p.second);
exposure_modes[p.first] = std::move(exposure_mode);
if (first.empty())
first = p.first;
}
return first;
}
void AgcConstraint::Read(boost::property_tree::ptree const &params)
{
std::string bound_string = params.get<std::string>("bound", "");
transform(bound_string.begin(), bound_string.end(),
bound_string.begin(), ::toupper);
if (bound_string != "UPPER" && bound_string != "LOWER")
throw std::runtime_error(
"AGC constraint type should be UPPER or LOWER");
bound = bound_string == "UPPER" ? Bound::UPPER : Bound::LOWER;
q_lo = params.get<double>("q_lo");
q_hi = params.get<double>("q_hi");
Y_target.Read(params.get_child("y_target"));
}
static AgcConstraintMode
read_constraint_mode(boost::property_tree::ptree const &params)
{
AgcConstraintMode mode;
for (auto &p : params) {
AgcConstraint constraint;
constraint.Read(p.second);
mode.push_back(std::move(constraint));
}
return mode;
}
static std::string read_constraint_modes(
std::map<std::string, AgcConstraintMode> &constraint_modes,
boost::property_tree::ptree const &params)
{
std::string first;
for (auto &p : params) {
constraint_modes[p.first] = read_constraint_mode(p.second);
if (first.empty())
first = p.first;
}
return first;
}
void AgcConfig::Read(boost::property_tree::ptree const &params)
{
LOG(RPiAgc, Debug) << "AgcConfig";
default_metering_mode = read_metering_modes(
metering_modes, params.get_child("metering_modes"));
default_exposure_mode = read_exposure_modes(
exposure_modes, params.get_child("exposure_modes"));
default_constraint_mode = read_constraint_modes(
constraint_modes, params.get_child("constraint_modes"));
Y_target.Read(params.get_child("y_target"));
speed = params.get<double>("speed", 0.2);
startup_frames = params.get<uint16_t>("startup_frames", 10);
fast_reduce_threshold =
params.get<double>("fast_reduce_threshold", 0.4);
base_ev = params.get<double>("base_ev", 1.0);
}
Agc::Agc(Controller *controller)
: AgcAlgorithm(controller), metering_mode_(nullptr),
exposure_mode_(nullptr), constraint_mode_(nullptr),
frame_count_(0), lock_count_(0)
{
ev_ = status_.ev = 1.0;
flicker_period_ = status_.flicker_period = 0.0;
fixed_shutter_ = status_.fixed_shutter = 0;
fixed_analogue_gain_ = status_.fixed_analogue_gain = 0.0;
// set to zero initially, so we can tell it's not been calculated
status_.total_exposure_value = 0.0;
status_.target_exposure_value = 0.0;
status_.locked = false;
}
char const *Agc::Name() const
{
return NAME;
}
void Agc::Read(boost::property_tree::ptree const &params)
{
LOG(RPiAgc, Debug) << "Agc";
config_.Read(params);
// Set the config's defaults (which are the first ones it read) as our
// current modes, until someone changes them. (they're all known to
// exist at this point)
metering_mode_name_ = config_.default_metering_mode;
metering_mode_ = &config_.metering_modes[metering_mode_name_];
exposure_mode_name_ = config_.default_exposure_mode;
exposure_mode_ = &config_.exposure_modes[exposure_mode_name_];
constraint_mode_name_ = config_.default_constraint_mode;
constraint_mode_ = &config_.constraint_modes[constraint_mode_name_];
}
void Agc::SetEv(double ev)
{
ev_ = ev;
}
void Agc::SetFlickerPeriod(double flicker_period)
{
flicker_period_ = flicker_period;
}
void Agc::SetFixedShutter(double fixed_shutter)
{
fixed_shutter_ = fixed_shutter;
}
void Agc::SetFixedAnalogueGain(double fixed_analogue_gain)
{
fixed_analogue_gain_ = fixed_analogue_gain;
}
void Agc::SetMeteringMode(std::string const &metering_mode_name)
{
metering_mode_name_ = metering_mode_name;
}
void Agc::SetExposureMode(std::string const &exposure_mode_name)
{
exposure_mode_name_ = exposure_mode_name;
}
void Agc::SetConstraintMode(std::string const &constraint_mode_name)
{
constraint_mode_name_ = constraint_mode_name;
}
void Agc::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
Metadata *metadata)
{
// On a mode switch, it's possible the exposure profile could change,
// so we run through the dividing up of exposure/gain again and
// write the results into the metadata we've been given.
