libcamera/src/ipa/rpi/common/ipa_base.cpp
Barnabás Pőcze b4c92a61bf ipa: rpi: Initialize enum controls with a list of values
This is how uvcvideo and rkisp1 do it. See ee918b370a
("ipa: rkisp1: agc: Initialize enum controls with a list of values")
for the motivation. In summary, having a list of values is used as a sign
that the control is an enum in multiple places (e.g. `cam`, `camshark`).

Signed-off-by: Barnabás Pőcze <barnabas.pocze@ideasonboard.com>
Reviewed-by: Naushir Patuck <naush@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
2025-06-17 10:59:12 +02:00

1627 lines
52 KiB
C++

/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019-2023, Raspberry Pi Ltd
*
* Raspberry Pi IPA base class
*/
#include "ipa_base.h"
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/base/span.h>
#include <libcamera/control_ids.h>
#include <libcamera/property_ids.h>
#include "controller/af_algorithm.h"
#include "controller/af_status.h"
#include "controller/agc_algorithm.h"
#include "controller/awb_algorithm.h"
#include "controller/awb_status.h"
#include "controller/black_level_status.h"
#include "controller/ccm_algorithm.h"
#include "controller/ccm_status.h"
#include "controller/contrast_algorithm.h"
#include "controller/denoise_algorithm.h"
#include "controller/hdr_algorithm.h"
#include "controller/lux_status.h"
#include "controller/sharpen_algorithm.h"
#include "controller/statistics.h"
namespace libcamera {
using namespace std::literals::chrono_literals;
using utils::Duration;
namespace {
/* Number of frame length times to hold in the queue. */
constexpr unsigned int FrameLengthsQueueSize = 10;
/* Configure the sensor with these values initially. */
constexpr double defaultAnalogueGain = 1.0;
constexpr Duration defaultExposureTime = 20.0ms;
constexpr Duration defaultMinFrameDuration = 1.0s / 30.0;
constexpr Duration defaultMaxFrameDuration = 250.0s;
/*
* Determine the minimum allowable inter-frame duration to run the controller
* algorithms. If the pipeline handler provider frames at a rate higher than this,
* we rate-limit the controller Prepare() and Process() calls to lower than or
* equal to this rate.
*/
constexpr Duration controllerMinFrameDuration = 1.0s / 30.0;
/* List of controls handled by the Raspberry Pi IPA */
const ControlInfoMap::Map ipaControls{
/* \todo Move this to the Camera class */
{ &controls::AeEnable, ControlInfo(false, true, true) },
{ &controls::ExposureTimeMode,
ControlInfo({ { ControlValue(controls::ExposureTimeModeAuto),
ControlValue(controls::ExposureTimeModeManual) } },
ControlValue(controls::ExposureTimeModeAuto)) },
{ &controls::ExposureTime,
ControlInfo(1, 66666, static_cast<int32_t>(defaultExposureTime.get<std::micro>())) },
{ &controls::AnalogueGainMode,
ControlInfo({ { ControlValue(controls::AnalogueGainModeAuto),
ControlValue(controls::AnalogueGainModeManual) } },
ControlValue(controls::AnalogueGainModeAuto)) },
{ &controls::AnalogueGain, ControlInfo(1.0f, 16.0f, 1.0f) },
{ &controls::AeMeteringMode, ControlInfo(controls::AeMeteringModeValues) },
{ &controls::AeConstraintMode, ControlInfo(controls::AeConstraintModeValues) },
{ &controls::AeExposureMode, ControlInfo(controls::AeExposureModeValues) },
{ &controls::ExposureValue, ControlInfo(-8.0f, 8.0f, 0.0f) },
{ &controls::AeFlickerMode,
ControlInfo({ { ControlValue(controls::FlickerOff),
ControlValue(controls::FlickerManual) } },
ControlValue(controls::FlickerOff)) },
{ &controls::AeFlickerPeriod, ControlInfo(100, 1000000) },
{ &controls::Brightness, ControlInfo(-1.0f, 1.0f, 0.0f) },
{ &controls::Contrast, ControlInfo(0.0f, 32.0f, 1.0f) },
{ &controls::HdrMode, ControlInfo(controls::HdrModeValues) },
{ &controls::Sharpness, ControlInfo(0.0f, 16.0f, 1.0f) },
{ &controls::ScalerCrop, ControlInfo(Rectangle{}, Rectangle(65535, 65535, 65535, 65535), Rectangle{}) },
{ &controls::FrameDurationLimits,
ControlInfo(INT64_C(33333), INT64_C(120000),
static_cast<int64_t>(defaultMinFrameDuration.get<std::micro>())) },
{ &controls::draft::NoiseReductionMode, ControlInfo(controls::draft::NoiseReductionModeValues) },
{ &controls::rpi::StatsOutputEnable, ControlInfo(false, true, false) },
};
/* IPA controls handled conditionally, if the sensor is not mono */
const ControlInfoMap::Map ipaColourControls{
{ &controls::AwbEnable, ControlInfo(false, true) },
{ &controls::AwbMode, ControlInfo(controls::AwbModeValues) },
{ &controls::ColourGains, ControlInfo(0.0f, 32.0f) },
{ &controls::ColourTemperature, ControlInfo(100, 100000) },
{ &controls::Saturation, ControlInfo(0.0f, 32.0f, 1.0f) },
};
/* IPA controls handled conditionally, if the lens has a focus control */
const ControlInfoMap::Map ipaAfControls{
{ &controls::AfMode, ControlInfo(controls::AfModeValues) },
{ &controls::AfRange, ControlInfo(controls::AfRangeValues) },
{ &controls::AfSpeed, ControlInfo(controls::AfSpeedValues) },
{ &controls::AfMetering, ControlInfo(controls::AfMeteringValues) },
{ &controls::AfWindows, ControlInfo(Rectangle{}, Rectangle(65535, 65535, 65535, 65535), Rectangle{}) },
{ &controls::AfTrigger, ControlInfo(controls::AfTriggerValues) },
{ &controls::AfPause, ControlInfo(controls::AfPauseValues) },
{ &controls::LensPosition, ControlInfo(0.0f, 32.0f, 1.0f) }
};
/* Platform specific controls */
const std::map<const std::string, ControlInfoMap::Map> platformControls {
{ "pisp", {
{ &controls::rpi::ScalerCrops, ControlInfo(Rectangle{}, Rectangle(65535, 65535, 65535, 65535), Rectangle{}) }
} },
};
} /* namespace */
LOG_DEFINE_CATEGORY(IPARPI)
namespace ipa::RPi {
IpaBase::IpaBase()
: controller_(), frameLengths_(FrameLengthsQueueSize, 0s), statsMetadataOutput_(false),
stitchSwapBuffers_(false), frameCount_(0), mistrustCount_(0), lastRunTimestamp_(0),
firstStart_(true), flickerState_({ 0, 0s })
{
}
IpaBase::~IpaBase()
{
}
int32_t IpaBase::init(const IPASettings &settings, const InitParams &params, InitResult *result)
{
/*
* Load the "helper" for this sensor. This tells us all the device specific stuff
* that the kernel driver doesn't. We only do this the first time; we don't need
* to re-parse the metadata after a simple mode-switch for no reason.
