libcamera/src/android/camera_device.cpp
Laurent Pinchart a48a000a33 libcamera: Rename 'method' to 'function'
Usage of 'method' to refer to member functions comes from Java. The C++
standard uses the term 'function' only. Replace 'method' with 'function'
or 'member function' through the whole code base and documentation.
While at it, fix two typos (s/backeng/backend/).

The BoundMethod and Object::invokeMethod() are left as-is here, and will
be addressed separately.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
Acked-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
2021-08-09 15:40:32 +03:00

1407 lines
41 KiB
C++

/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2019, Google Inc.
*
* camera_device.cpp - libcamera Android Camera Device
*/
#include "camera_device.h"
#include "camera_hal_config.h"
#include "camera_ops.h"
#include "post_processor.h"
#include <algorithm>
#include <fstream>
#include <sys/mman.h>
#include <unistd.h>
#include <vector>
#include <libcamera/base/log.h>
#include <libcamera/base/thread.h>
#include <libcamera/base/utils.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>
#include "system/graphics.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
namespace {
/*
* \struct Camera3StreamConfig
* \brief Data to store StreamConfiguration associated with camera3_stream(s)
* \var streams List of the pairs of a stream requested by Android HAL client
* and CameraStream::Type associated with the stream
* \var config StreamConfiguration for streams
*/
struct Camera3StreamConfig {
struct Camera3Stream {
camera3_stream_t *stream;
CameraStream::Type type;
};
std::vector<Camera3Stream> streams;
StreamConfiguration config;
};
/*
* Reorder the configurations so that libcamera::Camera can accept them as much
* as possible. The sort rule is as follows.
* 1.) The configuration for NV12 request whose resolution is the largest.
* 2.) The configuration for JPEG request.
* 3.) Others. Larger resolutions and different formats are put earlier.
*/
void sortCamera3StreamConfigs(std::vector<Camera3StreamConfig> &unsortedConfigs,
const camera3_stream_t *jpegStream)
{
const Camera3StreamConfig *jpegConfig = nullptr;
std::map<PixelFormat, std::vector<const Camera3StreamConfig *>> formatToConfigs;
for (const auto &streamConfig : unsortedConfigs) {
if (jpegStream && !jpegConfig) {
const auto &streams = streamConfig.streams;
if (std::find_if(streams.begin(), streams.end(),
[jpegStream](const auto &stream) {
return stream.stream == jpegStream;
}) != streams.end()) {
jpegConfig = &streamConfig;
continue;
}
}
formatToConfigs[streamConfig.config.pixelFormat].push_back(&streamConfig);
}
if (jpegStream && !jpegConfig)
LOG(HAL, Fatal) << "No Camera3StreamConfig is found for JPEG";
for (auto &fmt : formatToConfigs) {
auto &streamConfigs = fmt.second;
/* Sorted by resolution. Smaller is put first. */
std::sort(streamConfigs.begin(), streamConfigs.end(),
[](const auto *streamConfigA, const auto *streamConfigB) {
const Size &sizeA = streamConfigA->config.size;
const Size &sizeB = streamConfigB->config.size;
return sizeA < sizeB;
});
}
std::vector<Camera3StreamConfig> sortedConfigs;
sortedConfigs.reserve(unsortedConfigs.size());
/*
* NV12 is the most prioritized format. Put the configuration with NV12
* and the largest resolution first.
*/
const auto nv12It = formatToConfigs.find(formats::NV12);
if (nv12It != formatToConfigs.end()) {
auto &nv12Configs = nv12It->second;
const Camera3StreamConfig *nv12Largest = nv12Configs.back();
/*
* If JPEG will be created from NV12 and the size is larger than
* the largest NV12 configurations, then put the NV12
* configuration for JPEG first.
*/
if (jpegConfig && jpegConfig->config.pixelFormat == formats::NV12) {
const Size &nv12SizeForJpeg = jpegConfig->config.size;
const Size &nv12LargestSize = nv12Largest->config.size;
if (nv12LargestSize < nv12SizeForJpeg) {
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
sortedConfigs.push_back(std::move(*jpegConfig));
jpegConfig = nullptr;
}
}
LOG(HAL, Debug) << "Insert " << nv12Largest->config.toString();
sortedConfigs.push_back(*nv12Largest);
nv12Configs.pop_back();
if (nv12Configs.empty())
formatToConfigs.erase(nv12It);
}
/* If the configuration for JPEG is there, then put it. */
if (jpegConfig) {
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
sortedConfigs.push_back(std::move(*jpegConfig));
jpegConfig = nullptr;
}
/*
* Put configurations with different formats and larger resolutions
* earlier.
*/
while (!formatToConfigs.empty()) {
for (auto it = formatToConfigs.begin(); it != formatToConfigs.end();) {
auto &configs = it->second;
LOG(HAL, Debug) << "Insert " << configs.back()->config.toString();
sortedConfigs.push_back(*configs.back());
configs.pop_back();
if (configs.empty())
it = formatToConfigs.erase(it);
else
it++;
}
}
ASSERT(sortedConfigs.size() == unsortedConfigs.size());
unsortedConfigs = sortedConfigs;
}
const char *rotationToString(int rotation)
{
switch (rotation) {
case CAMERA3_STREAM_ROTATION_0:
return "0";
case CAMERA3_STREAM_ROTATION_90:
return "90";
case CAMERA3_STREAM_ROTATION_180:
return "180";
case CAMERA3_STREAM_ROTATION_270:
return "270";
}
return "INVALID";
}
#if defined(OS_CHROMEOS)
/*
* Check whether the crop_rotate_scale_degrees values for all streams in
* the list are valid according to the Chrome OS camera HAL API.