if (status_.total_exposure_value) {
housekeepConfig();
divideUpExposure();
writeAndFinish(metadata, false);
}
}
void Agc::Prepare(Metadata *image_metadata)
{
int lock_count = lock_count_;
lock_count_ = 0;
status_.digital_gain = 1.0;
if (status_.total_exposure_value) {
// Process has run, so we have meaningful values.
DeviceStatus device_status;
if (image_metadata->Get("device.status", device_status) == 0) {
double actual_exposure = device_status.shutter_speed *
device_status.analogue_gain;
if (actual_exposure) {
status_.digital_gain =
status_.total_exposure_value /
actual_exposure;
LOG(RPiAgc, Debug) << "Want total exposure " << status_.total_exposure_value;
// Never ask for a gain < 1.0, and also impose
// some upper limit. Make it customisable?
status_.digital_gain = std::max(
1.0,
std::min(status_.digital_gain, 4.0));
LOG(RPiAgc, Debug) << "Actual exposure " << actual_exposure;
LOG(RPiAgc, Debug) << "Use digital_gain " << status_.digital_gain;
LOG(RPiAgc, Debug) << "Effective exposure " << actual_exposure * status_.digital_gain;
// Decide whether AEC/AGC has converged.
// Insist AGC is steady for MAX_LOCK_COUNT
// frames before we say we are "locked".
// (The hard-coded constants may need to
// become customisable.)
if (status_.target_exposure_value) {
#define MAX_LOCK_COUNT 3
double err = 0.10 * status_.target_exposure_value + 200;
if (actual_exposure <
status_.target_exposure_value + err &&
actual_exposure >
status_.target_exposure_value - err)
lock_count_ =
std::min(lock_count + 1,
MAX_LOCK_COUNT);
else if (actual_exposure <
status_.target_exposure_value + 1.5 * err &&
actual_exposure >
status_.target_exposure_value - 1.5 * err)
lock_count_ = lock_count;
LOG(RPiAgc, Debug) << "Lock count: " << lock_count_;
}
}
} else
LOG(RPiAgc, Debug) << Name() << ": no device metadata";
status_.locked = lock_count_ >= MAX_LOCK_COUNT;
image_metadata->Set("agc.status", status_);
}
}
void Agc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
frame_count_++;
// First a little bit of housekeeping, fetching up-to-date settings and
// configuration, that kind of thing.
housekeepConfig();
// Get the current exposure values for the frame that's just arrived.
fetchCurrentExposure(image_metadata);
// Compute the total gain we require relative to the current exposure.
double gain, target_Y;
computeGain(stats.get(), image_metadata, gain, target_Y);
// Now compute the target (final) exposure which we think we want.
computeTargetExposure(gain);
// Some of the exposure has to be applied as digital gain, so work out
// what that is. This function also tells us whether it's decided to
// "desaturate" the image more quickly.
bool desaturate = applyDigitalGain(image_metadata, gain, target_Y);
// The results have to be filtered so as not to change too rapidly.
filterExposure(desaturate);
// The last thing is to divide up the exposure value into a shutter time
// and analogue_gain, according to the current exposure mode.
divideUpExposure();
// Finally advertise what we've done.
writeAndFinish(image_metadata, desaturate);
}
static void copy_string(std::string const &s, char *d, size_t size)
{
size_t length = s.copy(d, size - 1);
d[length] = '\0';
}
void Agc::housekeepConfig()
{
// First fetch all the up-to-date settings, so no one else has to do it.
status_.ev = ev_;
status_.fixed_shutter = fixed_shutter_;
status_.fixed_analogue_gain = fixed_analogue_gain_;
status_.flicker_period = flicker_period_;
LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixed_shutter "
<< status_.fixed_shutter << " fixed_analogue_gain "
<< status_.fixed_analogue_gain;
// Make sure the "mode" pointers point to the up-to-date things, if
// they've changed.
