The Raspberry Pi IPA module depends on boost only to parse the JSON tuning data files. As libcamera depends on libyaml, use the YamlParser class to parse those files and drop the dependency on boost. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Tested-by: Naushir Patuck <naush@raspberrypi.com> Reviewed-by: Naushir Patuck <naush@raspberrypi.com>
746 lines
22 KiB
C++
746 lines
22 KiB
C++
/* SPDX-License-Identifier: BSD-2-Clause */
|
|
/*
|
|
* Copyright (C) 2019, Raspberry Pi Ltd
|
|
*
|
|
* awb.cpp - AWB control algorithm
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include <libcamera/base/log.h>
|
|
|
|
#include "../lux_status.h"
|
|
|
|
#include "awb.h"
|
|
|
|
using namespace RPiController;
|
|
using namespace libcamera;
|
|
|
|
LOG_DEFINE_CATEGORY(RPiAwb)
|
|
|
|
#define NAME "rpi.awb"
|
|
|
|
static constexpr unsigned int AwbStatsSizeX = DEFAULT_AWB_REGIONS_X;
|
|
static constexpr unsigned int AwbStatsSizeY = DEFAULT_AWB_REGIONS_Y;
|
|
|
|
/*
|
|
* todo - the locking in this algorithm needs some tidying up as has been done
|
|
* elsewhere (ALSC and AGC).
|
|
*/
|
|
|
|
int AwbMode::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
auto value = params["lo"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
ctLo = *value;
|
|
|
|
value = params["hi"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
ctHi = *value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int AwbPrior::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
auto value = params["lux"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
lux = *value;
|
|
|
|
return prior.read(params["prior"]);
|
|
}
|
|
|
|
static int readCtCurve(Pwl &ctR, Pwl &ctB, const libcamera::YamlObject ¶ms)
|
|
{
|
|
if (params.size() % 3) {
|
|
LOG(RPiAwb, Error) << "AwbConfig: incomplete CT curve entry";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (params.size() < 6) {
|
|
LOG(RPiAwb, Error) << "AwbConfig: insufficient points in CT curve";
|
|
return -EINVAL;
|
|
}
|
|
|
|
const auto &list = params.asList();
|
|
|
|
for (auto it = list.begin(); it != list.end(); it++) {
|
|
auto value = it->get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
double ct = *value;
|
|
|
|
assert(it == list.begin() || ct != ctR.domain().end);
|
|
|
|
value = (++it)->get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
ctR.append(ct, *value);
|
|
|
|
value = (++it)->get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
ctB.append(ct, *value);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int AwbConfig::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
int ret;
|
|
|
|
bayes = params["bayes"].get<int>(1);
|
|
framePeriod = params["frame_period"].get<uint16_t>(10);
|
|
startupFrames = params["startup_frames"].get<uint16_t>(10);
|
|
convergenceFrames = params["convergence_frames"].get<unsigned int>(3);
|
|
speed = params["speed"].get<double>(0.05);
|
|
|
|
if (params.contains("ct_curve")) {
|
|
ret = readCtCurve(ctR, ctB, params["ct_curve"]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (params.contains("priors")) {
|
|
for (const auto &p : params["priors"].asList()) {
|
|
AwbPrior prior;
|
|
ret = prior.read(p);
|
|
if (ret)
|
|
return ret;
|
|
if (!priors.empty() && prior.lux <= priors.back().lux) {
|
|
LOG(RPiAwb, Error) << "AwbConfig: Prior must be ordered in increasing lux value";
|
|
return -EINVAL;
|
|
}
|
|
priors.push_back(prior);
|
|
}
|
|
if (priors.empty()) {
|
|
LOG(RPiAwb, Error) << "AwbConfig: no AWB priors configured";
|
|
return ret;
|
|
}
|
|
}
|
|
if (params.contains("modes")) {
|
|
for (const auto &[key, value] : params["modes"].asDict()) {
