This checks if the number of streams is zero on configuration and then returns -EINVAL. Signed-off-by: Hirokazu Honda <hiroh@chromium.org> Reviewed-by: Umang Jain <umang.jain@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
2225 lines
68 KiB
C++
2225 lines
68 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
|
/*
|
|
* Copyright (C) 2019, Google Inc.
|
|
*
|
|
* camera_device.cpp - libcamera Android Camera Device
|
|
*/
|
|
|
|
#include "camera_device.h"
|
|
#include "camera_ops.h"
|
|
#include "post_processor.h"
|
|
|
|
#include <cmath>
|
|
#include <fstream>
|
|
#include <sys/mman.h>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include <libcamera/control_ids.h>
|
|
#include <libcamera/controls.h>
|
|
#include <libcamera/formats.h>
|
|
#include <libcamera/property_ids.h>
|
|
|
|
#include "libcamera/internal/formats.h"
|
|
#include "libcamera/internal/log.h"
|
|
#include "libcamera/internal/utils.h"
|
|
|
|
#include "system/graphics.h"
|
|
|
|
using namespace libcamera;
|
|
|
|
LOG_DECLARE_CATEGORY(HAL)
|
|
|
|
namespace {
|
|
|
|
/*
|
|
* \var camera3Resolutions
|
|
* \brief The list of image resolutions defined as mandatory to be supported by
|
|
* the Android Camera3 specification
|
|
*/
|
|
const std::vector<Size> camera3Resolutions = {
|
|
{ 320, 240 },
|
|
{ 640, 480 },
|
|
{ 1280, 720 },
|
|
{ 1920, 1080 }
|
|
};
|
|
|
|
/*
|
|
* \struct Camera3Format
|
|
* \brief Data associated with an Android format identifier
|
|
* \var libcameraFormats List of libcamera pixel formats compatible with the
|
|
* Android format
|
|
* \var name The human-readable representation of the Android format code
|
|
*/
|
|
struct Camera3Format {
|
|
std::vector<PixelFormat> libcameraFormats;
|
|
bool mandatory;
|
|
const char *name;
|
|
};
|
|
|
|
/*
|
|
* \var camera3FormatsMap
|
|
* \brief Associate Android format code with ancillary data
|
|
*/
|
|
const std::map<int, const Camera3Format> camera3FormatsMap = {
|
|
{
|
|
HAL_PIXEL_FORMAT_BLOB, {
|
|
{ formats::MJPEG },
|
|
true,
|
|
"BLOB"
|
|
}
|
|
}, {
|
|
HAL_PIXEL_FORMAT_YCbCr_420_888, {
|
|
{ formats::NV12, formats::NV21 },
|
|
true,
|
|
"YCbCr_420_888"
|
|
}
|
|
}, {
|
|
/*
|
|
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
|
|
* usage flag. For now, copy the YCbCr_420 configuration.
|
|
*/
|
|
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
|
|
{ formats::NV12, formats::NV21 },
|
|
true,
|
|
"IMPLEMENTATION_DEFINED"
|
|
}
|
|
}, {
|
|
HAL_PIXEL_FORMAT_RAW10, {
|
|
{
|
|
formats::SBGGR10_CSI2P,
|
|
formats::SGBRG10_CSI2P,
|
|
formats::SGRBG10_CSI2P,
|
|
formats::SRGGB10_CSI2P
|
|
},
|
|
false,
|
|
"RAW10"
|
|
}
|
|
}, {
|
|
HAL_PIXEL_FORMAT_RAW12, {
|
|
{
|
|
formats::SBGGR12_CSI2P,
|
|
formats::SGBRG12_CSI2P,
|
|
formats::SGRBG12_CSI2P,
|
|
formats::SRGGB12_CSI2P
|
|
},
|
|
false,
|
|
"RAW12"
|
|
}
|
|
}, {
|
|
HAL_PIXEL_FORMAT_RAW16, {
|
|
{
|
|
formats::SBGGR16,
|
|
formats::SGBRG16,
|
|
formats::SGRBG16,
|
|
formats::SRGGB16
|
|
},
|
|
false,
|
|
"RAW16"
|
|
}
|
|
}, {
|
|
HAL_PIXEL_FORMAT_RAW_OPAQUE, {
|
|
{
|
|
formats::SBGGR10_IPU3,
|
|
formats::SGBRG10_IPU3,
|
|
formats::SGRBG10_IPU3,
|
|
formats::SRGGB10_IPU3
|
|
},
|
|
false,
|
|
"RAW_OPAQUE"
|
|
}
|
|
},
|
|
};
|
|
|
|
/*
|
|
* \struct Camera3StreamConfig
|
|
* \brief Data to store StreamConfiguration associated with camera3_stream(s)
|
|
* \var streams List of the pairs of a stream requested by Android HAL client
|
|
* and CameraStream::Type associated with the stream
|
|
* \var config StreamConfiguration for streams
|
|
*/
|
|
struct Camera3StreamConfig {
|
|
struct Camera3Stream {
|
|
camera3_stream_t *stream;
|
|
CameraStream::Type type;
|
|
};
|
|
|
|
std::vector<Camera3Stream> streams;
|
|
StreamConfiguration config;
|
|
};
|
|
|
|
/*
|
|
* Reorder the configurations so that libcamera::Camera can accept them as much
|
|
* as possible. The sort rule is as follows.