*/
helper_ = std::unique_ptr<RPiController::CamHelper>(RPiController::CamHelper::create(settings.sensorModel));
if (!helper_) {
LOG(IPARPI, Error) << "Could not create camera helper for "
<< settings.sensorModel;
return -EINVAL;
}
/* Pass out the sensor metadata to the pipeline handler */
int sensorMetadata = helper_->sensorEmbeddedDataPresent();
result->sensorConfig.sensorMetadata = sensorMetadata;
/* Load the tuning file for this sensor. */
int ret = controller_.read(settings.configurationFile.c_str());
if (ret) {
LOG(IPARPI, Error)
<< "Failed to load tuning data file "
<< settings.configurationFile;
return ret;
}
lensPresent_ = params.lensPresent;
controller_.initialise();
helper_->setHwConfig(controller_.getHardwareConfig());
/* Return the controls handled by the IPA */
ControlInfoMap::Map ctrlMap = ipaControls;
if (lensPresent_)
ctrlMap.merge(ControlInfoMap::Map(ipaAfControls));
auto platformCtrlsIt = platformControls.find(controller_.getTarget());
if (platformCtrlsIt != platformControls.end())
ctrlMap.merge(ControlInfoMap::Map(platformCtrlsIt->second));
monoSensor_ = params.sensorInfo.cfaPattern == properties::draft::ColorFilterArrangementEnum::MONO;
if (!monoSensor_)
ctrlMap.merge(ControlInfoMap::Map(ipaColourControls));
result->controlInfo = ControlInfoMap(std::move(ctrlMap), controls::controls);
return platformInit(params, result);
}
int32_t IpaBase::configure(const IPACameraSensorInfo &sensorInfo, const ConfigParams &params,
ConfigResult *result)
{
sensorCtrls_ = params.sensorControls;
if (!validateSensorControls()) {
LOG(IPARPI, Error) << "Sensor control validation failed.";
return -1;
}
if (lensPresent_) {
lensCtrls_ = params.lensControls;
if (!validateLensControls()) {
LOG(IPARPI, Warning) << "Lens validation failed, "
<< "no lens control will be available.";
lensPresent_ = false;
}
}
/* Setup a metadata ControlList to output metadata. */
libcameraMetadata_ = ControlList(controls::controls);
/* Re-assemble camera mode using the sensor info. */
setMode(sensorInfo);
mode_.transform = static_cast<libcamera::Transform>(params.transform);
/* Pass the camera mode to the CamHelper to setup algorithms. */
helper_->setCameraMode(mode_);
/*
* Initialise this ControlList correctly, even if empty, in case the IPA is
* running is isolation mode (passing the ControlList through the IPC layer).
*/
ControlList ctrls(sensorCtrls_);
/* The pipeline handler passes out the mode's sensitivity. */
result->modeSensitivity = mode_.sensitivity;
if (firstStart_) {
/* Supply initial values for frame durations. */
applyFrameDurations(defaultMinFrameDuration, defaultMaxFrameDuration);
/* Supply initial values for gain and exposure. */
AgcStatus agcStatus;
agcStatus.exposureTime = defaultExposureTime;
agcStatus.analogueGain = defaultAnalogueGain;
applyAGC(&agcStatus, ctrls);
/*
* Set the lens to the default (typically hyperfocal) position
* on first start.
*/
if (lensPresent_) {
RPiController::AfAlgorithm *af =
dynamic_cast<RPiController::AfAlgorithm *>(controller_.getAlgorithm("af"));
if (af) {
float defaultPos =
ipaAfControls.at(&controls::LensPosition).def().get<float>();
ControlList lensCtrl(lensCtrls_);
int32_t hwpos;
af->setLensPosition(defaultPos, &hwpos);
lensCtrl.set(V4L2_CID_FOCUS_ABSOLUTE, hwpos);
result->lensControls = std::move(lensCtrl);
}
}
}
result->sensorControls = std::move(ctrls);
/*
* Apply the correct limits to the exposure, gain and frame duration controls
* based on the current sensor mode.
*/
ControlInfoMap::Map ctrlMap = ipaControls;
ctrlMap[&controls::FrameDurationLimits] =
ControlInfo(static_cast<int64_t>(mode_.minFrameDuration.get<std::micro>()),
static_cast<int64_t>(mode_.maxFrameDuration.get<std::micro>()),
static_cast<int64_t>(defaultMinFrameDuration.get<std::micro>()));
ctrlMap[&controls::AnalogueGain] =
ControlInfo(static_cast<float>(mode_.minAnalogueGain),
static_cast<float>(mode_.maxAnalogueGain),
static_cast<float>(defaultAnalogueGain));
ctrlMap[&controls::ExposureTime] =
ControlInfo(static_cast<int32_t>(mode_.minExposureTime.get<std::micro>()),
static_cast<int32_t>(mode_.maxExposureTime.get<std::micro>()),
static_cast<int32_t>(defaultExposureTime.get<std::micro>()));
/* Declare colour processing related controls for non-mono sensors. */
if (!monoSensor_)
ctrlMap.merge(ControlInfoMap::Map(ipaColourControls));
/* Declare Autofocus controls, only if we have a controllable lens */
if (lensPresent_)
ctrlMap.merge(ControlInfoMap::Map(ipaAfControls));
result->controlInfo = ControlInfoMap(std::move(ctrlMap), controls::controls);
return platformConfigure(params, result);
}
void IpaBase::start(const ControlList &controls, StartResult *result)
{
RPiController::Metadata metadata;
if (!controls.empty()) {
/* We have been given some controls to action before start. */
applyControls(controls);
}
controller_.switchMode(mode_, &metadata);
/* Reset the frame lengths queue state. */
lastTimeout_ = 0s;
frameLengths_.clear();
frameLengths_.resize(FrameLengthsQueueSize, 0s);
/* SwitchMode may supply updated exposure/gain values to use. */
AgcStatus agcStatus;
agcStatus.exposureTime = 0.0s;
agcStatus.analogueGain = 0.0;
metadata.get("agc.status", agcStatus);
if (agcStatus.exposureTime && agcStatus.analogueGain) {
ControlList ctrls(sensorCtrls_);
applyAGC(&agcStatus, ctrls);
result->controls = std::move(ctrls);
setCameraTimeoutValue();
}
/* Make a note of this as it tells us the HDR status of the first few frames. */
hdrStatus_ = agcStatus.hdr;
/*
* Initialise frame counts, and decide how many frames must be hidden or
* "mistrusted", which depends on whether this is a startup from cold,
* or merely a mode switch in a running system.