*/
bool validateCropRotate(const camera3_stream_configuration_t &streamList)
{
ASSERT(streamList.num_streams > 0);
const int cropRotateScaleDegrees =
streamList.streams[0]->crop_rotate_scale_degrees;
for (unsigned int i = 0; i < streamList.num_streams; ++i) {
const camera3_stream_t &stream = *streamList.streams[i];
switch (stream.crop_rotate_scale_degrees) {
case CAMERA3_STREAM_ROTATION_0:
case CAMERA3_STREAM_ROTATION_90:
case CAMERA3_STREAM_ROTATION_270:
break;
/* 180° rotation is specified by Chrome OS as invalid. */
case CAMERA3_STREAM_ROTATION_180:
default:
LOG(HAL, Error) << "Invalid crop_rotate_scale_degrees: "
<< stream.crop_rotate_scale_degrees;
return false;
}
if (cropRotateScaleDegrees != stream.crop_rotate_scale_degrees) {
LOG(HAL, Error) << "crop_rotate_scale_degrees in all "
<< "streams are not identical";
return false;
}
}
return true;
}
#endif
} /* namespace */
/*
* \struct Camera3RequestDescriptor
*
* A utility structure that groups information about a capture request to be
* later re-used at request complete time to notify the framework.
*/
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
Camera *camera, const camera3_capture_request_t *camera3Request)
{
frameNumber_ = camera3Request->frame_number;
/* Copy the camera3 request stream information for later access. */
const uint32_t numBuffers = camera3Request->num_output_buffers;
buffers_.resize(numBuffers);
for (uint32_t i = 0; i < numBuffers; i++)
buffers_[i] = camera3Request->output_buffers[i];
/*
* FrameBuffer instances created by wrapping a camera3 provided dmabuf
* are emplaced in this vector of unique_ptr<> for lifetime management.
*/
frameBuffers_.reserve(numBuffers);
/* Clone the controls associated with the camera3 request. */
settings_ = CameraMetadata(camera3Request->settings);
/*
* Create the CaptureRequest, stored as a unique_ptr<> to tie its
* lifetime to the descriptor.
*/
request_ = std::make_unique<CaptureRequest>(camera);
}
/*
* \class CameraDevice
*
* The CameraDevice class wraps a libcamera::Camera instance, and implements
* the camera3_device_t interface, bridging calls received from the Android
* camera service to the CameraDevice.
*
* The class translates parameters and operations from the Camera HALv3 API to
* the libcamera API to provide static information for a Camera, create request
* templates for it, process capture requests and then deliver capture results
* back to the framework using the designated callbacks.
*/
CameraDevice::CameraDevice(unsigned int id, std::shared_ptr<Camera> camera)
: id_(id), state_(State::Stopped), camera_(std::move(camera)),
facing_(CAMERA_FACING_FRONT), orientation_(0)
{
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
maker_ = "libcamera";
model_ = "cameraModel";
/* \todo Support getting properties on Android */
std::ifstream fstream("/var/cache/camera/camera.prop");
if (!fstream.is_open())
return;
std::string line;
while (std::getline(fstream, line)) {
std::string::size_type delimPos = line.find("=");
if (delimPos == std::string::npos)
continue;
std::string key = line.substr(0, delimPos);
std::string val = line.substr(delimPos + 1);
if (!key.compare("ro.product.model"))
model_ = val;
else if (!key.compare("ro.product.manufacturer"))
maker_ = val;
}
}
CameraDevice::~CameraDevice() = default;
std::unique_ptr<CameraDevice> CameraDevice::create(unsigned int id,
std::shared_ptr<Camera> cam)
{
return std::unique_ptr<CameraDevice>(
new CameraDevice(id, std::move(cam)));
}
/*
* Initialize the camera static information retrieved from the
* Camera::properties or from the cameraConfigData.
*
* cameraConfigData is optional for external camera devices and can be
* nullptr.
*
* This function is called before the camera device is opened.
*/
int CameraDevice::initialize(const CameraConfigData *cameraConfigData)
{
/*
* Initialize orientation and facing side of the camera.
*
* If the libcamera::Camera provides those information as retrieved
* from firmware use them, otherwise fallback to values parsed from
* the configuration file. If the configuration file is not available
* the camera is external so its location and rotation can be safely
* defaulted.
*/
const ControlList &properties = camera_->properties();
if (properties.contains(properties::Location)) {
int32_t location = properties.get(properties::Location);
switch (location) {
case properties::CameraLocationFront:
facing_ = CAMERA_FACING_FRONT;
break;
case properties::CameraLocationBack:
facing_ = CAMERA_FACING_BACK;
break;
case properties::CameraLocationExternal:
/*
* If the camera is reported as external, but the
* CameraHalManager has overriden it, use what is
* reported in the configuration file. This typically
* happens for UVC cameras reported as 'External' by
* libcamera but installed in fixed position on the
* device.