|
|
* 1.) The configuration for NV12 request whose resolution is the largest.
|
|
* 2.) The configuration for JPEG request.
|
|
* 3.) Others. Larger resolutions and different formats are put earlier.
|
|
*/
|
|
void sortCamera3StreamConfigs(std::vector<Camera3StreamConfig> &unsortedConfigs,
|
|
const camera3_stream_t *jpegStream)
|
|
{
|
|
const Camera3StreamConfig *jpegConfig = nullptr;
|
|
|
|
std::map<PixelFormat, std::vector<const Camera3StreamConfig *>> formatToConfigs;
|
|
for (const auto &streamConfig : unsortedConfigs) {
|
|
if (jpegStream && !jpegConfig) {
|
|
const auto &streams = streamConfig.streams;
|
|
if (std::find_if(streams.begin(), streams.end(),
|
|
[jpegStream](const auto &stream) {
|
|
return stream.stream == jpegStream;
|
|
}) != streams.end()) {
|
|
jpegConfig = &streamConfig;
|
|
continue;
|
|
}
|
|
}
|
|
formatToConfigs[streamConfig.config.pixelFormat].push_back(&streamConfig);
|
|
}
|
|
|
|
if (jpegStream && !jpegConfig)
|
|
LOG(HAL, Fatal) << "No Camera3StreamConfig is found for JPEG";
|
|
|
|
for (auto &fmt : formatToConfigs) {
|
|
auto &streamConfigs = fmt.second;
|
|
|
|
/* Sorted by resolution. Smaller is put first. */
|
|
std::sort(streamConfigs.begin(), streamConfigs.end(),
|
|
[](const auto *streamConfigA, const auto *streamConfigB) {
|
|
const Size &sizeA = streamConfigA->config.size;
|
|
const Size &sizeB = streamConfigB->config.size;
|
|
return sizeA < sizeB;
|
|
});
|
|
}
|
|
|
|
std::vector<Camera3StreamConfig> sortedConfigs;
|
|
sortedConfigs.reserve(unsortedConfigs.size());
|
|
|
|
/*
|
|
* NV12 is the most prioritized format. Put the configuration with NV12
|
|
* and the largest resolution first.
|
|
*/
|
|
const auto nv12It = formatToConfigs.find(formats::NV12);
|
|
if (nv12It != formatToConfigs.end()) {
|
|
auto &nv12Configs = nv12It->second;
|
|
const Camera3StreamConfig *nv12Largest = nv12Configs.back();
|
|
|
|
/*
|
|
* If JPEG will be created from NV12 and the size is larger than
|
|
* the largest NV12 configurations, then put the NV12
|
|
* configuration for JPEG first.
|
|
*/
|
|
if (jpegConfig && jpegConfig->config.pixelFormat == formats::NV12) {
|
|
const Size &nv12SizeForJpeg = jpegConfig->config.size;
|
|
const Size &nv12LargestSize = nv12Largest->config.size;
|
|
|
|
if (nv12LargestSize < nv12SizeForJpeg) {
|
|
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
|
|
sortedConfigs.push_back(std::move(*jpegConfig));
|
|
jpegConfig = nullptr;
|
|
}
|
|
}
|
|
|
|
LOG(HAL, Debug) << "Insert " << nv12Largest->config.toString();
|
|
sortedConfigs.push_back(*nv12Largest);
|
|
nv12Configs.pop_back();
|
|
|
|
if (nv12Configs.empty())
|
|
formatToConfigs.erase(nv12It);
|
|
}
|
|
|
|
/* If the configuration for JPEG is there, then put it. */
|
|
if (jpegConfig) {
|
|
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
|
|
sortedConfigs.push_back(std::move(*jpegConfig));
|
|
jpegConfig = nullptr;
|
|
}
|
|
|
|
/*
|
|
* Put configurations with different formats and larger resolutions
|
|
* earlier.
|
|
*/
|
|
while (!formatToConfigs.empty()) {
|
|
for (auto it = formatToConfigs.begin(); it != formatToConfigs.end();) {
|
|
auto &configs = it->second;
|
|
LOG(HAL, Debug) << "Insert " << configs.back()->config.toString();
|
|
sortedConfigs.push_back(*configs.back());
|
|
configs.pop_back();
|
|
|
|
if (configs.empty())
|
|
it = formatToConfigs.erase(it);
|
|
else
|
|
it++;
|
|
}
|
|
}
|
|
|
|
ASSERT(sortedConfigs.size() == unsortedConfigs.size());
|
|
|
|
unsortedConfigs = sortedConfigs;
|
|
}
|
|
|
|
} /* namespace */
|
|
|
|
/*
|
|
* \struct Camera3RequestDescriptor
|
|
*
|
|
* A utility structure that groups information about a capture request to be
|
|
* later re-used at request complete time to notify the framework.
|
|
*/
|
|
|
|
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
|
|
Camera *camera, const camera3_capture_request_t *camera3Request)
|
|
{
|
|
frameNumber_ = camera3Request->frame_number;
|
|
|
|
/* Copy the camera3 request stream information for later access. */
|
|
const uint32_t numBuffers = camera3Request->num_output_buffers;
|
|
buffers_.resize(numBuffers);
|
|
for (uint32_t i = 0; i < numBuffers; i++)
|
|
buffers_[i] = camera3Request->output_buffers[i];
|
|
|
|
/*
|
|
* FrameBuffer instances created by wrapping a camera3 provided dmabuf
|
|
* are emplaced in this vector of unique_ptr<> for lifetime management.