*/
unsigned int agcConvergenceFrames = 0, awbConvergenceFrames = 0;
frameCount_ = 0;
if (firstStart_) {
invalidCount_ = helper_->hideFramesStartup();
mistrustCount_ = helper_->mistrustFramesStartup();
/*
* Query the AGC/AWB for how many frames they may take to
* converge sufficiently. Where these numbers are non-zero
* we must allow for the frames with bad statistics
* (mistrustCount_) that they won't see. But if zero (i.e.
* no convergence necessary), no frames need to be dropped.
*/
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (agc) {
agcConvergenceFrames = agc->getConvergenceFrames();
if (agcConvergenceFrames)
agcConvergenceFrames += mistrustCount_;
}
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.getAlgorithm("awb"));
if (awb) {
awbConvergenceFrames = awb->getConvergenceFrames();
if (awbConvergenceFrames)
awbConvergenceFrames += mistrustCount_;
}
} else {
invalidCount_ = helper_->hideFramesModeSwitch();
mistrustCount_ = helper_->mistrustFramesModeSwitch();
}
result->startupFrameCount = std::max({ agcConvergenceFrames, awbConvergenceFrames });
result->invalidFrameCount = invalidCount_;
invalidCount_ = std::max({ invalidCount_, agcConvergenceFrames, awbConvergenceFrames });
LOG(IPARPI, Debug) << "Startup frames: " << result->startupFrameCount
<< " Invalid frames: " << result->invalidFrameCount;
firstStart_ = false;
lastRunTimestamp_ = 0;
platformStart(controls, result);
}
void IpaBase::mapBuffers(const std::vector<IPABuffer> &buffers)
{
for (const IPABuffer &buffer : buffers) {
const FrameBuffer fb(buffer.planes);
buffers_.emplace(buffer.id,
MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite));
}
}
void IpaBase::unmapBuffers(const std::vector<unsigned int> &ids)
{
for (unsigned int id : ids) {
auto it = buffers_.find(id);
if (it == buffers_.end())
continue;
buffers_.erase(id);
}
}
void IpaBase::prepareIsp(const PrepareParams &params)
{
applyControls(params.requestControls);
/*
* At start-up, or after a mode-switch, we may want to
* avoid running the control algos for a few frames in case
* they are "unreliable".
*/
int64_t frameTimestamp = params.sensorControls.get(controls::SensorTimestamp).value_or(0);
unsigned int ipaContext = params.ipaContext % rpiMetadata_.size();
RPiController::Metadata &rpiMetadata = rpiMetadata_[ipaContext];
Span<uint8_t> embeddedBuffer;
rpiMetadata.clear();
fillDeviceStatus(params.sensorControls, ipaContext);
if (params.buffers.embedded) {
/*
* Pipeline handler has supplied us with an embedded data buffer,
* we must pass it to the CamHelper for parsing.
*/
auto it = buffers_.find(params.buffers.embedded);
ASSERT(it != buffers_.end());
embeddedBuffer = it->second.planes()[0];
}
/*
* AGC wants to know the algorithm status from the time it actioned the
* sensor exposure/gain changes. So fetch it from the metadata list
* indexed by the IPA cookie returned, and put it in the current frame
* metadata.
*
* Note if the HDR mode has changed, as things like tonemaps may need updating.
*/
AgcStatus agcStatus;
bool hdrChange = false;
RPiController::Metadata &delayedMetadata = rpiMetadata_[params.delayContext];
if (!delayedMetadata.get<AgcStatus>("agc.status", agcStatus)) {
rpiMetadata.set("agc.delayed_status", agcStatus);
hdrChange = agcStatus.hdr.mode != hdrStatus_.mode;
hdrStatus_ = agcStatus.hdr;
}
/*
* This may overwrite the DeviceStatus using values from the sensor
* metadata, and may also do additional custom processing.
*/
helper_->prepare(embeddedBuffer, rpiMetadata);
/* Allow a 10% margin on the comparison below. */
Duration delta = (frameTimestamp - lastRunTimestamp_) * 1.0ns;
if (lastRunTimestamp_ && frameCount_ > invalidCount_ &&
delta < controllerMinFrameDuration * 0.9 && !hdrChange) {
/*
* Ensure we merge the previous frame's metadata with the current
* frame. This will not overwrite exposure/gain values for the
* current frame, or any other bits of metadata that were added
* in helper_->Prepare().
*/
RPiController::Metadata &lastMetadata =
rpiMetadata_[(ipaContext ? ipaContext : rpiMetadata_.size()) - 1];
rpiMetadata.mergeCopy(lastMetadata);
processPending_ = false;
} else {
processPending_ = true;
lastRunTimestamp_ = frameTimestamp;
}
/*
* If the statistics are inline (i.e. already available with the Bayer
* frame), call processStats() now before prepare().
*/
if (controller_.getHardwareConfig().statsInline)
processStats({ params.buffers, params.ipaContext });
/* Do we need/want to call prepare? */
if (processPending_) {
controller_.prepare(&rpiMetadata);
/* Actually prepare the ISP parameters for the frame. */
platformPrepareIsp(params, rpiMetadata);
}
frameCount_++;
/* If the statistics are inline the metadata can be returned early. */
if (controller_.getHardwareConfig().statsInline)
reportMetadata(ipaContext);
/* Ready to push the input buffer into the ISP. */
prepareIspComplete.emit(params.buffers, stitchSwapBuffers_);
}
void IpaBase::processStats(const ProcessParams &params)
{
unsigned int ipaContext = params.ipaContext % rpiMetadata_.size();
if (processPending_ && frameCount_ >= mistrustCount_) {
RPiController::Metadata &rpiMetadata = rpiMetadata_[ipaContext];
auto it = buffers_.find(params.buffers.stats);
if (it == buffers_.end()) {
LOG(IPARPI, Error) << "Could not find stats buffer!";
return;
}
RPiController::StatisticsPtr statistics = platformProcessStats(it->second.planes()[0]);
/* reportMetadata() will pick this up and set the FocusFoM metadata */
rpiMetadata.set("focus.status", statistics->focusRegions);
helper_->process(statistics, rpiMetadata);
controller_.process(statistics, &rpiMetadata);
struct AgcStatus agcStatus;
if (rpiMetadata.get("agc.status", agcStatus) == 0) {
ControlList ctrls(sensorCtrls_);
applyAGC(&agcStatus, ctrls);
setDelayedControls.emit(ctrls, ipaContext);
setCameraTimeoutValue();
}
}
/*
* If the statistics are not inline the metadata must be returned now,
* before the processStatsComplete signal.
*/
if (!controller_.getHardwareConfig().statsInline)
reportMetadata(ipaContext);
processStatsComplete.emit(params.buffers);
}
void IpaBase::setMode(const IPACameraSensorInfo &sensorInfo)
{
mode_.bitdepth = sensorInfo.bitsPerPixel;
mode_.width = sensorInfo.outputSize.width;
mode_.height = sensorInfo.outputSize.height;
mode_.sensorWidth = sensorInfo.activeAreaSize.width;
mode_.sensorHeight = sensorInfo.activeAreaSize.height;
mode_.cropX = sensorInfo.analogCrop.x;
mode_.cropY = sensorInfo.analogCrop.y;
mode_.pixelRate = sensorInfo.pixelRate;
/*
* Calculate scaling parameters. The scale_[xy] factors are determined
* by the ratio between the crop rectangle size and the output size.