|
|
ret = modes[key].read(value);
|
|
if (ret)
|
|
return ret;
|
|
if (defaultMode == nullptr)
|
|
defaultMode = &modes[key];
|
|
}
|
|
if (defaultMode == nullptr) {
|
|
LOG(RPiAwb, Error) << "AwbConfig: no AWB modes configured";
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
minPixels = params["min_pixels"].get<double>(16.0);
|
|
minG = params["min_G"].get<uint16_t>(32);
|
|
minRegions = params["min_regions"].get<uint32_t>(10);
|
|
deltaLimit = params["delta_limit"].get<double>(0.2);
|
|
coarseStep = params["coarse_step"].get<double>(0.2);
|
|
transversePos = params["transverse_pos"].get<double>(0.01);
|
|
transverseNeg = params["transverse_neg"].get<double>(0.01);
|
|
if (transversePos <= 0 || transverseNeg <= 0) {
|
|
LOG(RPiAwb, Error) << "AwbConfig: transverse_pos/neg must be > 0";
|
|
return -EINVAL;
|
|
}
|
|
|
|
sensitivityR = params["sensitivity_r"].get<double>(1.0);
|
|
sensitivityB = params["sensitivity_b"].get<double>(1.0);
|
|
|
|
if (bayes) {
|
|
if (ctR.empty() || ctB.empty() || priors.empty() ||
|
|
defaultMode == nullptr) {
|
|
LOG(RPiAwb, Warning)
|
|
<< "Bayesian AWB mis-configured - switch to Grey method";
|
|
bayes = false;
|
|
}
|
|
}
|
|
fast = params[fast].get<int>(bayes); /* default to fast for Bayesian, otherwise slow */
|
|
whitepointR = params["whitepoint_r"].get<double>(0.0);
|
|
whitepointB = params["whitepoint_b"].get<double>(0.0);
|
|
if (bayes == false)
|
|
sensitivityR = sensitivityB = 1.0; /* nor do sensitivities make any sense */
|
|
return 0;
|
|
}
|
|
|
|
Awb::Awb(Controller *controller)
|
|
: AwbAlgorithm(controller)
|
|
{
|
|
asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false;
|
|
mode_ = nullptr;
|
|
manualR_ = manualB_ = 0.0;
|
|
firstSwitchMode_ = true;
|
|
asyncThread_ = std::thread(std::bind(&Awb::asyncFunc, this));
|
|
}
|
|
|
|
Awb::~Awb()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
asyncAbort_ = true;
|
|
}
|
|
asyncSignal_.notify_one();
|
|
asyncThread_.join();
|
|
}
|
|
|
|
char const *Awb::name() const
|
|
{
|
|
return NAME;
|
|
}
|
|
|
|
int Awb::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
return config_.read(params);
|
|
}
|
|
|
|
void Awb::initialise()
|
|
{
|
|
frameCount_ = framePhase_ = 0;
|
|
/*
|
|
* Put something sane into the status that we are filtering towards,
|
|
* just in case the first few frames don't have anything meaningful in
|
|
* them.
|
|
*/
|
|
if (!config_.ctR.empty() && !config_.ctB.empty()) {
|
|
syncResults_.temperatureK = config_.ctR.domain().clip(4000);
|
|
syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK);
|
|
syncResults_.gainG = 1.0;
|
|
syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK);
|
|
} else {
|
|
/* random values just to stop the world blowing up */
|
|
syncResults_.temperatureK = 4500;
|
|
syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0;
|
|
}
|
|
prevSyncResults_ = syncResults_;
|
|
asyncResults_ = syncResults_;
|
|
}
|
|
|
|
bool Awb::isPaused() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void Awb::pause()
|
|
{
|
|
/* "Pause" by fixing everything to the most recent values. */
|
|
manualR_ = syncResults_.gainR = prevSyncResults_.gainR;
|
|
manualB_ = syncResults_.gainB = prevSyncResults_.gainB;
|
|
syncResults_.gainG = prevSyncResults_.gainG;
|
|
syncResults_.temperatureK = prevSyncResults_.temperatureK;
|
|
}
|
|
|
|
void Awb::resume()
|
|
{
|
|
manualR_ = 0.0;
|
|
manualB_ = 0.0;
|
|
}
|
|
|
|
unsigned int Awb::getConvergenceFrames() const
|
|
{
|
|
/*
|
|
* If not in auto mode, there is no convergence
|
|
* to happen, so no need to drop any frames - return zero.