|
|
*/
|
|
frameBuffers_.reserve(numBuffers);
|
|
|
|
/* Clone the controls associated with the camera3 request. */
|
|
settings_ = CameraMetadata(camera3Request->settings);
|
|
|
|
/*
|
|
* Create the libcamera::Request unique_ptr<> to tie its lifetime
|
|
* to the descriptor's one. Set the descriptor's address as the
|
|
* request's cookie to retrieve it at completion time.
|
|
*/
|
|
request_ = std::make_unique<CaptureRequest>(camera,
|
|
reinterpret_cast<uint64_t>(this));
|
|
}
|
|
|
|
CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor() = default;
|
|
|
|
/*
|
|
* \class CameraDevice
|
|
*
|
|
* The CameraDevice class wraps a libcamera::Camera instance, and implements
|
|
* the camera3_device_t interface, bridging calls received from the Android
|
|
* camera service to the CameraDevice.
|
|
*
|
|
* The class translates parameters and operations from the Camera HALv3 API to
|
|
* the libcamera API to provide static information for a Camera, create request
|
|
* templates for it, process capture requests and then deliver capture results
|
|
* back to the framework using the designated callbacks.
|
|
*/
|
|
|
|
CameraDevice::CameraDevice(unsigned int id, std::shared_ptr<Camera> camera)
|
|
: id_(id), running_(false), camera_(std::move(camera)),
|
|
facing_(CAMERA_FACING_FRONT), orientation_(0)
|
|
{
|
|
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
|
|
|
|
maker_ = "libcamera";
|
|
model_ = "cameraModel";
|
|
|
|
/* \todo Support getting properties on Android */
|
|
std::ifstream fstream("/var/cache/camera/camera.prop");
|
|
if (!fstream.is_open())
|
|
return;
|
|
|
|
std::string line;
|
|
while (std::getline(fstream, line)) {
|
|
std::string::size_type delimPos = line.find("=");
|
|
if (delimPos == std::string::npos)
|
|
continue;
|
|
std::string key = line.substr(0, delimPos);
|
|
std::string val = line.substr(delimPos + 1);
|
|
|
|
if (!key.compare("ro.product.model"))
|
|
model_ = val;
|
|
else if (!key.compare("ro.product.manufacturer"))
|
|
maker_ = val;
|
|
}
|
|
}
|
|
|
|
CameraDevice::~CameraDevice() = default;
|
|
|
|
std::unique_ptr<CameraDevice> CameraDevice::create(unsigned int id,
|
|
std::shared_ptr<Camera> cam)
|
|
{
|
|
return std::unique_ptr<CameraDevice>(
|
|
new CameraDevice(id, std::move(cam)));
|
|
}
|
|
|
|
/*
|
|
* Initialize the camera static information.
|
|
* This method is called before the camera device is opened.
|
|
*/
|
|
int CameraDevice::initialize()
|
|
{
|
|
/* Initialize orientation and facing side of the camera. */
|
|
const ControlList &properties = camera_->properties();
|
|
|
|
if (properties.contains(properties::Location)) {
|
|
int32_t location = properties.get(properties::Location);
|
|
switch (location) {
|
|
case properties::CameraLocationFront:
|
|
facing_ = CAMERA_FACING_FRONT;
|
|
break;
|
|
case properties::CameraLocationBack:
|
|
facing_ = CAMERA_FACING_BACK;
|
|
break;
|
|
case properties::CameraLocationExternal:
|
|
facing_ = CAMERA_FACING_EXTERNAL;
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* \todo Retrieve the camera location from configuration file
|
|
* if not available from the library.
|
|
*/
|
|
facing_ = CAMERA_FACING_FRONT;
|
|
}
|
|
|
|
/*
|
|
* The Android orientation metadata specifies its rotation correction
|
|
* value in clockwise direction whereas libcamera specifies the
|
|
* rotation property in anticlockwise direction. Read the libcamera's
|
|
* rotation property (anticlockwise) and compute the corresponding
|
|
* value for clockwise direction as required by the Android orientation
|
|
* metadata.
|
|
*/
|
|
if (properties.contains(properties::Rotation)) {
|
|
int rotation = properties.get(properties::Rotation);
|
|
orientation_ = (360 - rotation) % 360;
|
|
}
|
|
|
|
int ret = camera_->acquire();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
|
|
return ret;
|
|
}
|
|
|
|
ret = initializeStreamConfigurations();
|
|
camera_->release();
|
|
return ret;
|
|
}
|
|
|
|
std::vector<Size> CameraDevice::getYUVResolutions(CameraConfiguration *cameraConfig,
|
|
const PixelFormat &pixelFormat,
|
|
const std::vector<Size> &resolutions)
|
|
{
|
|
std::vector<Size> supportedResolutions;
|
|
|
|
StreamConfiguration &cfg = cameraConfig->at(0);
|
|
for (const Size &res : resolutions) {
|
|
cfg.pixelFormat = pixelFormat;
|
|
cfg.size = res;
|
|
|
|
CameraConfiguration::Status status = cameraConfig->validate();
|
|
if (status != CameraConfiguration::Valid) {
|
|
LOG(HAL, Debug) << cfg.toString() << " not supported";
|
|
continue;
|
|
}
|
|
|
|
LOG(HAL, Debug) << cfg.toString() << " supported";
|
|
|
|
supportedResolutions.push_back(res);
|
|
}
|
|
|
|
return supportedResolutions;
|
|
}
|
|
|
|
std::vector<Size> CameraDevice::getRawResolutions(const libcamera::PixelFormat &pixelFormat)
|
|
{
|
|
std::unique_ptr<CameraConfiguration> cameraConfig =
|
|
camera_->generateConfiguration({ StreamRole::Raw });
|
|
StreamConfiguration &cfg = cameraConfig->at(0);
|
|
const StreamFormats &formats = cfg.formats();
|
|
std::vector<Size> supportedResolutions = formats.sizes(pixelFormat);
|
|
|
|
return supportedResolutions;
|
|
}
|
|
|
|
/*
|
|
* Initialize the format conversion map to translate from Android format
|
|
* identifier to libcamera pixel formats and fill in the list of supported
|
|
* stream configurations to be reported to the Android camera framework through
|
|
* the static stream configuration metadata.