*/
mode_.scaleX = sensorInfo.analogCrop.width / sensorInfo.outputSize.width;
mode_.scaleY = sensorInfo.analogCrop.height / sensorInfo.outputSize.height;
/*
* We're not told by the pipeline handler how scaling is split between
* binning and digital scaling. For now, as a heuristic, assume that
* downscaling up to 2 is achieved through binning, and that any
* additional scaling is achieved through digital scaling.
*
* \todo Get the pipeline handle to provide the full data
*/
mode_.binX = std::min(2, static_cast<int>(mode_.scaleX));
mode_.binY = std::min(2, static_cast<int>(mode_.scaleY));
/* The noise factor is the square root of the total binning factor. */
mode_.noiseFactor = std::sqrt(mode_.binX * mode_.binY);
/*
* Calculate the line length as the ratio between the line length in
* pixels and the pixel rate.
*/
mode_.minLineLength = sensorInfo.minLineLength * (1.0s / sensorInfo.pixelRate);
mode_.maxLineLength = sensorInfo.maxLineLength * (1.0s / sensorInfo.pixelRate);
/*
* Ensure that the maximum pixel processing rate does not exceed the ISP
* hardware capabilities. If it does, try adjusting the minimum line
* length to compensate if possible.
*/
Duration minPixelTime = controller_.getHardwareConfig().minPixelProcessingTime;
Duration pixelTime = mode_.minLineLength / mode_.width;
if (minPixelTime && pixelTime < minPixelTime) {
Duration adjustedLineLength = minPixelTime * mode_.width;
if (adjustedLineLength <= mode_.maxLineLength) {
LOG(IPARPI, Info)
<< "Adjusting mode minimum line length from " << mode_.minLineLength
<< " to " << adjustedLineLength << " because of ISP constraints.";
mode_.minLineLength = adjustedLineLength;
} else {
LOG(IPARPI, Error)
<< "Sensor minimum line length of " << pixelTime * mode_.width
<< " (" << 1us / pixelTime << " MPix/s)"
<< " is below the minimum allowable ISP limit of "
<< adjustedLineLength
<< " (" << 1us / minPixelTime << " MPix/s) ";
LOG(IPARPI, Error)
<< "THIS WILL CAUSE IMAGE CORRUPTION!!! "
<< "Please update the camera sensor driver to allow more horizontal blanking control.";
}
}
/*
* Set the frame length limits for the mode to ensure exposure and
* framerate calculations are clipped appropriately.
*/
mode_.minFrameLength = sensorInfo.minFrameLength;
mode_.maxFrameLength = sensorInfo.maxFrameLength;
/* Store these for convenience. */
mode_.minFrameDuration = mode_.minFrameLength * mode_.minLineLength;
mode_.maxFrameDuration = mode_.maxFrameLength * mode_.maxLineLength;
/*
* Some sensors may have different sensitivities in different modes;
* the CamHelper will know the correct value.
*/
mode_.sensitivity = helper_->getModeSensitivity(mode_);
const ControlInfo &gainCtrl = sensorCtrls_.at(V4L2_CID_ANALOGUE_GAIN);
const ControlInfo &exposureTimeCtrl = sensorCtrls_.at(V4L2_CID_EXPOSURE);
mode_.minAnalogueGain = helper_->gain(gainCtrl.min().get<int32_t>());
mode_.maxAnalogueGain = helper_->gain(gainCtrl.max().get<int32_t>());
/*
* We need to give the helper the min/max frame durations so it can calculate
* the correct exposure limits below.
*/
helper_->setCameraMode(mode_);
/*
* Exposure time is calculated based on the limits of the frame
* durations.
*/
mode_.minExposureTime = helper_->exposure(exposureTimeCtrl.min().get<int32_t>(),
mode_.minLineLength);
mode_.maxExposureTime = Duration::max();
helper_->getBlanking(mode_.maxExposureTime, mode_.minFrameDuration,
mode_.maxFrameDuration);
}
void IpaBase::setCameraTimeoutValue()
{
/*
* Take the maximum value of the exposure queue as the camera timeout
* value to pass back to the pipeline handler. Only signal if it has changed
* from the last set value.
*/
auto max = std::max_element(frameLengths_.begin(), frameLengths_.end());
if (*max != lastTimeout_) {
setCameraTimeout.emit(max->get<std::milli>());
lastTimeout_ = *max;
}
}
bool IpaBase::validateSensorControls()
{
static const uint32_t ctrls[] = {
V4L2_CID_ANALOGUE_GAIN,
V4L2_CID_EXPOSURE,
V4L2_CID_VBLANK,
V4L2_CID_HBLANK,
};
for (auto c : ctrls) {
if (sensorCtrls_.find(c) == sensorCtrls_.end()) {
LOG(IPARPI, Error) << "Unable to find sensor control "
<< utils::hex(c);
return false;
}
}
return true;
}
bool IpaBase::validateLensControls()
{
if (lensCtrls_.find(V4L2_CID_FOCUS_ABSOLUTE) == lensCtrls_.end()) {
LOG(IPARPI, Error) << "Unable to find Lens control V4L2_CID_FOCUS_ABSOLUTE";
return false;
}
return true;
}
/*
* Converting between enums (used in the libcamera API) and the names that
* we use to identify different modes. Unfortunately, the conversion tables
* must be kept up-to-date by hand.