*/
if (cameraConfigData && cameraConfigData->facing != -1)
facing_ = cameraConfigData->facing;
else
facing_ = CAMERA_FACING_EXTERNAL;
break;
}
if (cameraConfigData && cameraConfigData->facing != -1 &&
facing_ != cameraConfigData->facing) {
LOG(HAL, Warning)
<< "Camera location does not match"
<< " configuration file. Using " << facing_;
}
} else if (cameraConfigData) {
if (cameraConfigData->facing == -1) {
LOG(HAL, Error)
<< "Camera facing not in configuration file";
return -EINVAL;
}
facing_ = cameraConfigData->facing;
} else {
facing_ = CAMERA_FACING_EXTERNAL;
}
/*
* The Android orientation metadata specifies its rotation correction
* value in clockwise direction whereas libcamera specifies the
* rotation property in anticlockwise direction. Read the libcamera's
* rotation property (anticlockwise) and compute the corresponding
* value for clockwise direction as required by the Android orientation
* metadata.
*/
if (properties.contains(properties::Rotation)) {
int rotation = properties.get(properties::Rotation);
orientation_ = (360 - rotation) % 360;
if (cameraConfigData && cameraConfigData->rotation != -1 &&
orientation_ != cameraConfigData->rotation) {
LOG(HAL, Warning)
<< "Camera orientation does not match"
<< " configuration file. Using " << orientation_;
}
} else if (cameraConfigData) {
if (cameraConfigData->rotation == -1) {
LOG(HAL, Error)
<< "Camera rotation not in configuration file";
return -EINVAL;
}
orientation_ = cameraConfigData->rotation;
} else {
orientation_ = 0;
}
return capabilities_.initialize(camera_, orientation_, facing_);
}
/*
* Open a camera device. The static information on the camera shall have been
* initialized with a call to CameraDevice::initialize().
*/
int CameraDevice::open(const hw_module_t *hardwareModule)
{
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to acquire the camera";
return ret;
}
/* Initialize the hw_device_t in the instance camera3_module_t. */
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
camera3Device_.common.module = (hw_module_t *)hardwareModule;
camera3Device_.common.close = hal_dev_close;
/*
* The camera device operations. These actually implement
* the Android Camera HALv3 interface.
*/
camera3Device_.ops = &hal_dev_ops;
camera3Device_.priv = this;
return 0;
}
void CameraDevice::close()
{
streams_.clear();
stop();
camera_->release();
}
void CameraDevice::flush()
{
{
MutexLocker stateLock(stateMutex_);
if (state_ != State::Running)
return;
state_ = State::Flushing;
}
worker_.stop();
camera_->stop();
MutexLocker stateLock(stateMutex_);
state_ = State::Stopped;
}
void CameraDevice::stop()
{
MutexLocker stateLock(stateMutex_);
if (state_ == State::Stopped)
return;
worker_.stop();
camera_->stop();
descriptors_.clear();
state_ = State::Stopped;
}
unsigned int CameraDevice::maxJpegBufferSize() const
{
return capabilities_.maxJpegBufferSize();
}
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
callbacks_ = callbacks;
}
const camera_metadata_t *CameraDevice::getStaticMetadata()
{
return capabilities_.staticMetadata()->get();
}
/*
* Produce a metadata pack to be used as template for a capture request.
*/
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
auto it = requestTemplates_.find(type);
if (it != requestTemplates_.end())
return it->second->get();
/* Use the capture intent matching the requested template type. */
std::unique_ptr<CameraMetadata> requestTemplate;
uint8_t captureIntent;
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
requestTemplate = capabilities_.requestTemplatePreview();
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
/*
* Use the preview template for still capture, they only differ
* for the torch mode we currently do not support.
*/
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
requestTemplate = capabilities_.requestTemplateStill();
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
requestTemplate = capabilities_.requestTemplateVideo();
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
requestTemplate = capabilities_.requestTemplateVideo();
break;
case CAMERA3_TEMPLATE_MANUAL:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
requestTemplate = capabilities_.requestTemplateManual();
break;
/* \todo Implement templates generation for the remaining use cases. */
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
default:
LOG(HAL, Error) << "Unsupported template request type: " << type;
return nullptr;
}
if (!requestTemplate || !requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to construct request template";
return nullptr;
}
requestTemplate->updateEntry(ANDROID_CONTROL_CAPTURE_INTENT,
captureIntent);
requestTemplates_[type] = std::move(requestTemplate);
return requestTemplates_[type]->get();
}
/*
* Inspect the stream_list to produce a list of StreamConfiguration to
* be use to configure the Camera.
*/
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
/* Before any configuration attempt, stop the camera. */
stop();
if (stream_list->num_streams == 0) {
LOG(HAL, Error) << "No streams in configuration";
return -EINVAL;
}
#if defined(OS_CHROMEOS)
if (!validateCropRotate(*stream_list))
return -EINVAL;
#endif
/*
* Generate an empty configuration, and construct a StreamConfiguration
* for each camera3_stream to add to it.