|
|
*/
|
|
int CameraDevice::initializeStreamConfigurations()
|
|
{
|
|
/*
|
|
* Get the maximum output resolutions
|
|
* \todo Get this from the camera properties once defined
|
|
*/
|
|
std::unique_ptr<CameraConfiguration> cameraConfig =
|
|
camera_->generateConfiguration({ StillCapture });
|
|
if (!cameraConfig) {
|
|
LOG(HAL, Error) << "Failed to get maximum resolution";
|
|
return -EINVAL;
|
|
}
|
|
StreamConfiguration &cfg = cameraConfig->at(0);
|
|
|
|
/*
|
|
* \todo JPEG - Adjust the maximum available resolution by taking the
|
|
* JPEG encoder requirements into account (alignment and aspect ratio).
|
|
*/
|
|
const Size maxRes = cfg.size;
|
|
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
|
|
|
|
/*
|
|
* Build the list of supported image resolutions.
|
|
*
|
|
* The resolutions listed in camera3Resolution are mandatory to be
|
|
* supported, up to the camera maximum resolution.
|
|
*
|
|
* Augment the list by adding resolutions calculated from the camera
|
|
* maximum one.
|
|
*/
|
|
std::vector<Size> cameraResolutions;
|
|
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
|
|
std::back_inserter(cameraResolutions),
|
|
[&](const Size &res) { return res < maxRes; });
|
|
|
|
/*
|
|
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
|
|
* resolution.
|
|
*/
|
|
for (unsigned int divider = 2;; divider <<= 1) {
|
|
Size derivedSize{
|
|
maxRes.width / divider,
|
|
maxRes.height / divider,
|
|
};
|
|
|
|
if (derivedSize.width < 320 ||
|
|
derivedSize.height < 240)
|
|
break;
|
|
|
|
cameraResolutions.push_back(derivedSize);
|
|
}
|
|
cameraResolutions.push_back(maxRes);
|
|
|
|
/* Remove duplicated entries from the list of supported resolutions. */
|
|
std::sort(cameraResolutions.begin(), cameraResolutions.end());
|
|
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
|
|
cameraResolutions.erase(last, cameraResolutions.end());
|
|
|
|
/*
|
|
* Build the list of supported camera formats.
|
|
*
|
|
* To each Android format a list of compatible libcamera formats is
|
|
* associated. The first libcamera format that tests successful is added
|
|
* to the format translation map used when configuring the streams.
|
|
* It is then tested against the list of supported camera resolutions to
|
|
* build the stream configuration map reported through the camera static
|
|
* metadata.
|
|
*/
|
|
Size maxJpegSize;
|
|
for (const auto &format : camera3FormatsMap) {
|
|
int androidFormat = format.first;
|
|
const Camera3Format &camera3Format = format.second;
|
|
const std::vector<PixelFormat> &libcameraFormats =
|
|
camera3Format.libcameraFormats;
|
|
|
|
LOG(HAL, Debug) << "Trying to map Android format "
|
|
<< camera3Format.name;
|
|
|
|
/*
|
|
* JPEG is always supported, either produced directly by the
|
|
* camera, or encoded in the HAL.
|
|
*/
|
|
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
|
|
formatsMap_[androidFormat] = formats::MJPEG;
|
|
LOG(HAL, Debug) << "Mapped Android format "
|
|
<< camera3Format.name << " to "
|
|
<< formats::MJPEG.toString()
|
|
<< " (fixed mapping)";
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Test the libcamera formats that can produce images
|
|
* compatible with the format defined by Android.
|
|
*/
|
|
PixelFormat mappedFormat;
|
|
for (const PixelFormat &pixelFormat : libcameraFormats) {
|
|
|
|
LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
|
|
|
|
/*
|
|
* The stream configuration size can be adjusted,
|
|
* not the pixel format.
|
|
*
|
|
* \todo This could be simplified once all pipeline
|
|
* handlers will report the StreamFormats list of
|
|
* supported formats.
|
|
*/
|
|
cfg.pixelFormat = pixelFormat;
|
|
|
|
CameraConfiguration::Status status = cameraConfig->validate();
|
|
if (status != CameraConfiguration::Invalid &&
|
|
cfg.pixelFormat == pixelFormat) {
|
|
mappedFormat = pixelFormat;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!mappedFormat.isValid()) {
|
|
/* If the format is not mandatory, skip it. */
|
|
if (!camera3Format.mandatory)
|
|
continue;
|
|
|
|
LOG(HAL, Error)
|
|
<< "Failed to map mandatory Android format "
|
|
<< camera3Format.name << " ("
|
|
<< utils::hex(androidFormat) << "): aborting";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Record the mapping and then proceed to generate the
|
|
* stream configurations map, by testing the image resolutions.