*/
static const std::map<int32_t, std::string> MeteringModeTable = {
{ controls::MeteringCentreWeighted, "centre-weighted" },
{ controls::MeteringSpot, "spot" },
{ controls::MeteringMatrix, "matrix" },
{ controls::MeteringCustom, "custom" },
};
static const std::map<int32_t, std::string> ConstraintModeTable = {
{ controls::ConstraintNormal, "normal" },
{ controls::ConstraintHighlight, "highlight" },
{ controls::ConstraintShadows, "shadows" },
{ controls::ConstraintCustom, "custom" },
};
static const std::map<int32_t, std::string> ExposureModeTable = {
{ controls::ExposureNormal, "normal" },
{ controls::ExposureShort, "short" },
{ controls::ExposureLong, "long" },
{ controls::ExposureCustom, "custom" },
};
static const std::map<int32_t, std::string> AwbModeTable = {
{ controls::AwbAuto, "auto" },
{ controls::AwbIncandescent, "incandescent" },
{ controls::AwbTungsten, "tungsten" },
{ controls::AwbFluorescent, "fluorescent" },
{ controls::AwbIndoor, "indoor" },
{ controls::AwbDaylight, "daylight" },
{ controls::AwbCloudy, "cloudy" },
{ controls::AwbCustom, "custom" },
};
static const std::map<int32_t, RPiController::AfAlgorithm::AfMode> AfModeTable = {
{ controls::AfModeManual, RPiController::AfAlgorithm::AfModeManual },
{ controls::AfModeAuto, RPiController::AfAlgorithm::AfModeAuto },
{ controls::AfModeContinuous, RPiController::AfAlgorithm::AfModeContinuous },
};
static const std::map<int32_t, RPiController::AfAlgorithm::AfRange> AfRangeTable = {
{ controls::AfRangeNormal, RPiController::AfAlgorithm::AfRangeNormal },
{ controls::AfRangeMacro, RPiController::AfAlgorithm::AfRangeMacro },
{ controls::AfRangeFull, RPiController::AfAlgorithm::AfRangeFull },
};
static const std::map<int32_t, RPiController::AfAlgorithm::AfPause> AfPauseTable = {
{ controls::AfPauseImmediate, RPiController::AfAlgorithm::AfPauseImmediate },
{ controls::AfPauseDeferred, RPiController::AfAlgorithm::AfPauseDeferred },
{ controls::AfPauseResume, RPiController::AfAlgorithm::AfPauseResume },
};
static const std::map<int32_t, std::string> HdrModeTable = {
{ controls::HdrModeOff, "Off" },
{ controls::HdrModeMultiExposureUnmerged, "MultiExposureUnmerged" },
{ controls::HdrModeMultiExposure, "MultiExposure" },
{ controls::HdrModeSingleExposure, "SingleExposure" },
{ controls::HdrModeNight, "Night" },
};
void IpaBase::applyControls(const ControlList &controls)
{
using RPiController::AgcAlgorithm;
using RPiController::AfAlgorithm;
using RPiController::ContrastAlgorithm;
using RPiController::DenoiseAlgorithm;
using RPiController::HdrAlgorithm;
/* Clear the return metadata buffer. */
libcameraMetadata_.clear();
/* Because some AF controls are mode-specific, handle AF mode change first. */
if (controls.contains(controls::AF_MODE)) {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af) {
LOG(IPARPI, Warning)
<< "Could not set AF_MODE - no AF algorithm";
}
int32_t idx = controls.get(controls::AF_MODE).get<int32_t>();
auto mode = AfModeTable.find(idx);
if (mode == AfModeTable.end()) {
LOG(IPARPI, Error) << "AF mode " << idx
<< " not recognised";
} else if (af)
af->setMode(mode->second);
}
/*
* Because some AE controls are mode-specific, handle the AE-related
* mode changes first.
*/
const auto analogueGainMode = controls.get(controls::AnalogueGainMode);
const auto exposureTimeMode = controls.get(controls::ExposureTimeMode);
if (analogueGainMode || exposureTimeMode) {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (agc) {
if (analogueGainMode) {
if (*analogueGainMode == controls::AnalogueGainModeManual)
agc->disableAutoGain();
else
agc->enableAutoGain();
libcameraMetadata_.set(controls::AnalogueGainMode,
*analogueGainMode);
}
if (exposureTimeMode) {
if (*exposureTimeMode == controls::ExposureTimeModeManual)
agc->disableAutoExposure();
else
agc->enableAutoExposure();
libcameraMetadata_.set(controls::ExposureTimeMode,
*exposureTimeMode);
}
} else {
LOG(IPARPI, Warning)
<< "Could not set AnalogueGainMode or ExposureTimeMode - no AGC algorithm";
}
}
/* Iterate over controls */
for (auto const &ctrl : controls) {
LOG(IPARPI, Debug) << "Request ctrl: "
<< controls::controls.at(ctrl.first)->name()
<< " = " << ctrl.second.toString();
switch (ctrl.first) {
case controls::EXPOSURE_TIME_MODE:
break; /* We already handled this one above */
case controls::EXPOSURE_TIME: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set EXPOSURE_TIME - no AGC algorithm";
break;
}
/*
* Ignore manual exposure time when the auto exposure
* algorithm is running.
*/
if (agc->autoExposureEnabled())
break;
/* The control provides units of microseconds. */
agc->setFixedExposureTime(0, ctrl.second.get<int32_t>() * 1.0us);
libcameraMetadata_.set(controls::ExposureTime, ctrl.second.get<int32_t>());
break;
}
case controls::ANALOGUE_GAIN_MODE:
break; /* We already handled this one above */
case controls::ANALOGUE_GAIN: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set ANALOGUE_GAIN - no AGC algorithm";
break;
}
/*
* Ignore manual analogue gain value when the auto gain
* algorithm is running.
*/
if (agc->autoGainEnabled())
break;
agc->setFixedAnalogueGain(0, ctrl.second.get<float>());
libcameraMetadata_.set(controls::AnalogueGain,
ctrl.second.get<float>());
break;
}
case controls::AE_METERING_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_METERING_MODE - no AGC algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (MeteringModeTable.count(idx)) {
agc->setMeteringMode(MeteringModeTable.at(idx));
libcameraMetadata_.set(controls::AeMeteringMode, idx);
} else {
LOG(IPARPI, Error) << "Metering mode " << idx
<< " not recognised";
}
break;
}
case controls::AE_CONSTRAINT_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_CONSTRAINT_MODE - no AGC algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (ConstraintModeTable.count(idx)) {
agc->setConstraintMode(ConstraintModeTable.at(idx));
libcameraMetadata_.set(controls::AeConstraintMode, idx);
} else {
LOG(IPARPI, Error) << "Constraint mode " << idx
<< " not recognised";
}
break;
}
case controls::AE_EXPOSURE_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AE_EXPOSURE_MODE - no AGC algorithm";
break;
}
/*
* Ignore AE_EXPOSURE_MODE if the shutter or the gain
* are in auto mode.
*/
if (agc->autoExposureEnabled() || agc->autoGainEnabled())
break;
int32_t idx = ctrl.second.get<int32_t>();
if (ExposureModeTable.count(idx)) {
agc->setExposureMode(ExposureModeTable.at(idx));
libcameraMetadata_.set(controls::AeExposureMode, idx);
} else {
LOG(IPARPI, Error) << "Exposure mode " << idx
<< " not recognised";
}
break;
}
case controls::EXPOSURE_VALUE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set EXPOSURE_VALUE - no AGC algorithm";
break;
}
/*
* The SetEv() function takes in a direct exposure multiplier.
* So convert to 2^EV
*/
double ev = pow(2.0, ctrl.second.get<float>());
agc->setEv(0, ev);
libcameraMetadata_.set(controls::ExposureValue,
ctrl.second.get<float>());
break;
}
case controls::AE_ENABLE: {
/*
* The AeEnable control is now just a wrapper that will already have been
* converted to ExposureTimeMode and AnalogueGainMode equivalents, so there
* would be nothing to do here. Nonetheless, "handle" the control so as to
* avoid warnings from the "default:" clause of the switch statement.