|
|
*/
|
|
if (!isAutoEnabled())
|
|
return 0;
|
|
else
|
|
return config_.convergenceFrames;
|
|
}
|
|
|
|
void Awb::setMode(std::string const &modeName)
|
|
{
|
|
modeName_ = modeName;
|
|
}
|
|
|
|
void Awb::setManualGains(double manualR, double manualB)
|
|
{
|
|
/* If any of these are 0.0, we swich back to auto. */
|
|
manualR_ = manualR;
|
|
manualB_ = manualB;
|
|
/*
|
|
* If not in auto mode, set these values into the syncResults which
|
|
* means that Prepare() will adopt them immediately.
|
|
*/
|
|
if (!isAutoEnabled()) {
|
|
syncResults_.gainR = prevSyncResults_.gainR = manualR_;
|
|
syncResults_.gainG = prevSyncResults_.gainG = 1.0;
|
|
syncResults_.gainB = prevSyncResults_.gainB = manualB_;
|
|
}
|
|
}
|
|
|
|
void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode,
|
|
Metadata *metadata)
|
|
{
|
|
/*
|
|
* On the first mode switch we'll have no meaningful colour
|
|
* temperature, so try to dead reckon one if in manual mode.
|
|
*/
|
|
if (!isAutoEnabled() && firstSwitchMode_ && config_.bayes) {
|
|
Pwl ctRInverse = config_.ctR.inverse();
|
|
Pwl ctBInverse = config_.ctB.inverse();
|
|
double ctR = ctRInverse.eval(ctRInverse.domain().clip(1 / manualR_));
|
|
double ctB = ctBInverse.eval(ctBInverse.domain().clip(1 / manualB_));
|
|
prevSyncResults_.temperatureK = (ctR + ctB) / 2;
|
|
syncResults_.temperatureK = prevSyncResults_.temperatureK;
|
|
}
|
|
/* Let other algorithms know the current white balance values. */
|
|
metadata->set("awb.status", prevSyncResults_);
|
|
firstSwitchMode_ = false;
|
|
}
|
|
|
|
bool Awb::isAutoEnabled() const
|
|
{
|
|
return manualR_ == 0.0 || manualB_ == 0.0;
|
|
}
|
|
|
|
void Awb::fetchAsyncResults()
|
|
{
|
|
LOG(RPiAwb, Debug) << "Fetch AWB results";
|
|
asyncFinished_ = false;
|
|
asyncStarted_ = false;
|
|
/*
|
|
* It's possible manual gains could be set even while the async
|
|
* thread was running, so only copy the results if still in auto mode.
|
|
*/
|
|
if (isAutoEnabled())
|
|
syncResults_ = asyncResults_;
|
|
}
|
|
|
|
void Awb::restartAsync(StatisticsPtr &stats, double lux)
|
|
{
|
|
LOG(RPiAwb, Debug) << "Starting AWB calculation";
|
|
/* this makes a new reference which belongs to the asynchronous thread */
|
|
statistics_ = stats;
|
|
/* store the mode as it could technically change */
|
|
auto m = config_.modes.find(modeName_);
|
|
mode_ = m != config_.modes.end()
|
|
? &m->second
|
|
: (mode_ == nullptr ? config_.defaultMode : mode_);
|
|
lux_ = lux;
|
|
framePhase_ = 0;
|
|
asyncStarted_ = true;
|
|
size_t len = modeName_.copy(asyncResults_.mode,
|
|
sizeof(asyncResults_.mode) - 1);
|
|
asyncResults_.mode[len] = '\0';
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
asyncStart_ = true;
|
|
}
|
|
asyncSignal_.notify_one();
|
|
}
|
|
|
|
void Awb::prepare(Metadata *imageMetadata)
|
|
{
|
|
if (frameCount_ < (int)config_.startupFrames)
|
|
frameCount_++;
|
|
double speed = frameCount_ < (int)config_.startupFrames
|
|
? 1.0
|
|
: config_.speed;
|
|
LOG(RPiAwb, Debug)
|
|
<< "frame_count " << frameCount_ << " speed " << speed;
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
if (asyncStarted_ && asyncFinished_)
|
|
fetchAsyncResults();
|
|
}
|
|
/* Finally apply IIR filter to results and put into metadata. */
|
|
memcpy(prevSyncResults_.mode, syncResults_.mode,
|
|
sizeof(prevSyncResults_.mode));
|
|
prevSyncResults_.temperatureK = speed * syncResults_.temperatureK +
|
|
(1.0 - speed) * prevSyncResults_.temperatureK;
|
|
prevSyncResults_.gainR = speed * syncResults_.gainR +
|
|
(1.0 - speed) * prevSyncResults_.gainR;
|
|