|
|
*/
|
|
formatsMap_[androidFormat] = mappedFormat;
|
|
LOG(HAL, Debug) << "Mapped Android format "
|
|
<< camera3Format.name << " to "
|
|
<< mappedFormat.toString();
|
|
|
|
std::vector<Size> resolutions;
|
|
const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
|
|
if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
|
|
resolutions = getRawResolutions(mappedFormat);
|
|
else
|
|
resolutions = getYUVResolutions(cameraConfig.get(),
|
|
mappedFormat,
|
|
cameraResolutions);
|
|
|
|
for (const Size &res : resolutions) {
|
|
streamConfigurations_.push_back({ res, androidFormat });
|
|
|
|
/*
|
|
* If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
|
|
* from which JPEG is produced, add an entry for
|
|
* the JPEG stream.
|
|
*
|
|
* \todo Wire the JPEG encoder to query the supported
|
|
* sizes provided a list of formats it can encode.
|
|
*
|
|
* \todo Support JPEG streams produced by the Camera
|
|
* natively.
|
|
*/
|
|
if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
|
|
streamConfigurations_.push_back(
|
|
{ res, HAL_PIXEL_FORMAT_BLOB });
|
|
maxJpegSize = std::max(maxJpegSize, res);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* \todo Calculate the maximum JPEG buffer size by asking the
|
|
* encoder giving the maximum frame size required.
|
|
*/
|
|
maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
|
|
}
|
|
|
|
LOG(HAL, Debug) << "Collected stream configuration map: ";
|
|
for (const auto &entry : streamConfigurations_)
|
|
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
|
|
<< utils::hex(entry.androidFormat) << " }";
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Open a camera device. The static information on the camera shall have been
|
|
* initialized with a call to CameraDevice::initialize().
|
|
*/
|
|
int CameraDevice::open(const hw_module_t *hardwareModule)
|
|
{
|
|
int ret = camera_->acquire();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to acquire the camera";
|
|
return ret;
|
|
}
|
|
|
|
/* Initialize the hw_device_t in the instance camera3_module_t. */
|
|
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
|
|
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
|
|
camera3Device_.common.module = (hw_module_t *)hardwareModule;
|
|
camera3Device_.common.close = hal_dev_close;
|
|
|
|
/*
|
|
* The camera device operations. These actually implement
|
|
* the Android Camera HALv3 interface.
|
|
*/
|
|
camera3Device_.ops = &hal_dev_ops;
|
|
camera3Device_.priv = this;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::close()
|
|
{
|
|
streams_.clear();
|
|
|
|
worker_.stop();
|
|
camera_->stop();
|
|
camera_->release();
|
|
|
|
running_ = false;
|
|
}
|
|
|
|
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
|
|
{
|
|
callbacks_ = callbacks;
|
|
}
|
|
|
|
std::tuple<uint32_t, uint32_t> CameraDevice::calculateStaticMetadataSize()
|
|
{
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 54 entries, 874 bytes of static metadata
|
|
*/
|
|
uint32_t numEntries = 54;
|
|
uint32_t byteSize = 874;
|
|
|
|
/*
|
|
* Calculate space occupation in bytes for dynamically built metadata
|
|
* entries.
|
|
*
|
|
* Each stream configuration entry requires 48 bytes:
|
|
* 4 32bits integers for ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS
|
|
* 4 64bits integers for ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS
|
|
*/
|
|
byteSize += streamConfigurations_.size() * 48;
|
|
|
|
/*
|
|
* 2 32bits integers for each HAL_PIXEL_FORMAT_BLOB for thumbnail sizes
|
|
* 2 32bits integers for the (0, 0) thumbnail size
|
|
*
|
|
* This is a worst case estimates as different configurations with the
|
|
* same aspect ratio will generate the same size.
|
|
*/
|
|
for (const auto &entry : streamConfigurations_) {
|
|
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
|
|
continue;
|
|
|
|
byteSize += 8;
|
|
}
|
|
byteSize += 8;
|
|
|
|
return std::make_tuple(numEntries, byteSize);
|
|
}
|
|
|
|
/*
|
|
* Return static information for the camera.
|
|
*/
|
|
const camera_metadata_t *CameraDevice::getStaticMetadata()
|
|
{
|
|
if (staticMetadata_)
|
|
return staticMetadata_->get();
|
|
|
|
/*
|
|
* The here reported metadata are enough to implement a basic capture
|
|
* example application, but a real camera implementation will require
|
|
* more.