*/
std::unique_ptr<CameraConfiguration> config = camera_->generateConfiguration();
if (!config) {
LOG(HAL, Error) << "Failed to generate camera configuration";
return -EINVAL;
}
/*
* Clear and remove any existing configuration from previous calls, and
* ensure the required entries are available without further
* reallocation.
*/
streams_.clear();
streams_.reserve(stream_list->num_streams);
std::vector<Camera3StreamConfig> streamConfigs;
streamConfigs.reserve(stream_list->num_streams);
/* First handle all non-MJPEG streams. */
camera3_stream_t *jpegStream = nullptr;
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
camera3_stream_t *stream = stream_list->streams[i];
Size size(stream->width, stream->height);
PixelFormat format = capabilities_.toPixelFormat(stream->format);
LOG(HAL, Info) << "Stream #" << i
<< ", direction: " << stream->stream_type
<< ", width: " << stream->width
<< ", height: " << stream->height
<< ", format: " << utils::hex(stream->format)
<< ", rotation: " << rotationToString(stream->rotation)
#if defined(OS_CHROMEOS)
<< ", crop_rotate_scale_degrees: "
<< rotationToString(stream->crop_rotate_scale_degrees)
#endif
<< " (" << format.toString() << ")";
if (!format.isValid())
return -EINVAL;
/* \todo Support rotation. */
if (stream->rotation != CAMERA3_STREAM_ROTATION_0) {
LOG(HAL, Error) << "Rotation is not supported";
return -EINVAL;
}
#if defined(OS_CHROMEOS)
if (stream->crop_rotate_scale_degrees != CAMERA3_STREAM_ROTATION_0) {
LOG(HAL, Error) << "Rotation is not supported";
return -EINVAL;
}
#endif
/* Defer handling of MJPEG streams until all others are known. */
if (stream->format == HAL_PIXEL_FORMAT_BLOB) {
if (jpegStream) {
LOG(HAL, Error)
<< "Multiple JPEG streams are not supported";
return -EINVAL;
}
jpegStream = stream;
continue;
}
Camera3StreamConfig streamConfig;
streamConfig.streams = { { stream, CameraStream::Type::Direct } };
streamConfig.config.size = size;
streamConfig.config.pixelFormat = format;
streamConfigs.push_back(std::move(streamConfig));
/* This stream will be produced by hardware. */
stream->usage |= GRALLOC_USAGE_HW_CAMERA_WRITE;
}
/* Now handle the MJPEG streams, adding a new stream if required. */
if (jpegStream) {
CameraStream::Type type;
int index = -1;
/* Search for a compatible stream in the non-JPEG ones. */
for (size_t i = 0; i < streamConfigs.size(); ++i) {
Camera3StreamConfig &streamConfig = streamConfigs[i];
const auto &cfg = streamConfig.config;
/*
* \todo The PixelFormat must also be compatible with
* the encoder.
*/
if (cfg.size.width != jpegStream->width ||
cfg.size.height != jpegStream->height)
continue;
LOG(HAL, Info)
<< "Android JPEG stream mapped to libcamera stream " << i;
type = CameraStream::Type::Mapped;
index = i;
/*
* The source stream will be read by software to
* produce the JPEG stream.
*/
camera3_stream_t *stream = streamConfig.streams[0].stream;
stream->usage |= GRALLOC_USAGE_SW_READ_OFTEN;
break;
}
/*
* Without a compatible match for JPEG encoding we must
* introduce a new stream to satisfy the request requirements.
*/
if (index < 0) {
/*
* \todo The pixelFormat should be a 'best-fit' choice
* and may require a validation cycle. This is not yet
* handled, and should be considered as part of any
* stream configuration reworks.
*/
Camera3StreamConfig streamConfig;
streamConfig.config.size.width = jpegStream->width;
streamConfig.config.size.height = jpegStream->height;
streamConfig.config.pixelFormat = formats::NV12;
streamConfigs.push_back(std::move(streamConfig));
LOG(HAL, Info) << "Adding " << streamConfig.config.toString()
<< " for MJPEG support";
type = CameraStream::Type::Internal;
index = streamConfigs.size() - 1;
}
/* The JPEG stream will be produced by software. */
jpegStream->usage |= GRALLOC_USAGE_SW_WRITE_OFTEN;
streamConfigs[index].streams.push_back({ jpegStream, type });
}
sortCamera3StreamConfigs(streamConfigs, jpegStream);
for (const auto &streamConfig : streamConfigs) {
config->addConfiguration(streamConfig.config);
for (auto &stream : streamConfig.streams) {
streams_.emplace_back(this, config.get(), stream.type,
stream.stream, config->size() - 1);
stream.stream->priv = static_cast<void *>(&streams_.back());
}
}
switch (config->validate()) {
case CameraConfiguration::Valid:
break;
case CameraConfiguration::Adjusted:
LOG(HAL, Info) << "Camera configuration adjusted";
for (const StreamConfiguration &cfg : *config)
LOG(HAL, Info) << " - " << cfg.toString();
return -EINVAL;
case CameraConfiguration::Invalid:
LOG(HAL, Info) << "Camera configuration invalid";
return -EINVAL;
}
/*
* Once the CameraConfiguration has been adjusted/validated
* it can be applied to the camera.