if (strcmp(metering_mode_name_.c_str(), status_.metering_mode)) {
auto it = config_.metering_modes.find(metering_mode_name_);
if (it == config_.metering_modes.end())
throw std::runtime_error("Agc: no metering mode " +
metering_mode_name_);
metering_mode_ = &it->second;
copy_string(metering_mode_name_, status_.metering_mode,
sizeof(status_.metering_mode));
}
if (strcmp(exposure_mode_name_.c_str(), status_.exposure_mode)) {
auto it = config_.exposure_modes.find(exposure_mode_name_);
if (it == config_.exposure_modes.end())
throw std::runtime_error("Agc: no exposure profile " +
exposure_mode_name_);
exposure_mode_ = &it->second;
copy_string(exposure_mode_name_, status_.exposure_mode,
sizeof(status_.exposure_mode));
}
if (strcmp(constraint_mode_name_.c_str(), status_.constraint_mode)) {
auto it =
config_.constraint_modes.find(constraint_mode_name_);
if (it == config_.constraint_modes.end())
throw std::runtime_error("Agc: no constraint list " +
constraint_mode_name_);
constraint_mode_ = &it->second;
copy_string(constraint_mode_name_, status_.constraint_mode,
sizeof(status_.constraint_mode));
}
LOG(RPiAgc, Debug) << "exposure_mode "
<< exposure_mode_name_ << " constraint_mode "
<< constraint_mode_name_ << " metering_mode "
<< metering_mode_name_;
}
void Agc::fetchCurrentExposure(Metadata *image_metadata)
{
std::unique_lock<Metadata> lock(*image_metadata);
DeviceStatus *device_status =
image_metadata->GetLocked<DeviceStatus>("device.status");
if (!device_status)
throw std::runtime_error("Agc: no device metadata");
current_.shutter = device_status->shutter_speed;
current_.analogue_gain = device_status->analogue_gain;
AgcStatus *agc_status =
image_metadata->GetLocked<AgcStatus>("agc.status");
current_.total_exposure = agc_status ? agc_status->total_exposure_value : 0;
current_.total_exposure_no_dg = current_.shutter * current_.analogue_gain;
}
static double compute_initial_Y(bcm2835_isp_stats *stats, Metadata *image_metadata,
double weights[])
{
bcm2835_isp_stats_region *regions = stats->agc_stats;
struct AwbStatus awb;
awb.gain_r = awb.gain_g = awb.gain_b = 1.0; // in case no metadata
if (image_metadata->Get("awb.status", awb) != 0)
LOG(RPiAgc, Warning) << "Agc: no AWB status found";
// Note how the calculation below means that equal weights give you
// "average" metering (i.e. all pixels equally important).
double R_sum = 0, G_sum = 0, B_sum = 0, pixel_sum = 0;
for (int i = 0; i < AGC_STATS_SIZE; i++) {
R_sum += regions[i].r_sum * weights[i];
G_sum += regions[i].g_sum * weights[i];
B_sum += regions[i].b_sum * weights[i];
pixel_sum += regions[i].counted * weights[i];
}
if (pixel_sum == 0.0) {
LOG(RPiAgc, Warning) << "compute_initial_Y: pixel_sum is zero";
return 0;
}
double Y_sum = R_sum * awb.gain_r * .299 +
G_sum * awb.gain_g * .587 +
B_sum * awb.gain_b * .114;
return Y_sum / pixel_sum / (1 << PIPELINE_BITS);
}
// We handle extra gain through EV by adjusting our Y targets. However, you
// simply can't monitor histograms once they get very close to (or beyond!)
// saturation, so we clamp the Y targets to this value. It does mean that EV
// increases don't necessarily do quite what you might expect in certain
// (contrived) cases.