|
|
*/
|
|
uint32_t numEntries;
|
|
uint32_t byteSize;
|
|
std::tie(numEntries, byteSize) = calculateStaticMetadataSize();
|
|
staticMetadata_ = std::make_unique<CameraMetadata>(numEntries, byteSize);
|
|
if (!staticMetadata_->isValid()) {
|
|
LOG(HAL, Error) << "Failed to allocate static metadata";
|
|
staticMetadata_.reset();
|
|
return nullptr;
|
|
}
|
|
|
|
const ControlInfoMap &controlsInfo = camera_->controls();
|
|
const ControlList &properties = camera_->properties();
|
|
|
|
/* Color correction static metadata. */
|
|
{
|
|
std::vector<uint8_t> data;
|
|
data.reserve(3);
|
|
const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
|
|
if (infoMap != controlsInfo.end()) {
|
|
for (const auto &value : infoMap->second.values())
|
|
data.push_back(value.get<int32_t>());
|
|
} else {
|
|
data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
|
|
data.data(), data.size());
|
|
}
|
|
|
|
/* Control static metadata. */
|
|
std::vector<uint8_t> aeAvailableAntiBandingModes = {
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
|
|
aeAvailableAntiBandingModes.data(),
|
|
aeAvailableAntiBandingModes.size());
|
|
|
|
std::vector<uint8_t> aeAvailableModes = {
|
|
ANDROID_CONTROL_AE_MODE_ON,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
|
|
aeAvailableModes.data(),
|
|
aeAvailableModes.size());
|
|
|
|
int64_t minFrameDurationNsec = -1;
|
|
int64_t maxFrameDurationNsec = -1;
|
|
const auto frameDurationsInfo = controlsInfo.find(&controls::FrameDurations);
|
|
if (frameDurationsInfo != controlsInfo.end()) {
|
|
minFrameDurationNsec = frameDurationsInfo->second.min().get<int64_t>() * 1000;
|
|
maxFrameDurationNsec = frameDurationsInfo->second.max().get<int64_t>() * 1000;
|
|
|
|
/*
|
|
* Adjust the minimum frame duration to comply with Android
|
|
* requirements. The camera service mandates all preview/record
|
|
* streams to have a minimum frame duration < 33,366 milliseconds
|
|
* (see MAX_PREVIEW_RECORD_DURATION_NS in the camera service
|
|
* implementation).
|
|
*
|
|
* If we're close enough (+ 500 useconds) to that value, round
|
|
* the minimum frame duration of the camera to an accepted
|
|
* value.
|
|
*/
|
|
static constexpr int64_t MAX_PREVIEW_RECORD_DURATION_NS = 1e9 / 29.97;
|
|
if (minFrameDurationNsec > MAX_PREVIEW_RECORD_DURATION_NS &&
|
|
minFrameDurationNsec < MAX_PREVIEW_RECORD_DURATION_NS + 500000)
|
|
minFrameDurationNsec = MAX_PREVIEW_RECORD_DURATION_NS - 1000;
|
|
|
|
/*
|
|
* The AE routine frame rate limits are computed using the frame
|
|
* duration limits, as libcamera clips the AE routine to the
|
|
* frame durations.
|
|
*/
|
|
int32_t maxFps = std::round(1e9 / minFrameDurationNsec);
|
|
int32_t minFps = std::round(1e9 / maxFrameDurationNsec);
|
|
minFps = std::max(1, minFps);
|
|
|
|
/*
|
|
* Register to the camera service {min, max} and {max, max}
|
|
* intervals as requested by the metadata documentation.
|
|
*/
|
|
int32_t availableAeFpsTarget[] = {
|
|
minFps, maxFps, maxFps, maxFps
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
|
|
availableAeFpsTarget, 4);
|
|
}
|
|
|
|
std::vector<int32_t> aeCompensationRange = {
|
|
0, 0,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
|
|
aeCompensationRange.data(),
|
|
aeCompensationRange.size());
|
|
|
|
const camera_metadata_rational_t aeCompensationStep[] = {
|
|
{ 0, 1 }
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
|
|
aeCompensationStep, 1);
|
|
|
|
std::vector<uint8_t> availableAfModes = {
|
|
ANDROID_CONTROL_AF_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
|
|
availableAfModes.data(),
|
|
availableAfModes.size());
|
|
|
|
std::vector<uint8_t> availableEffects = {
|
|
ANDROID_CONTROL_EFFECT_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
|
|
availableEffects.data(),
|
|
availableEffects.size());
|
|
|
|
std::vector<uint8_t> availableSceneModes = {
|
|
ANDROID_CONTROL_SCENE_MODE_DISABLED,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
|
|
availableSceneModes.data(),
|
|
availableSceneModes.size());
|
|
|
|
std::vector<uint8_t> availableStabilizationModes = {
|
|
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
|
|
availableStabilizationModes.data(),
|
|
availableStabilizationModes.size());
|
|
|
|
/*
|
|
* \todo Inspect the Camera capabilities to report the available
|
|
* AWB modes. Default to AUTO as CTS tests require it.
|
|
*/
|
|
std::vector<uint8_t> availableAwbModes = {
|
|
ANDROID_CONTROL_AWB_MODE_AUTO,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
|
|
availableAwbModes.data(),
|
|
availableAwbModes.size());
|
|
|
|
std::vector<int32_t> availableMaxRegions = {
|
|
0, 0, 0,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
|
|
availableMaxRegions.data(),
|
|
availableMaxRegions.size());
|
|
|
|
std::vector<uint8_t> sceneModesOverride = {
|
|
ANDROID_CONTROL_AE_MODE_ON,
|
|
ANDROID_CONTROL_AWB_MODE_AUTO,
|
|
ANDROID_CONTROL_AF_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
|
|
sceneModesOverride.data(),
|
|
sceneModesOverride.size());
|
|
|
|
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
|
|
&aeLockAvailable, 1);
|
|
|
|
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
|
|
&awbLockAvailable, 1);
|
|
|
|
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
|
|
&availableControlModes, 1);
|
|
|
|
/* JPEG static metadata. */
|
|
|
|
/*
|
|
* Create the list of supported thumbnail sizes by inspecting the
|
|
* available JPEG resolutions collected in streamConfigurations_ and
|
|
* generate one entry for each aspect ratio.