*/
break;
}
case controls::AE_FLICKER_MODE: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AeFlickerMode - no AGC algorithm";
break;
}
int32_t mode = ctrl.second.get<int32_t>();
bool modeValid = true;
switch (mode) {
case controls::FlickerOff:
agc->setFlickerPeriod(0us);
break;
case controls::FlickerManual:
agc->setFlickerPeriod(flickerState_.manualPeriod);
break;
default:
LOG(IPARPI, Error) << "Flicker mode " << mode << " is not supported";
modeValid = false;
break;
}
if (modeValid)
flickerState_.mode = mode;
break;
}
case controls::AE_FLICKER_PERIOD: {
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning)
<< "Could not set AeFlickerPeriod - no AGC algorithm";
break;
}
uint32_t manualPeriod = ctrl.second.get<int32_t>();
flickerState_.manualPeriod = manualPeriod * 1.0us;
/*
* We note that it makes no difference if the mode gets set to "manual"
* first, and the period updated after, or vice versa.
*/
if (flickerState_.mode == controls::FlickerManual)
agc->setFlickerPeriod(flickerState_.manualPeriod);
break;
}
case controls::AWB_ENABLE: {
/* Silently ignore this control for a mono sensor. */
if (monoSensor_)
break;
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.getAlgorithm("awb"));
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set AWB_ENABLE - no AWB algorithm";
break;
}
if (ctrl.second.get<bool>() == false)
awb->disableAuto();
else
awb->enableAuto();
libcameraMetadata_.set(controls::AwbEnable,
ctrl.second.get<bool>());
break;
}
case controls::AWB_MODE: {
/* Silently ignore this control for a mono sensor. */
if (monoSensor_)
break;
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.getAlgorithm("awb"));
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set AWB_MODE - no AWB algorithm";
break;
}
int32_t idx = ctrl.second.get<int32_t>();
if (AwbModeTable.count(idx)) {
awb->setMode(AwbModeTable.at(idx));
libcameraMetadata_.set(controls::AwbMode, idx);
} else {
LOG(IPARPI, Error) << "AWB mode " << idx
<< " not recognised";
}
break;
}
case controls::COLOUR_GAINS: {
/* Silently ignore this control for a mono sensor. */
if (monoSensor_)
break;
auto gains = ctrl.second.get<Span<const float>>();
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.getAlgorithm("awb"));
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set COLOUR_GAINS - no AWB algorithm";
break;
}
awb->setManualGains(gains[0], gains[1]);
if (gains[0] != 0.0f && gains[1] != 0.0f)
/* A gain of 0.0f will switch back to auto mode. */
libcameraMetadata_.set(controls::ColourGains,
{ gains[0], gains[1] });
break;
}
case controls::COLOUR_TEMPERATURE: {
/* Silently ignore this control for a mono sensor. */
if (monoSensor_)
break;
auto temperatureK = ctrl.second.get<int32_t>();
RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
controller_.getAlgorithm("awb"));
if (!awb) {
LOG(IPARPI, Warning)
<< "Could not set COLOUR_TEMPERATURE - no AWB algorithm";
break;
}
awb->setColourTemperature(temperatureK);
/* This metadata will get reported back automatically. */
break;
}
case controls::BRIGHTNESS: {
RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
controller_.getAlgorithm("contrast"));
if (!contrast) {
LOG(IPARPI, Warning)
<< "Could not set BRIGHTNESS - no contrast algorithm";
break;
}
contrast->setBrightness(ctrl.second.get<float>() * 65536);
libcameraMetadata_.set(controls::Brightness,
ctrl.second.get<float>());
break;
}
case controls::CONTRAST: {
RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
controller_.getAlgorithm("contrast"));
if (!contrast) {
LOG(IPARPI, Warning)
<< "Could not set CONTRAST - no contrast algorithm";
break;
}
contrast->setContrast(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Contrast,
ctrl.second.get<float>());
break;
}
case controls::SATURATION: {
/* Silently ignore this control for a mono sensor. */
if (monoSensor_)
break;
RPiController::CcmAlgorithm *ccm = dynamic_cast<RPiController::CcmAlgorithm *>(
controller_.getAlgorithm("ccm"));
if (!ccm) {
LOG(IPARPI, Warning)
<< "Could not set SATURATION - no ccm algorithm";
break;
}
ccm->setSaturation(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Saturation,
ctrl.second.get<float>());
break;
}
case controls::SHARPNESS: {
RPiController::SharpenAlgorithm *sharpen = dynamic_cast<RPiController::SharpenAlgorithm *>(
controller_.getAlgorithm("sharpen"));
if (!sharpen) {
LOG(IPARPI, Warning)
<< "Could not set SHARPNESS - no sharpen algorithm";
break;
}
sharpen->setStrength(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Sharpness,
ctrl.second.get<float>());
break;
}
case controls::rpi::SCALER_CROPS:
case controls::SCALER_CROP: {
/* We do nothing with this, but should avoid the warning below. */
break;
}
case controls::FRAME_DURATION_LIMITS: {
auto frameDurations = ctrl.second.get<Span<const int64_t>>();
applyFrameDurations(frameDurations[0] * 1.0us, frameDurations[1] * 1.0us);
break;
}
case controls::draft::NOISE_REDUCTION_MODE:
/* Handled below in handleControls() */
libcameraMetadata_.set(controls::draft::NoiseReductionMode,
ctrl.second.get<int32_t>());
break;
case controls::AF_MODE:
break; /* We already handled this one above */
case controls::AF_RANGE: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af) {
LOG(IPARPI, Warning)
<< "Could not set AF_RANGE - no focus algorithm";
break;
}
auto range = AfRangeTable.find(ctrl.second.get<int32_t>());
if (range == AfRangeTable.end()) {
LOG(IPARPI, Error) << "AF range " << ctrl.second.get<int32_t>()
<< " not recognised";
break;
}
af->setRange(range->second);
break;
}
case controls::AF_SPEED: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af) {
LOG(IPARPI, Warning)
<< "Could not set AF_SPEED - no focus algorithm";
break;
}
AfAlgorithm::AfSpeed speed = ctrl.second.get<int32_t>() == controls::AfSpeedFast ?