#define EV_GAIN_Y_TARGET_LIMIT 0.9
static double constraint_compute_gain(AgcConstraint &c, Histogram &h,
double lux, double ev_gain,
double &target_Y)
{
target_Y = c.Y_target.Eval(c.Y_target.Domain().Clip(lux));
target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
double iqm = h.InterQuantileMean(c.q_lo, c.q_hi);
return (target_Y * NUM_HISTOGRAM_BINS) / iqm;
}
void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata,
double &gain, double &target_Y)
{
struct LuxStatus lux = {};
lux.lux = 400; // default lux level to 400 in case no metadata found
if (image_metadata->Get("lux.status", lux) != 0)
LOG(RPiAgc, Warning) << "Agc: no lux level found";
Histogram h(statistics->hist[0].g_hist, NUM_HISTOGRAM_BINS);
double ev_gain = status_.ev * config_.base_ev;
// The initial gain and target_Y come from some of the regions. After
// that we consider the histogram constraints.
target_Y =
config_.Y_target.Eval(config_.Y_target.Domain().Clip(lux.lux));
target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
double initial_Y = compute_initial_Y(statistics, image_metadata,
metering_mode_->weights);
gain = std::min(10.0, target_Y / (initial_Y + .001));
LOG(RPiAgc, Debug) << "Initially Y " << initial_Y << " target " << target_Y
<< " gives gain " << gain;
for (auto &c : *constraint_mode_) {
double new_target_Y;
double new_gain =
constraint_compute_gain(c, h, lux.lux, ev_gain,
new_target_Y);
LOG(RPiAgc, Debug) << "Constraint has target_Y "
<< new_target_Y << " giving gain " << new_gain;
if (c.bound == AgcConstraint::Bound::LOWER &&
new_gain > gain) {
LOG(RPiAgc, Debug) << "Lower bound constraint adopted";
gain = new_gain, target_Y = new_target_Y;
} else if (c.bound == AgcConstraint::Bound::UPPER &&
new_gain < gain) {
LOG(RPiAgc, Debug) << "Upper bound constraint adopted";
gain = new_gain, target_Y = new_target_Y;
}
}
LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << target_Y << " ev "
<< status_.ev << " base_ev " << config_.base_ev
<< ")";
}
void Agc::computeTargetExposure(double gain)
{
// The statistics reflect the image without digital gain, so the final
// total exposure we're aiming for is:
target_.total_exposure = current_.total_exposure_no_dg * gain;
// The final target exposure is also limited to what the exposure
// mode allows.
double max_total_exposure =
(status_.fixed_shutter != 0.0
? status_.fixed_shutter
: exposure_mode_->shutter.back()) *
(status_.fixed_analogue_gain != 0.0
? status_.fixed_analogue_gain
: exposure_mode_->gain.back());
target_.total_exposure = std::min(target_.total_exposure,
max_total_exposure);
LOG(RPiAgc, Debug) << "Target total_exposure " << target_.total_exposure;
}
bool Agc::applyDigitalGain(Metadata *image_metadata, double gain,
double target_Y)
{
double dg = 1.0;
// I think this pipeline subtracts black level and rescales before we
// get the stats, so no need to worry about it.
struct AwbStatus awb;
if (image_metadata->Get("awb.status", awb) == 0) {
double min_gain = std::min(awb.gain_r,
std::min(awb.gain_g, awb.gain_b));
dg *= std::max(1.0, 1.0 / min_gain);
} else
LOG(RPiAgc, Warning) << "Agc: no AWB status found";
LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain
<< " target_Y " << target_Y;
// Finally, if we're trying to reduce exposure but the target_Y is
// "close" to 1.0, then the gain computed for that constraint will be
// only slightly less than one, because the measured Y can never be
// larger than 1.0. When this happens, demand a large digital gain so
// that the exposure can be reduced, de-saturating the image much more
// quickly (and we then approach the correct value more quickly from
// below).
bool desaturate = target_Y > config_.fast_reduce_threshold &&
gain < sqrt(target_Y);
if (desaturate)
dg /= config_.fast_reduce_threshold;
LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate;
target_.total_exposure_no_dg = target_.total_exposure / dg;
LOG(RPiAgc, Debug) << "Target total_exposure_no_dg " << target_.total_exposure_no_dg;
return desaturate;
}
void Agc::filterExposure(bool desaturate)
{
double speed = frame_count_ <= config_.startup_frames ? 1.0 : config_.speed;
if (filtered_.total_exposure == 0.0) {
filtered_.total_exposure = target_.total_exposure;
filtered_.total_exposure_no_dg = target_.total_exposure_no_dg;
} else {
// If close to the result go faster, to save making so many
// micro-adjustments on the way. (Make this customisable?)