|
|
*
|
|
* The JPEG thumbnailer can freely scale, so pick an arbitrary
|
|
* (160, 160) size as the bounding rectangle, which is then cropped to
|
|
* the different supported aspect ratios.
|
|
*/
|
|
constexpr Size maxJpegThumbnail(160, 160);
|
|
std::vector<Size> thumbnailSizes;
|
|
thumbnailSizes.push_back({ 0, 0 });
|
|
for (const auto &entry : streamConfigurations_) {
|
|
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
|
|
continue;
|
|
|
|
Size thumbnailSize = maxJpegThumbnail
|
|
.boundedToAspectRatio({ entry.resolution.width,
|
|
entry.resolution.height });
|
|
thumbnailSizes.push_back(thumbnailSize);
|
|
}
|
|
|
|
std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
|
|
auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
|
|
thumbnailSizes.erase(last, thumbnailSizes.end());
|
|
|
|
/* Transform sizes in to a list of integers that can be consumed. */
|
|
std::vector<int32_t> thumbnailEntries;
|
|
thumbnailEntries.reserve(thumbnailSizes.size() * 2);
|
|
for (const auto &size : thumbnailSizes) {
|
|
thumbnailEntries.push_back(size.width);
|
|
thumbnailEntries.push_back(size.height);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
|
|
thumbnailEntries.data(), thumbnailEntries.size());
|
|
|
|
staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, &maxJpegBufferSize_, 1);
|
|
|
|
/* Sensor static metadata. */
|
|
{
|
|
const Size &size =
|
|
properties.get(properties::PixelArraySize);
|
|
std::vector<int32_t> data{
|
|
static_cast<int32_t>(size.width),
|
|
static_cast<int32_t>(size.height),
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
|
|
data.data(), data.size());
|
|
}
|
|
|
|
{
|
|
const Span<const Rectangle> &rects =
|
|
properties.get(properties::PixelArrayActiveAreas);
|
|
std::vector<int32_t> data{
|
|
static_cast<int32_t>(rects[0].x),
|
|
static_cast<int32_t>(rects[0].y),
|
|
static_cast<int32_t>(rects[0].width),
|
|
static_cast<int32_t>(rects[0].height),
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
|
|
data.data(), data.size());
|
|
}
|
|
|
|
int32_t sensitivityRange[] = {
|
|
32, 2400,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
|
|
&sensitivityRange, 2);
|
|
|
|
/* Report the color filter arrangement if the camera reports it. */
|
|
if (properties.contains(properties::draft::ColorFilterArrangement)) {
|
|
uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
|
|
&filterArr, 1);
|
|
}
|
|
|
|
const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
|
|
if (exposureInfo != controlsInfo.end()) {
|
|
int64_t exposureTimeRange[2] = {
|
|
exposureInfo->second.min().get<int32_t>() * 1000LL,
|
|
exposureInfo->second.max().get<int32_t>() * 1000LL,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
|
|
&exposureTimeRange, 2);
|
|
}
|
|
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, &orientation_, 1);
|
|
|
|
std::vector<int32_t> testPatterModes = {
|
|
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
|
|
testPatterModes.data(),
|
|
testPatterModes.size());
|
|
|
|
std::vector<float> physicalSize = {
|
|
2592, 1944,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
|
|
physicalSize.data(),
|
|
physicalSize.size());
|
|
|
|
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
|
|
×tampSource, 1);
|
|
|
|
if (maxFrameDurationNsec > 0)
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
|
|
&maxFrameDurationNsec, 1);
|
|
|
|
/* Statistics static metadata. */
|
|
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
|
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
|
|
&faceDetectMode, 1);
|
|
|
|
int32_t maxFaceCount = 0;
|
|
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
|
|
&maxFaceCount, 1);
|
|
|
|
{
|
|
std::vector<uint8_t> data;
|
|
data.reserve(2);
|
|
const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
|
|
if (infoMap != controlsInfo.end()) {
|
|
for (const auto &value : infoMap->second.values())
|
|
data.push_back(value.get<int32_t>());
|
|
} else {
|
|
data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
|
|
data.data(), data.size());
|
|
}
|
|
|
|
/* Sync static metadata. */
|
|
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
|
|
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
|
|
|
|
/* Flash static metadata. */
|
|
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
|
|
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
|
|
&flashAvailable, 1);
|
|
|
|
/* Lens static metadata. */
|
|
std::vector<float> lensApertures = {
|
|
2.53 / 100,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
|
|
lensApertures.data(),
|
|
lensApertures.size());
|
|
|
|
uint8_t lensFacing;
|
|
switch (facing_) {
|
|
default:
|
|
case CAMERA_FACING_FRONT:
|
|
lensFacing = ANDROID_LENS_FACING_FRONT;
|
|
break;
|
|
case CAMERA_FACING_BACK:
|
|
lensFacing = ANDROID_LENS_FACING_BACK;
|
|
break;
|
|
case CAMERA_FACING_EXTERNAL:
|
|
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
|
|
break;
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);
|
|
|
|
std::vector<float> lensFocalLenghts = {
|
|
1,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
|
|
lensFocalLenghts.data(),
|
|
lensFocalLenghts.size());
|
|
|
|
std::vector<uint8_t> opticalStabilizations = {
|
|
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
|
|
opticalStabilizations.data(),
|
|
opticalStabilizations.size());
|
|
|
|
float hypeFocalDistance = 0;
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
|
|
&hypeFocalDistance, 1);
|
|
|
|
float minFocusDistance = 0;
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
|
|
&minFocusDistance, 1);
|
|
|
|
/* Noise reduction modes. */
|
|
{
|
|
std::vector<uint8_t> data;
|
|
data.reserve(5);
|
|
const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
|
|
if (infoMap != controlsInfo.end()) {
|
|
for (const auto &value : infoMap->second.values())
|
|
data.push_back(value.get<int32_t>());
|
|
} else {
|
|
data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
|
|
data.data(), data.size());
|
|
}
|
|
|
|
/* Scaler static metadata. */
|
|
|
|
/*
|
|
* \todo The digital zoom factor is a property that depends on the
|
|
* desired output configuration and the sensor frame size input to the
|
|
* ISP. This information is not available to the Android HAL, not at
|
|
* initialization time at least.