*/
int ret = camera_->configure(config.get());
if (ret) {
LOG(HAL, Error) << "Failed to configure camera '"
<< camera_->id() << "'";
return ret;
}
/*
* Configure the HAL CameraStream instances using the associated
* StreamConfiguration and set the number of required buffers in
* the Android camera3_stream_t.
*/
for (CameraStream &cameraStream : streams_) {
ret = cameraStream.configure();
if (ret) {
LOG(HAL, Error) << "Failed to configure camera stream";
return ret;
}
}
config_ = std::move(config);
return 0;
}
FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
{
std::vector<FrameBuffer::Plane> planes;
for (int i = 0; i < camera3buffer->numFds; i++) {
/* Skip unused planes. */
if (camera3buffer->data[i] == -1)
break;
FrameBuffer::Plane plane;
plane.fd = FileDescriptor(camera3buffer->data[i]);
if (!plane.fd.isValid()) {
LOG(HAL, Error) << "Failed to obtain FileDescriptor ("
<< camera3buffer->data[i] << ") "
<< " on plane " << i;
return nullptr;
}
off_t length = lseek(plane.fd.fd(), 0, SEEK_END);
if (length == -1) {
LOG(HAL, Error) << "Failed to query plane length";
return nullptr;
}
plane.length = length;
planes.push_back(std::move(plane));
}
return new FrameBuffer(std::move(planes));
}
int CameraDevice::processControls(Camera3RequestDescriptor *descriptor)
{
const CameraMetadata &settings = descriptor->settings_;
if (!settings.isValid())
return 0;
/* Translate the Android request settings to libcamera controls. */
ControlList &controls = descriptor->request_->controls();
camera_metadata_ro_entry_t entry;
if (settings.getEntry(ANDROID_SCALER_CROP_REGION, &entry)) {
const int32_t *data = entry.data.i32;
Rectangle cropRegion{ data[0], data[1],
static_cast<unsigned int>(data[2]),
static_cast<unsigned int>(data[3]) };
controls.set(controls::ScalerCrop, cropRegion);
}
if (settings.getEntry(ANDROID_SENSOR_TEST_PATTERN_MODE, &entry)) {
const int32_t data = *entry.data.i32;
int32_t testPatternMode = controls::draft::TestPatternModeOff;
switch (data) {
case ANDROID_SENSOR_TEST_PATTERN_MODE_OFF:
testPatternMode = controls::draft::TestPatternModeOff;
break;
case ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR:
testPatternMode = controls::draft::TestPatternModeSolidColor;
break;
case ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS:
testPatternMode = controls::draft::TestPatternModeColorBars;
break;
case ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY:
testPatternMode = controls::draft::TestPatternModeColorBarsFadeToGray;
break;
case ANDROID_SENSOR_TEST_PATTERN_MODE_PN9:
testPatternMode = controls::draft::TestPatternModePn9;
break;
case ANDROID_SENSOR_TEST_PATTERN_MODE_CUSTOM1:
testPatternMode = controls::draft::TestPatternModeCustom1;
break;
default:
LOG(HAL, Error)
<< "Unknown test pattern mode: " << data;
return -EINVAL;
}
controls.set(controls::draft::TestPatternMode, testPatternMode);
}
return 0;
}
void CameraDevice::abortRequest(camera3_capture_request_t *request)
{
notifyError(request->frame_number, nullptr, CAMERA3_MSG_ERROR_REQUEST);
camera3_capture_result_t result = {};
result.num_output_buffers = request->num_output_buffers;
result.frame_number = request->frame_number;
result.partial_result = 0;
std::vector<camera3_stream_buffer_t> resultBuffers(result.num_output_buffers);
for (auto [i, buffer] : utils::enumerate(resultBuffers)) {
buffer = request->output_buffers[i];
buffer.release_fence = request->output_buffers[i].acquire_fence;
buffer.acquire_fence = -1;
buffer.status = CAMERA3_BUFFER_STATUS_ERROR;
}
result.output_buffers = resultBuffers.data();
callbacks_->process_capture_result(callbacks_, &result);
}
bool CameraDevice::isValidRequest(camera3_capture_request_t *camera3Request) const
{
if (!camera3Request) {
LOG(HAL, Error) << "No capture request provided";
return false;
}
if (!camera3Request->num_output_buffers ||
!camera3Request->output_buffers) {
LOG(HAL, Error) << "No output buffers provided";
return false;
}
/* configureStreams() has not been called or has failed. */
if (streams_.empty() || !config_) {
LOG(HAL, Error) << "No stream is configured";
return false;
}
for (uint32_t i = 0; i < camera3Request->num_output_buffers; i++) {
const camera3_stream_buffer_t &outputBuffer =
camera3Request->output_buffers[i];
if (!outputBuffer.buffer || !(*outputBuffer.buffer)) {
LOG(HAL, Error) << "Invalid native handle";
return false;
}
const native_handle_t *handle = *outputBuffer.buffer;
constexpr int kNativeHandleMaxFds = 1024;
if (handle->numFds < 0 || handle->numFds > kNativeHandleMaxFds) {
LOG(HAL, Error)
<< "Invalid number of fds (" << handle->numFds
<< ") in buffer " << i;
return false;
}
constexpr int kNativeHandleMaxInts = 1024;
if (handle->numInts < 0 || handle->numInts > kNativeHandleMaxInts) {
LOG(HAL, Error)
<< "Invalid number of ints (" << handle->numInts
<< ") in buffer " << i;
return false;
}
const camera3_stream *camera3Stream = outputBuffer.stream;
if (!camera3Stream)
return false;
const CameraStream *cameraStream =
static_cast<CameraStream *>(camera3Stream->priv);
auto found = std::find_if(streams_.begin(), streams_.end(),
[cameraStream](const CameraStream &stream) {
return &stream == cameraStream;
});
if (found == streams_.end()) {
LOG(HAL, Error)
<< "No corresponding configured stream found";
return false;
}
}
return true;
}
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
if (!isValidRequest(camera3Request))
return -EINVAL;
/*
* Save the request descriptors for use at completion time.