if (filtered_.total_exposure < 1.2 * target_.total_exposure &&
filtered_.total_exposure > 0.8 * target_.total_exposure)
speed = sqrt(speed);
filtered_.total_exposure = speed * target_.total_exposure +
filtered_.total_exposure * (1.0 - speed);
// When desaturing, take a big jump down in exposure_no_dg,
// which we'll hide with digital gain.
if (desaturate)
filtered_.total_exposure_no_dg =
target_.total_exposure_no_dg;
else
filtered_.total_exposure_no_dg =
speed * target_.total_exposure_no_dg +
filtered_.total_exposure_no_dg * (1.0 - speed);
}
// We can't let the no_dg exposure deviate too far below the
// total exposure, as there might not be enough digital gain available
// in the ISP to hide it (which will cause nasty oscillation).
if (filtered_.total_exposure_no_dg <
filtered_.total_exposure * config_.fast_reduce_threshold)
filtered_.total_exposure_no_dg = filtered_.total_exposure *
config_.fast_reduce_threshold;
LOG(RPiAgc, Debug) << "After filtering, total_exposure " << filtered_.total_exposure
<< " no dg " << filtered_.total_exposure_no_dg;
}
void Agc::divideUpExposure()
{
// Sending the fixed shutter/gain cases through the same code may seem
// unnecessary, but it will make more sense when extend this to cover
// variable aperture.
double exposure_value = filtered_.total_exposure_no_dg;
double shutter_time, analogue_gain;
shutter_time = status_.fixed_shutter != 0.0
? status_.fixed_shutter
: exposure_mode_->shutter[0];
analogue_gain = status_.fixed_analogue_gain != 0.0
? status_.fixed_analogue_gain
: exposure_mode_->gain[0];
if (shutter_time * analogue_gain < exposure_value) {
for (unsigned int stage = 1;
stage < exposure_mode_->gain.size(); stage++) {
if (status_.fixed_shutter == 0.0) {
if (exposure_mode_->shutter[stage] *
analogue_gain >=
exposure_value) {
shutter_time =
exposure_value / analogue_gain;
break;
}
shutter_time = exposure_mode_->shutter[stage];
}
if (status_.fixed_analogue_gain == 0.0) {
if (exposure_mode_->gain[stage] *
shutter_time >=
exposure_value) {
analogue_gain =
exposure_value / shutter_time;
break;
}
analogue_gain = exposure_mode_->gain[stage];
}
}
}
LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutter_time << " and "
<< analogue_gain;
// Finally adjust shutter time for flicker avoidance (require both
// shutter and gain not to be fixed).
if (status_.fixed_shutter == 0.0 &&
status_.fixed_analogue_gain == 0.0 &&
status_.flicker_period != 0.0) {
int flicker_periods = shutter_time / status_.flicker_period;
if (flicker_periods > 0) {
double new_shutter_time = flicker_periods * status_.flicker_period;
analogue_gain *= shutter_time / new_shutter_time;
// We should still not allow the ag to go over the
// largest value in the exposure mode. Note that this
// may force more of the total exposure into the digital
// gain as a side-effect.
analogue_gain = std::min(analogue_gain,
exposure_mode_->gain.back());
shutter_time = new_shutter_time;
}
LOG(RPiAgc, Debug) << "After flicker avoidance, shutter "
<< shutter_time << " gain " << analogue_gain;
}
filtered_.shutter = shutter_time;
filtered_.analogue_gain = analogue_gain;
}
void Agc::writeAndFinish(Metadata *image_metadata, bool desaturate)
{
status_.total_exposure_value = filtered_.total_exposure;
status_.target_exposure_value = desaturate ? 0 : target_.total_exposure_no_dg;
status_.shutter_time = filtered_.shutter;
status_.analogue_gain = filtered_.analogue_gain;
// Write to metadata as well, in case anyone wants to update the camera
// immediately.
image_metadata->Set("agc.status", status_);
LOG(RPiAgc, Debug) << "Output written, total exposure requested is "
<< filtered_.total_exposure;
LOG(RPiAgc, Debug) << "Camera exposure update: shutter time " << filtered_.shutter
<< " analogue gain " << filtered_.analogue_gain;
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Agc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);