prevSyncResults_.gainG = speed * syncResults_.gainG +
|
|
(1.0 - speed) * prevSyncResults_.gainG;
|
|
prevSyncResults_.gainB = speed * syncResults_.gainB +
|
|
(1.0 - speed) * prevSyncResults_.gainB;
|
|
imageMetadata->set("awb.status", prevSyncResults_);
|
|
LOG(RPiAwb, Debug)
|
|
<< "Using AWB gains r " << prevSyncResults_.gainR << " g "
|
|
<< prevSyncResults_.gainG << " b "
|
|
<< prevSyncResults_.gainB;
|
|
}
|
|
|
|
void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata)
|
|
{
|
|
/* Count frames since we last poked the async thread. */
|
|
if (framePhase_ < (int)config_.framePeriod)
|
|
framePhase_++;
|
|
LOG(RPiAwb, Debug) << "frame_phase " << framePhase_;
|
|
/* We do not restart the async thread if we're not in auto mode. */
|
|
if (isAutoEnabled() &&
|
|
(framePhase_ >= (int)config_.framePeriod ||
|
|
frameCount_ < (int)config_.startupFrames)) {
|
|
/* Update any settings and any image metadata that we need. */
|
|
struct LuxStatus luxStatus = {};
|
|
luxStatus.lux = 400; /* in case no metadata */
|
|
if (imageMetadata->get("lux.status", luxStatus) != 0)
|
|
LOG(RPiAwb, Debug) << "No lux metadata found";
|
|
LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux;
|
|
|
|
if (asyncStarted_ == false)
|
|
restartAsync(stats, luxStatus.lux);
|
|
}
|
|
}
|
|
|
|
void Awb::asyncFunc()
|
|
{
|
|
while (true) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
asyncSignal_.wait(lock, [&] {
|
|
return asyncStart_ || asyncAbort_;
|
|
});
|
|
asyncStart_ = false;
|
|
if (asyncAbort_)
|
|
break;
|
|
}
|
|
doAwb();
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
asyncFinished_ = true;
|
|
}
|
|
syncSignal_.notify_one();
|
|
}
|
|
}
|
|
|
|
static void generateStats(std::vector<Awb::RGB> &zones,
|
|
bcm2835_isp_stats_region *stats, double minPixels,
|
|
double minG)
|
|
{
|
|
for (unsigned int i = 0; i < AwbStatsSizeX * AwbStatsSizeY; i++) {
|
|
Awb::RGB zone;
|
|
double counted = stats[i].counted;
|
|
if (counted >= minPixels) {
|
|
zone.G = stats[i].g_sum / counted;
|
|
if (zone.G >= minG) {
|
|
zone.R = stats[i].r_sum / counted;
|
|
zone.B = stats[i].b_sum / counted;
|
|
zones.push_back(zone);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Awb::prepareStats()
|
|
{
|
|
zones_.clear();
|
|
/*
|
|
* LSC has already been applied to the stats in this pipeline, so stop
|
|
* any LSC compensation. We also ignore config_.fast in this version.
|
|
*/
|
|
generateStats(zones_, statistics_->awb_stats, config_.minPixels,
|
|
config_.minG);
|
|
/*
|
|
* we're done with these; we may as well relinquish our hold on the
|
|
* pointer.
|
|
*/
|
|
statistics_.reset();
|
|
/*
|
|
* apply sensitivities, so values appear to come from our "canonical"
|
|
* sensor.
|
|
*/
|
|
for (auto &zone : zones_) {
|
|
zone.R *= config_.sensitivityR;
|
|
zone.B *= config_.sensitivityB;
|
|
}
|
|
}
|
|
|
|
double Awb::computeDelta2Sum(double gainR, double gainB)
|
|
{
|
|
/*
|
|
* Compute the sum of the squared colour error (non-greyness) as it
|
|
* appears in the log likelihood equation.
|
|
*/
|
|
double delta2Sum = 0;
|
|
for (auto &z : zones_) {
|
|
double deltaR = gainR * z.R - 1 - config_.whitepointR;
|
|
double deltaB = gainB * z.B - 1 - config_.whitepointB;
|
|
double delta2 = deltaR * deltaR + deltaB * deltaB;
|
|
/* LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2; */
|
|
delta2 = std::min(delta2, config_.deltaLimit);
|
|
delta2Sum += delta2;
|
|
}
|
|
return delta2Sum;
|
|
}
|
|
|
|
Pwl Awb::interpolatePrior()
|
|
{
|
|
/*
|
|
* Interpolate the prior log likelihood function for our current lux
|
|
* value.