* The descriptor and the associated memory reserved here are freed
* at request complete time.
*/
Camera3RequestDescriptor descriptor(camera_.get(), camera3Request);
/*
* \todo The Android request model is incremental, settings passed in
* previous requests are to be effective until overridden explicitly in
* a new request. Do we need to cache settings incrementally here, or is
* it handled by the Android camera service ?
*/
if (camera3Request->settings)
lastSettings_ = camera3Request->settings;
else
descriptor.settings_ = lastSettings_;
LOG(HAL, Debug) << "Queueing request " << descriptor.request_->cookie()
<< " with " << descriptor.buffers_.size() << " streams";
for (unsigned int i = 0; i < descriptor.buffers_.size(); ++i) {
const camera3_stream_buffer_t &camera3Buffer = descriptor.buffers_[i];
camera3_stream *camera3Stream = camera3Buffer.stream;
CameraStream *cameraStream = static_cast<CameraStream *>(camera3Stream->priv);
std::stringstream ss;
ss << i << " - (" << camera3Stream->width << "x"
<< camera3Stream->height << ")"
<< "[" << utils::hex(camera3Stream->format) << "] -> "
<< "(" << cameraStream->configuration().size.toString() << ")["
<< cameraStream->configuration().pixelFormat.toString() << "]";
/*
* Inspect the camera stream type, create buffers opportunely
* and add them to the Request if required.
*/
FrameBuffer *buffer = nullptr;
switch (cameraStream->type()) {
case CameraStream::Type::Mapped:
/*
* Mapped streams don't need buffers added to the
* Request.
*/
LOG(HAL, Debug) << ss.str() << " (mapped)";
continue;
case CameraStream::Type::Direct:
/*
* Create a libcamera buffer using the dmabuf
* descriptors of the camera3Buffer for each stream and
* associate it with the Camera3RequestDescriptor for
* lifetime management only.
*/
buffer = createFrameBuffer(*camera3Buffer.buffer);
descriptor.frameBuffers_.emplace_back(buffer);
LOG(HAL, Debug) << ss.str() << " (direct)";
break;
case CameraStream::Type::Internal:
/*
* Get the frame buffer from the CameraStream internal
* buffer pool.
*
* The buffer has to be returned to the CameraStream
* once it has been processed.
*/
buffer = cameraStream->getBuffer();
LOG(HAL, Debug) << ss.str() << " (internal)";
break;
}
if (!buffer) {
LOG(HAL, Error) << "Failed to create buffer";
return -ENOMEM;
}
descriptor.request_->addBuffer(cameraStream->stream(), buffer,
camera3Buffer.acquire_fence);
}
/*
* Translate controls from Android to libcamera and queue the request
* to the CameraWorker thread.
*/
int ret = processControls(&descriptor);
if (ret)
return ret;
/*
* If flush is in progress abort the request. If the camera has been
* stopped we have to re-start it to be able to process the request.
*/
MutexLocker stateLock(stateMutex_);
if (state_ == State::Flushing) {
abortRequest(camera3Request);
return 0;
}
if (state_ == State::Stopped) {
worker_.start();
ret = camera_->start();
if (ret) {
LOG(HAL, Error) << "Failed to start camera";
worker_.stop();
return ret;
}
state_ = State::Running;
}
worker_.queueRequest(descriptor.request_.get());
{
MutexLocker descriptorsLock(descriptorsMutex_);
descriptors_[descriptor.request_->cookie()] = std::move(descriptor);
}
return 0;
}
void CameraDevice::requestComplete(Request *request)
{
decltype(descriptors_)::node_type node;
{
MutexLocker descriptorsLock(descriptorsMutex_);
auto it = descriptors_.find(request->cookie());
if (it == descriptors_.end()) {
/*
* \todo Clarify if the Camera has to be closed on
* ERROR_DEVICE and possibly demote the Fatal to simple
* Error.
*/
notifyError(0, nullptr, CAMERA3_MSG_ERROR_DEVICE);
LOG(HAL, Fatal)
<< "Unknown request: " << request->cookie();
return;
}
node = descriptors_.extract(it);
}
Camera3RequestDescriptor &descriptor = node.mapped();
/*
* Prepare the capture result for the Android camera stack.
*
* The buffer status is set to OK and later changed to ERROR if
* post-processing/compression fails.