AfAlgorithm::AfSpeedFast : AfAlgorithm::AfSpeedNormal;
af->setSpeed(speed);
break;
}
case controls::AF_METERING: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af) {
LOG(IPARPI, Warning)
<< "Could not set AF_METERING - no AF algorithm";
break;
}
af->setMetering(ctrl.second.get<int32_t>() == controls::AfMeteringWindows);
break;
}
case controls::AF_WINDOWS: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af) {
LOG(IPARPI, Warning)
<< "Could not set AF_WINDOWS - no AF algorithm";
break;
}
af->setWindows(ctrl.second.get<Span<const Rectangle>>());
break;
}
case controls::AF_PAUSE: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af || af->getMode() != AfAlgorithm::AfModeContinuous) {
LOG(IPARPI, Warning)
<< "Could not set AF_PAUSE - no AF algorithm or not Continuous";
break;
}
auto pause = AfPauseTable.find(ctrl.second.get<int32_t>());
if (pause == AfPauseTable.end()) {
LOG(IPARPI, Error) << "AF pause " << ctrl.second.get<int32_t>()
<< " not recognised";
break;
}
af->pause(pause->second);
break;
}
case controls::AF_TRIGGER: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (!af || af->getMode() != AfAlgorithm::AfModeAuto) {
LOG(IPARPI, Warning)
<< "Could not set AF_TRIGGER - no AF algorithm or not Auto";
break;
} else {
if (ctrl.second.get<int32_t>() == controls::AfTriggerStart)
af->triggerScan();
else
af->cancelScan();
}
break;
}
case controls::LENS_POSITION: {
AfAlgorithm *af = dynamic_cast<AfAlgorithm *>(controller_.getAlgorithm("af"));
if (af) {
int32_t hwpos;
if (af->setLensPosition(ctrl.second.get<float>(), &hwpos)) {
ControlList lensCtrls(lensCtrls_);
lensCtrls.set(V4L2_CID_FOCUS_ABSOLUTE, hwpos);
setLensControls.emit(lensCtrls);
}
} else {
LOG(IPARPI, Warning)
<< "Could not set LENS_POSITION - no AF algorithm";
}
break;
}
case controls::HDR_MODE: {
HdrAlgorithm *hdr = dynamic_cast<HdrAlgorithm *>(controller_.getAlgorithm("hdr"));
if (!hdr) {
LOG(IPARPI, Warning) << "No HDR algorithm available";
break;
}
auto mode = HdrModeTable.find(ctrl.second.get<int32_t>());
if (mode == HdrModeTable.end()) {
LOG(IPARPI, Warning) << "Unrecognised HDR mode";
break;
}
AgcAlgorithm *agc = dynamic_cast<AgcAlgorithm *>(controller_.getAlgorithm("agc"));
if (!agc) {
LOG(IPARPI, Warning) << "HDR requires an AGC algorithm";
break;
}
if (hdr->setMode(mode->second) == 0) {
agc->setActiveChannels(hdr->getChannels());
/* We also disable adpative contrast enhancement if HDR is running. */
ContrastAlgorithm *contrast =
dynamic_cast<ContrastAlgorithm *>(controller_.getAlgorithm("contrast"));
if (contrast) {
if (mode->second == "Off")
contrast->restoreCe();
else
contrast->enableCe(false);
}
DenoiseAlgorithm *denoise =
dynamic_cast<DenoiseAlgorithm *>(controller_.getAlgorithm("denoise"));
if (denoise) {
/* \todo - make the HDR mode say what denoise it wants? */
if (mode->second == "Night")
denoise->setConfig("night");
else if (mode->second == "SingleExposure")
denoise->setConfig("hdr");
/* MultiExposure doesn't need extra extra denoise. */
else
denoise->setConfig("normal");
}
} else
LOG(IPARPI, Warning)
<< "HDR mode " << mode->second << " not supported";
break;
}
case controls::rpi::STATS_OUTPUT_ENABLE:
statsMetadataOutput_ = ctrl.second.get<bool>();
break;
default:
LOG(IPARPI, Warning)
<< "Ctrl " << controls::controls.at(ctrl.first)->name()
<< " is not handled.";
break;
}
}
/* Give derived classes a chance to examine the new controls. */
handleControls(controls);
}
void IpaBase::fillDeviceStatus(const ControlList &sensorControls, unsigned int ipaContext)
{
DeviceStatus deviceStatus = {};
int32_t exposureLines = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
int32_t gainCode = sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
int32_t vblank = sensorControls.get(V4L2_CID_VBLANK).get<int32_t>();
int32_t hblank = sensorControls.get(V4L2_CID_HBLANK).get<int32_t>();
deviceStatus.lineLength = helper_->hblankToLineLength(hblank);
deviceStatus.exposureTime = helper_->exposure(exposureLines, deviceStatus.lineLength);
deviceStatus.analogueGain = helper_->gain(gainCode);
deviceStatus.frameLength = mode_.height + vblank;
RPiController::AfAlgorithm *af = dynamic_cast<RPiController::AfAlgorithm *>(
controller_.getAlgorithm("af"));
if (af)
deviceStatus.lensPosition = af->getLensPosition();
LOG(IPARPI, Debug) << "Metadata - " << deviceStatus;
rpiMetadata_[ipaContext].set("device.status", deviceStatus);
}
void IpaBase::reportMetadata(unsigned int ipaContext)
{
RPiController::Metadata &rpiMetadata = rpiMetadata_[ipaContext];
std::unique_lock<RPiController::Metadata> lock(rpiMetadata);
/*
* Certain information about the current frame and how it will be
* processed can be extracted and placed into the libcamera metadata
* buffer, where an application could query it.
*/
DeviceStatus *deviceStatus = rpiMetadata.getLocked<DeviceStatus>("device.status");
if (deviceStatus) {
libcameraMetadata_.set(controls::ExposureTime,
deviceStatus->exposureTime.get<std::micro>());
libcameraMetadata_.set(controls::AnalogueGain, deviceStatus->analogueGain);
libcameraMetadata_.set(controls::FrameDuration,
helper_->exposure(deviceStatus->frameLength, deviceStatus->lineLength).get<std::micro>());
if (deviceStatus->sensorTemperature)
libcameraMetadata_.set(controls::SensorTemperature, *deviceStatus->sensorTemperature);
if (deviceStatus->lensPosition)
libcameraMetadata_.set(controls::LensPosition, *deviceStatus->lensPosition);
}
AgcPrepareStatus *agcPrepareStatus = rpiMetadata.getLocked<AgcPrepareStatus>("agc.prepare_status");
if (agcPrepareStatus)
libcameraMetadata_.set(controls::DigitalGain, agcPrepareStatus->digitalGain);
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (agc) {
if (!agc->autoExposureEnabled() && !agc->autoGainEnabled())
libcameraMetadata_.set(controls::AeState, controls::AeStateIdle);
else if (agcPrepareStatus)
libcameraMetadata_.set(controls::AeState,
agcPrepareStatus->locked
? controls::AeStateConverged
: controls::AeStateSearching);
}
LuxStatus *luxStatus = rpiMetadata.getLocked<LuxStatus>("lux.status");
if (luxStatus)
libcameraMetadata_.set(controls::Lux, luxStatus->lux);
AwbStatus *awbStatus = rpiMetadata.getLocked<AwbStatus>("awb.status");
if (awbStatus) {
libcameraMetadata_.set(controls::ColourGains, { static_cast<float>(awbStatus->gainR),
static_cast<float>(awbStatus->gainB) });
libcameraMetadata_.set(controls::ColourTemperature, awbStatus->temperatureK);
}
BlackLevelStatus *blackLevelStatus = rpiMetadata.getLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
libcameraMetadata_.set(controls::SensorBlackLevels,
{ static_cast<int32_t>(blackLevelStatus->blackLevelR),
static_cast<int32_t>(blackLevelStatus->blackLevelG),
static_cast<int32_t>(blackLevelStatus->blackLevelG),
static_cast<int32_t>(blackLevelStatus->blackLevelB) });
RPiController::FocusRegions *focusStatus =
rpiMetadata.getLocked<RPiController::FocusRegions>("focus.status");
if (focusStatus) {
/*
* Calculate the average FoM over the central (symmetric) positions
* to give an overall scene FoM. This can change later if it is
* not deemed suitable.