|
|
*/
|
|
if (lux_ <= config_.priors.front().lux)
|
|
return config_.priors.front().prior;
|
|
else if (lux_ >= config_.priors.back().lux)
|
|
return config_.priors.back().prior;
|
|
else {
|
|
int idx = 0;
|
|
/* find which two we lie between */
|
|
while (config_.priors[idx + 1].lux < lux_)
|
|
idx++;
|
|
double lux0 = config_.priors[idx].lux,
|
|
lux1 = config_.priors[idx + 1].lux;
|
|
return Pwl::combine(config_.priors[idx].prior,
|
|
config_.priors[idx + 1].prior,
|
|
[&](double /*x*/, double y0, double y1) {
|
|
return y0 + (y1 - y0) *
|
|
(lux_ - lux0) / (lux1 - lux0);
|
|
});
|
|
}
|
|
}
|
|
|
|
static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b,
|
|
Pwl::Point const &c)
|
|
{
|
|
/*
|
|
* Given 3 points on a curve, find the extremum of the function in that
|
|
* interval by fitting a quadratic.
|
|
*/
|
|
const double eps = 1e-3;
|
|
Pwl::Point ca = c - a, ba = b - a;
|
|
double denominator = 2 * (ba.y * ca.x - ca.y * ba.x);
|
|
if (abs(denominator) > eps) {
|
|
double numerator = ba.y * ca.x * ca.x - ca.y * ba.x * ba.x;
|
|
double result = numerator / denominator + a.x;
|
|
return std::max(a.x, std::min(c.x, result));
|
|
}
|
|
/* has degenerated to straight line segment */
|
|
return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x);
|
|
}
|
|
|
|
double Awb::coarseSearch(Pwl const &prior)
|
|
{
|
|
points_.clear(); /* assume doesn't deallocate memory */
|
|
size_t bestPoint = 0;
|
|
double t = mode_->ctLo;
|
|
int spanR = 0, spanB = 0;
|
|
/* Step down the CT curve evaluating log likelihood. */
|
|
while (true) {
|
|
double r = config_.ctR.eval(t, &spanR);
|
|
double b = config_.ctB.eval(t, &spanB);
|
|
double gainR = 1 / r, gainB = 1 / b;
|
|
double delta2Sum = computeDelta2Sum(gainR, gainB);
|
|
double priorLogLikelihood = prior.eval(prior.domain().clip(t));
|
|
double finalLogLikelihood = delta2Sum - priorLogLikelihood;
|
|
LOG(RPiAwb, Debug)
|
|
<< "t: " << t << " gain R " << gainR << " gain B "
|
|
<< gainB << " delta2_sum " << delta2Sum
|
|
<< " prior " << priorLogLikelihood << " final "
|
|
<< finalLogLikelihood;
|
|
points_.push_back(Pwl::Point(t, finalLogLikelihood));
|
|
if (points_.back().y < points_[bestPoint].y)
|
|
bestPoint = points_.size() - 1;
|
|
if (t == mode_->ctHi)
|
|
break;
|
|
/* for even steps along the r/b curve scale them by the current t */
|
|
t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi);
|
|
}
|
|
t = points_[bestPoint].x;
|
|
LOG(RPiAwb, Debug) << "Coarse search found CT " << t;
|
|
/*
|
|
* We have the best point of the search, but refine it with a quadratic
|
|
* interpolation around its neighbours.