*/
camera3_capture_result_t captureResult = {};
captureResult.frame_number = descriptor.frameNumber_;
captureResult.num_output_buffers = descriptor.buffers_.size();
for (camera3_stream_buffer_t &buffer : descriptor.buffers_) {
buffer.acquire_fence = -1;
buffer.release_fence = -1;
buffer.status = CAMERA3_BUFFER_STATUS_OK;
}
captureResult.output_buffers = descriptor.buffers_.data();
captureResult.partial_result = 1;
/*
* If the Request has failed, abort the request by notifying the error
* and complete the request with all buffers in error state.
*/
if (request->status() != Request::RequestComplete) {
LOG(HAL, Error) << "Request " << request->cookie()
<< " not successfully completed: "
<< request->status();
notifyError(descriptor.frameNumber_, nullptr,
CAMERA3_MSG_ERROR_REQUEST);
captureResult.partial_result = 0;
for (camera3_stream_buffer_t &buffer : descriptor.buffers_)
buffer.status = CAMERA3_BUFFER_STATUS_ERROR;
callbacks_->process_capture_result(callbacks_, &captureResult);
return;
}
/*
* Notify shutter as soon as we have verified we have a valid request.
*
* \todo The shutter event notification should be sent to the framework
* as soon as possible, earlier than request completion time.
*/
uint64_t sensorTimestamp = static_cast<uint64_t>(request->metadata()
.get(controls::SensorTimestamp));
notifyShutter(descriptor.frameNumber_, sensorTimestamp);
LOG(HAL, Debug) << "Request " << request->cookie() << " completed with "
<< descriptor.buffers_.size() << " streams";
/*
* Generate the metadata associated with the captured buffers.
*
* Notify if the metadata generation has failed, but continue processing
* buffers and return an empty metadata pack.
*/
std::unique_ptr<CameraMetadata> resultMetadata = getResultMetadata(descriptor);
if (!resultMetadata) {
notifyError(descriptor.frameNumber_, nullptr, CAMERA3_MSG_ERROR_RESULT);
/* The camera framework expects an empy metadata pack on error. */
resultMetadata = std::make_unique<CameraMetadata>(0, 0);
}
/* Handle any JPEG compression. */
for (camera3_stream_buffer_t &buffer : descriptor.buffers_) {
CameraStream *cameraStream =
static_cast<CameraStream *>(buffer.stream->priv);
if (cameraStream->camera3Stream().format != HAL_PIXEL_FORMAT_BLOB)
continue;
FrameBuffer *src = request->findBuffer(cameraStream->stream());
if (!src) {
LOG(HAL, Error) << "Failed to find a source stream buffer";
buffer.status = CAMERA3_BUFFER_STATUS_ERROR;
notifyError(descriptor.frameNumber_, buffer.stream,
CAMERA3_MSG_ERROR_BUFFER);
continue;
}
int ret = cameraStream->process(*src, *buffer.buffer,
descriptor.settings_,
resultMetadata.get());
/*
* Return the FrameBuffer to the CameraStream now that we're
* done processing it.
*/
if (cameraStream->type() == CameraStream::Type::Internal)
cameraStream->putBuffer(src);
if (ret) {
buffer.status = CAMERA3_BUFFER_STATUS_ERROR;
notifyError(descriptor.frameNumber_, buffer.stream,
CAMERA3_MSG_ERROR_BUFFER);
}
}
captureResult.result = resultMetadata->get();
callbacks_->process_capture_result(callbacks_, &captureResult);
}
std::string CameraDevice::logPrefix() const
{
return "'" + camera_->id() + "'";
}
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_SHUTTER;
notify.message.shutter.frame_number = frameNumber;
notify.message.shutter.timestamp = timestamp;
callbacks_->notify(callbacks_, &notify);
}
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream,
camera3_error_msg_code code)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_ERROR;
notify.message.error.error_stream = stream;
notify.message.error.frame_number = frameNumber;
notify.message.error.error_code = code;
callbacks_->notify(callbacks_, &notify);
}
/*
* Produce a set of fixed result metadata.
*/
std::unique_ptr<CameraMetadata>
CameraDevice::getResultMetadata(const Camera3RequestDescriptor &descriptor) const
{
const ControlList &metadata = descriptor.request_->metadata();
const CameraMetadata &settings = descriptor.settings_;
camera_metadata_ro_entry_t entry;
bool found;
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 40 entries, 156 bytes
*
* Reserve more space for the JPEG metadata set by the post-processor.
* Currently:
* ANDROID_JPEG_GPS_COORDINATES (double x 3) = 24 bytes
* ANDROID_JPEG_GPS_PROCESSING_METHOD (byte x 32) = 32 bytes
* ANDROID_JPEG_GPS_TIMESTAMP (int64) = 8 bytes
* ANDROID_JPEG_SIZE (int32_t) = 4 bytes
* ANDROID_JPEG_QUALITY (byte) = 1 byte
* ANDROID_JPEG_ORIENTATION (int32_t) = 4 bytes
* ANDROID_JPEG_THUMBNAIL_QUALITY (byte) = 1 byte
* ANDROID_JPEG_THUMBNAIL_SIZE (int32 x 2) = 8 bytes
* Total bytes for JPEG metadata: 82
*/
std::unique_ptr<CameraMetadata> resultMetadata =
std::make_unique<CameraMetadata>(44, 166);
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to allocate result metadata";
return nullptr;
}
/*
* \todo The value of the results metadata copied from the settings
* will have to be passed to the libcamera::Camera and extracted
* from libcamera::Request::metadata.