*/
libcamera::Size size = focusStatus->size();
unsigned rows = size.height;
unsigned cols = size.width;
uint64_t sum = 0;
unsigned int numRegions = 0;
for (unsigned r = rows / 3; r < rows - rows / 3; ++r) {
for (unsigned c = cols / 4; c < cols - cols / 4; ++c) {
sum += focusStatus->get({ (int)c, (int)r }).val;
numRegions++;
}
}
uint32_t focusFoM = sum / numRegions;
libcameraMetadata_.set(controls::FocusFoM, focusFoM);
}
CcmStatus *ccmStatus = rpiMetadata.getLocked<CcmStatus>("ccm.status");
if (ccmStatus) {
float m[9];
for (unsigned int i = 0; i < 9; i++)
m[i] = ccmStatus->matrix[i];
libcameraMetadata_.set(controls::ColourCorrectionMatrix, m);
}
const AfStatus *afStatus = rpiMetadata.getLocked<AfStatus>("af.status");
if (afStatus) {
int32_t s, p;
switch (afStatus->state) {
case AfState::Scanning:
s = controls::AfStateScanning;
break;
case AfState::Focused:
s = controls::AfStateFocused;
break;
case AfState::Failed:
s = controls::AfStateFailed;
break;
default:
s = controls::AfStateIdle;
}
switch (afStatus->pauseState) {
case AfPauseState::Pausing:
p = controls::AfPauseStatePausing;
break;
case AfPauseState::Paused:
p = controls::AfPauseStatePaused;
break;
default:
p = controls::AfPauseStateRunning;
}
libcameraMetadata_.set(controls::AfState, s);
libcameraMetadata_.set(controls::AfPauseState, p);
}
/*
* THe HDR algorithm sets the HDR channel into the agc.status at the time that those
* AGC parameters were calculated several frames ago, so it comes back to us now in
* the delayed_status. If this frame is too soon after a mode switch for the
* delayed_status to be available, we use the HDR status that came out of the
* switchMode call.
*/
const AgcStatus *agcStatus = rpiMetadata.getLocked<AgcStatus>("agc.delayed_status");
const HdrStatus &hdrStatus = agcStatus ? agcStatus->hdr : hdrStatus_;
if (!hdrStatus.mode.empty() && hdrStatus.mode != "Off") {
int32_t hdrMode = controls::HdrModeOff;
for (auto const &[mode, name] : HdrModeTable) {
if (hdrStatus.mode == name) {
hdrMode = mode;
break;
}
}
libcameraMetadata_.set(controls::HdrMode, hdrMode);
if (hdrStatus.channel == "short")
libcameraMetadata_.set(controls::HdrChannel, controls::HdrChannelShort);
else if (hdrStatus.channel == "long")
libcameraMetadata_.set(controls::HdrChannel, controls::HdrChannelLong);
else if (hdrStatus.channel == "medium")
libcameraMetadata_.set(controls::HdrChannel, controls::HdrChannelMedium);
else
libcameraMetadata_.set(controls::HdrChannel, controls::HdrChannelNone);
}
metadataReady.emit(libcameraMetadata_);
}
void IpaBase::applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration)
{
/*
* This will only be applied once AGC recalculations occur.
* The values may be clamped based on the sensor mode capabilities as well.
*/
minFrameDuration_ = minFrameDuration ? minFrameDuration : defaultMinFrameDuration;
maxFrameDuration_ = maxFrameDuration ? maxFrameDuration : defaultMaxFrameDuration;
minFrameDuration_ = std::clamp(minFrameDuration_,
mode_.minFrameDuration, mode_.maxFrameDuration);
maxFrameDuration_ = std::clamp(maxFrameDuration_,
mode_.minFrameDuration, mode_.maxFrameDuration);
maxFrameDuration_ = std::max(maxFrameDuration_, minFrameDuration_);
/* Return the validated limits via metadata. */
libcameraMetadata_.set(controls::FrameDurationLimits,
{ static_cast<int64_t>(minFrameDuration_.get<std::micro>()),
static_cast<int64_t>(maxFrameDuration_.get<std::micro>()) });
/*
* Calculate the maximum exposure time possible for the AGC to use.
* getBlanking() will update maxExposureTime with the largest exposure
* value possible.
*/
Duration maxExposureTime = Duration::max();
helper_->getBlanking(maxExposureTime, minFrameDuration_, maxFrameDuration_);
RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
controller_.getAlgorithm("agc"));
if (agc)
agc->setMaxExposureTime(maxExposureTime);
}
void IpaBase::applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls)
{
const int32_t minGainCode = helper_->gainCode(mode_.minAnalogueGain);
const int32_t maxGainCode = helper_->gainCode(mode_.maxAnalogueGain);
int32_t gainCode = helper_->gainCode(agcStatus->analogueGain);
/*
* Ensure anything larger than the max gain code will not be passed to
* DelayedControls. The AGC will correctly handle a lower gain returned
* by the sensor, provided it knows the actual gain used.
*/
gainCode = std::clamp<int32_t>(gainCode, minGainCode, maxGainCode);
/* getBlanking might clip exposure time to the fps limits. */
Duration exposure = agcStatus->exposureTime;
auto [vblank, hblank] = helper_->getBlanking(exposure, minFrameDuration_, maxFrameDuration_);
int32_t exposureLines = helper_->exposureLines(exposure,
helper_->hblankToLineLength(hblank));
LOG(IPARPI, Debug) << "Applying AGC Exposure: " << exposure
<< " (Exposure lines: " << exposureLines << ", AGC requested "
<< agcStatus->exposureTime << ") Gain: "
<< agcStatus->analogueGain << " (Gain Code: "
<< gainCode << ")";
ctrls.set(V4L2_CID_VBLANK, static_cast<int32_t>(vblank));
ctrls.set(V4L2_CID_EXPOSURE, exposureLines);
ctrls.set(V4L2_CID_ANALOGUE_GAIN, gainCode);
/*
* At present, there is no way of knowing if a control is read-only.
* As a workaround, assume that if the minimum and maximum values of
* the V4L2_CID_HBLANK control are the same, it implies the control
* is read-only. This seems to be the case for all the cameras our IPA
* works with.
*
* \todo The control API ought to have a flag to specify if a control
* is read-only which could be used below.
*/
if (mode_.minLineLength != mode_.maxLineLength)
ctrls.set(V4L2_CID_HBLANK, static_cast<int32_t>(hblank));
/*
* Store the frame length times in a circular queue, up-to FrameLengthsQueueSize
* elements. This will be used to advertise a camera timeout value to the
* pipeline handler.
*/
frameLengths_.pop_front();
frameLengths_.push_back(helper_->exposure(vblank + mode_.height,
helper_->hblankToLineLength(hblank)));
}
} /* namespace ipa::RPi */
} /* namespace libcamera */