|
|
*/
|
|
if (points_.size() > 2) {
|
|
unsigned long bp = std::min(bestPoint, points_.size() - 2);
|
|
bestPoint = std::max(1UL, bp);
|
|
t = interpolateQuadatric(points_[bestPoint - 1],
|
|
points_[bestPoint],
|
|
points_[bestPoint + 1]);
|
|
LOG(RPiAwb, Debug)
|
|
<< "After quadratic refinement, coarse search has CT "
|
|
<< t;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
|
|
{
|
|
int spanR = -1, spanB = -1;
|
|
config_.ctR.eval(t, &spanR);
|
|
config_.ctB.eval(t, &spanB);
|
|
double step = t / 10 * config_.coarseStep * 0.1;
|
|
int nsteps = 5;
|
|
double rDiff = config_.ctR.eval(t + nsteps * step, &spanR) -
|
|
config_.ctR.eval(t - nsteps * step, &spanR);
|
|
double bDiff = config_.ctB.eval(t + nsteps * step, &spanB) -
|
|
config_.ctB.eval(t - nsteps * step, &spanB);
|
|
Pwl::Point transverse(bDiff, -rDiff);
|
|
if (transverse.len2() < 1e-6)
|
|
return;
|
|
/*
|
|
* unit vector orthogonal to the b vs. r function (pointing outwards
|
|
* with r and b increasing)
|
|
*/
|
|
transverse = transverse / transverse.len();
|
|
double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0;
|
|
double transverseRange = config_.transverseNeg + config_.transversePos;
|
|
const int maxNumDeltas = 12;
|
|
/* a transverse step approximately every 0.01 r/b units */
|
|
int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
|
|
numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas);
|
|
/*
|
|
* Step down CT curve. March a bit further if the transverse range is
|
|
* large.
|
|
*/
|
|
nsteps += numDeltas;
|
|
for (int i = -nsteps; i <= nsteps; i++) {
|
|
double tTest = t + i * step;
|
|
double priorLogLikelihood =
|
|
prior.eval(prior.domain().clip(tTest));
|
|
double rCurve = config_.ctR.eval(tTest, &spanR);
|
|
double bCurve = config_.ctB.eval(tTest, &spanB);
|
|
/* x will be distance off the curve, y the log likelihood there */
|
|
Pwl::Point points[maxNumDeltas];
|
|
int bestPoint = 0;
|
|
/* Take some measurements transversely *off* the CT curve. */
|
|
for (int j = 0; j < numDeltas; j++) {
|
|
points[j].x = -config_.transverseNeg +
|
|
(transverseRange * j) / (numDeltas - 1);
|
|
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
|
|
transverse * points[j].x;
|
|
double rTest = rbTest.x, bTest = rbTest.y;
|
|
double gainR = 1 / rTest, gainB = 1 / bTest;
|
|
double delta2Sum = computeDelta2Sum(gainR, gainB);
|
|
points[j].y = delta2Sum - priorLogLikelihood;
|
|
LOG(RPiAwb, Debug)
|
|
<< "At t " << tTest << " r " << rTest << " b "
|
|
<< bTest << ": " << points[j].y;
|
|
if (points[j].y < points[bestPoint].y)
|
|
bestPoint = j;
|
|
}
|
|
/*
|
|
* We have NUM_DELTAS points transversely across the CT curve,
|
|
* now let's do a quadratic interpolation for the best result.
|
|
*/
|
|
bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2));
|
|
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
|
|
transverse * interpolateQuadatric(points[bestPoint - 1],
|
|
points[bestPoint],
|
|
points[bestPoint + 1]);
|
|
double rTest = rbTest.x, bTest = rbTest.y;
|
|
double gainR = 1 / rTest, gainB = 1 / bTest;
|
|
double delta2Sum = computeDelta2Sum(gainR, gainB);
|
|
double finalLogLikelihood = delta2Sum - priorLogLikelihood;
|
|
LOG(RPiAwb, Debug)
|
|
<< "Finally "
|
|
<< tTest << " r " << rTest << " b " << bTest << ": "
|
|
<< finalLogLikelihood
|
|
<< (finalLogLikelihood < bestLogLikelihood ? " BEST" : "");
|
|
if (bestT == 0 || finalLogLikelihood < bestLogLikelihood)
|
|
bestLogLikelihood = finalLogLikelihood,
|
|
bestT = tTest, bestR = rTest, bestB = bTest;
|
|
}
|
|
t = bestT, r = bestR, b = bestB;
|
|
LOG(RPiAwb, Debug)
|
|
<< "Fine search found t " << t << " r " << r << " b " << b;
|
|
}
|
|
|
|
void Awb::awbBayes()
|
|
{
|
|
/*
|
|
* May as well divide out G to save computeDelta2Sum from doing it over
|
|
* and over.
|
|
*/
|
|
for (auto &z : zones_)
|
|
z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
|
|
/*
|
|
* Get the current prior, and scale according to how many zones are
|
|
* valid... not entirely sure about this.