*/
uint8_t value = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
resultMetadata->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
value);
value = ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE, value);
int32_t value32 = 0;
resultMetadata->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
value32);
value = ANDROID_CONTROL_AE_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, value);
value = ANDROID_CONTROL_AE_MODE_ON;
resultMetadata->addEntry(ANDROID_CONTROL_AE_MODE, value);
if (settings.getEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, &entry))
/*
* \todo Retrieve the AE FPS range from the libcamera metadata.
* As libcamera does not support that control, as a temporary
* workaround return what the framework asked.
*/
resultMetadata->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32, 2);
found = settings.getEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &entry);
value = found ? *entry.data.u8 :
(uint8_t)ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
resultMetadata->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, value);
value = ANDROID_CONTROL_AE_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, value);
value = ANDROID_CONTROL_AF_MODE_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AF_MODE, value);
value = ANDROID_CONTROL_AF_STATE_INACTIVE;
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, value);
value = ANDROID_CONTROL_AF_TRIGGER_IDLE;
resultMetadata->addEntry(ANDROID_CONTROL_AF_TRIGGER, value);
value = ANDROID_CONTROL_AWB_MODE_AUTO;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_MODE, value);
value = ANDROID_CONTROL_AWB_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, value);
value = ANDROID_CONTROL_AWB_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, value);
value = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
resultMetadata->addEntry(ANDROID_CONTROL_CAPTURE_INTENT, value);
value = ANDROID_CONTROL_EFFECT_MODE_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_EFFECT_MODE, value);
value = ANDROID_CONTROL_MODE_AUTO;
resultMetadata->addEntry(ANDROID_CONTROL_MODE, value);
value = ANDROID_CONTROL_SCENE_MODE_DISABLED;
resultMetadata->addEntry(ANDROID_CONTROL_SCENE_MODE, value);
value = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, value);
value = ANDROID_FLASH_MODE_OFF;
resultMetadata->addEntry(ANDROID_FLASH_MODE, value);
value = ANDROID_FLASH_STATE_UNAVAILABLE;
resultMetadata->addEntry(ANDROID_FLASH_STATE, value);
if (settings.getEntry(ANDROID_LENS_APERTURE, &entry))
resultMetadata->addEntry(ANDROID_LENS_APERTURE, entry.data.f, 1);
float focal_length = 1.0;
resultMetadata->addEntry(ANDROID_LENS_FOCAL_LENGTH, focal_length);
value = ANDROID_LENS_STATE_STATIONARY;
resultMetadata->addEntry(ANDROID_LENS_STATE, value);
value = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
resultMetadata->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
value);
value32 = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
resultMetadata->addEntry(ANDROID_SENSOR_TEST_PATTERN_MODE, value32);
value = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE, value);
value = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
value);
value = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, value);
value = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER, value);
value = ANDROID_NOISE_REDUCTION_MODE_OFF;
resultMetadata->addEntry(ANDROID_NOISE_REDUCTION_MODE, value);
/* 33.3 msec */
const int64_t rolling_shutter_skew = 33300000;
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
rolling_shutter_skew);
/* Add metadata tags reported by libcamera. */
const int64_t timestamp = metadata.get(controls::SensorTimestamp);
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, timestamp);
if (metadata.contains(controls::draft::PipelineDepth)) {
uint8_t pipeline_depth =
metadata.get<int32_t>(controls::draft::PipelineDepth);
resultMetadata->addEntry(ANDROID_REQUEST_PIPELINE_DEPTH,
pipeline_depth);
}
if (metadata.contains(controls::ExposureTime)) {
int64_t exposure = metadata.get(controls::ExposureTime) * 1000ULL;
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME, exposure);
}
if (metadata.contains(controls::FrameDuration)) {
int64_t duration = metadata.get(controls::FrameDuration) * 1000;
resultMetadata->addEntry(ANDROID_SENSOR_FRAME_DURATION,
duration);
}
if (metadata.contains(controls::ScalerCrop)) {
Rectangle crop = metadata.get(controls::ScalerCrop);
int32_t cropRect[] = {
crop.x, crop.y, static_cast<int32_t>(crop.width),
static_cast<int32_t>(crop.height),
};
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, cropRect);
}
if (metadata.contains(controls::draft::TestPatternMode)) {
const int32_t testPatternMode =
metadata.get(controls::draft::TestPatternMode);
resultMetadata->addEntry(ANDROID_SENSOR_TEST_PATTERN_MODE,
testPatternMode);
}
/*
* Return the result metadata pack even is not valid: get() will return
* nullptr.
*/
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to construct result metadata";
}
if (resultMetadata->resized()) {
auto [entryCount, dataCount] = resultMetadata->usage();
LOG(HAL, Info)
<< "Result metadata resized: " << entryCount
<< " entries and " << dataCount << " bytes used";
}
return resultMetadata;
}