|
|
*/
|
|
Pwl prior = interpolatePrior();
|
|
prior *= zones_.size() / (double)(AwbStatsSizeX * AwbStatsSizeY);
|
|
prior.map([](double x, double y) {
|
|
LOG(RPiAwb, Debug) << "(" << x << "," << y << ")";
|
|
});
|
|
double t = coarseSearch(prior);
|
|
double r = config_.ctR.eval(t);
|
|
double b = config_.ctB.eval(t);
|
|
LOG(RPiAwb, Debug)
|
|
<< "After coarse search: r " << r << " b " << b << " (gains r "
|
|
<< 1 / r << " b " << 1 / b << ")";
|
|
/*
|
|
* Not entirely sure how to handle the fine search yet. Mostly the
|
|
* estimated CT is already good enough, but the fine search allows us to
|
|
* wander transverely off the CT curve. Under some illuminants, where
|
|
* there may be more or less green light, this may prove beneficial,
|
|
* though I probably need more real datasets before deciding exactly how
|
|
* this should be controlled and tuned.
|
|
*/
|
|
fineSearch(t, r, b, prior);
|
|
LOG(RPiAwb, Debug)
|
|
<< "After fine search: r " << r << " b " << b << " (gains r "
|
|
<< 1 / r << " b " << 1 / b << ")";
|
|
/*
|
|
* Write results out for the main thread to pick up. Remember to adjust
|
|
* the gains from the ones that the "canonical sensor" would require to
|
|
* the ones needed by *this* sensor.
|
|
*/
|
|
asyncResults_.temperatureK = t;
|
|
asyncResults_.gainR = 1.0 / r * config_.sensitivityR;
|
|
asyncResults_.gainG = 1.0;
|
|
asyncResults_.gainB = 1.0 / b * config_.sensitivityB;
|
|
}
|
|
|
|
void Awb::awbGrey()
|
|
{
|
|
LOG(RPiAwb, Debug) << "Grey world AWB";
|
|
/*
|
|
* Make a separate list of the derivatives for each of red and blue, so
|
|
* that we can sort them to exclude the extreme gains. We could
|
|
* consider some variations, such as normalising all the zones first, or
|
|
* doing an L2 average etc.
|
|
*/
|
|
std::vector<RGB> &derivsR(zones_);
|
|
std::vector<RGB> derivsB(derivsR);
|
|
std::sort(derivsR.begin(), derivsR.end(),
|
|
[](RGB const &a, RGB const &b) {
|
|
return a.G * b.R < b.G * a.R;
|
|
});
|
|
std::sort(derivsB.begin(), derivsB.end(),
|
|
[](RGB const &a, RGB const &b) {
|
|
return a.G * b.B < b.G * a.B;
|
|
});
|
|
/* Average the middle half of the values. */
|
|
int discard = derivsR.size() / 4;
|
|
RGB sumR(0, 0, 0), sumB(0, 0, 0);
|
|
for (auto ri = derivsR.begin() + discard,
|
|
bi = derivsB.begin() + discard;
|
|
ri != derivsR.end() - discard; ri++, bi++)
|
|
sumR += *ri, sumB += *bi;
|
|
double gainR = sumR.G / (sumR.R + 1),
|
|
gainB = sumB.G / (sumB.B + 1);
|
|
asyncResults_.temperatureK = 4500; /* don't know what it is */
|
|
asyncResults_.gainR = gainR;
|
|
asyncResults_.gainG = 1.0;
|
|
asyncResults_.gainB = gainB;
|
|
}
|
|
|
|
void Awb::doAwb()
|
|
{
|
|
prepareStats();
|
|
LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size();
|
|
if (zones_.size() > config_.minRegions) {
|
|
if (config_.bayes)
|
|
awbBayes();
|
|
else
|
|
awbGrey();
|
|
LOG(RPiAwb, Debug)
|
|
<< "CT found is "
|
|
<< asyncResults_.temperatureK
|
|
<< " with gains r " << asyncResults_.gainR
|
|
<< " and b " << asyncResults_.gainB;
|
|
}
|
|
}
|
|
|
|
/* Register algorithm with the system. */
|
|
static Algorithm *create(Controller *controller)
|
|
{
|
|
return (Algorithm *)new Awb(controller);
|
|
}
|
|
static RegisterAlgorithm reg(NAME, &create);
|