|
|
*
|
|
* As a workaround rely on pipeline handlers initializing the
|
|
* ScalerCrop control with the camera default configuration and use the
|
|
* maximum and minimum crop rectangles to calculate the digital zoom
|
|
* factor.
|
|
*/
|
|
float maxZoom = 1.0f;
|
|
const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
|
|
if (scalerCrop != controlsInfo.end()) {
|
|
Rectangle min = scalerCrop->second.min().get<Rectangle>();
|
|
Rectangle max = scalerCrop->second.max().get<Rectangle>();
|
|
maxZoom = std::min(1.0f * max.width / min.width,
|
|
1.0f * max.height / min.height);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
|
|
&maxZoom, 1);
|
|
|
|
std::vector<uint32_t> availableStreamConfigurations;
|
|
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
|
|
for (const auto &entry : streamConfigurations_) {
|
|
availableStreamConfigurations.push_back(entry.androidFormat);
|
|
availableStreamConfigurations.push_back(entry.resolution.width);
|
|
availableStreamConfigurations.push_back(entry.resolution.height);
|
|
availableStreamConfigurations.push_back(
|
|
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
|
|
availableStreamConfigurations.data(),
|
|
availableStreamConfigurations.size());
|
|
|
|
std::vector<int64_t> availableStallDurations = {
|
|
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
|
|
availableStallDurations.data(),
|
|
availableStallDurations.size());
|
|
|
|
/* Use the minimum frame duration for all the YUV/RGB formats. */
|
|
if (minFrameDurationNsec > 0) {
|
|
std::vector<int64_t> minFrameDurations;
|
|
minFrameDurations.reserve(streamConfigurations_.size() * 4);
|
|
for (const auto &entry : streamConfigurations_) {
|
|
minFrameDurations.push_back(entry.androidFormat);
|
|
minFrameDurations.push_back(entry.resolution.width);
|
|
minFrameDurations.push_back(entry.resolution.height);
|
|
minFrameDurations.push_back(minFrameDurationNsec);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
|
|
minFrameDurations.data(),
|
|
minFrameDurations.size());
|
|
}
|
|
|
|
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
|
|
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
|
|
|
|
/* Info static metadata. */
|
|
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
|
|
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
|
|
&supportedHWLevel, 1);
|
|
|
|
/* Request static metadata. */
|
|
int32_t partialResultCount = 1;
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
|
|
&partialResultCount, 1);
|
|
|
|
{
|
|
/* Default the value to 2 if not reported by the camera. */
|
|
uint8_t maxPipelineDepth = 2;
|
|
const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
|
|
if (infoMap != controlsInfo.end())
|
|
maxPipelineDepth = infoMap->second.max().get<int32_t>();
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
|
|
&maxPipelineDepth, 1);
|
|
}
|
|
|
|
/* LIMITED does not support reprocessing. */
|
|
uint32_t maxNumInputStreams = 0;
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
|
|
&maxNumInputStreams, 1);
|
|
|
|
std::vector<uint8_t> availableCapabilities = {
|
|
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
|
|
};
|
|
|
|
/* Report if camera supports RAW. */
|
|
bool rawStreamAvailable = false;
|
|
std::unique_ptr<CameraConfiguration> cameraConfig =
|
|
camera_->generateConfiguration({ StreamRole::Raw });
|
|
if (cameraConfig && !cameraConfig->empty()) {
|
|
const PixelFormatInfo &info =
|
|
PixelFormatInfo::info(cameraConfig->at(0).pixelFormat);
|
|
/* Only advertise RAW support if RAW16 is possible. */
|
|
if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW &&
|
|
info.bitsPerPixel == 16) {
|
|
rawStreamAvailable = true;
|
|
availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
|
|
}
|
|
}
|
|
|
|
/* Number of { RAW, YUV, JPEG } supported output streams */
|
|
int32_t numOutStreams[] = { rawStreamAvailable, 2, 1 };
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
|
|
&numOutStreams, 3);
|
|
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
|
|
availableCapabilities.data(),
|
|
availableCapabilities.size());
|
|
|
|
std::vector<int32_t> availableCharacteristicsKeys = {
|
|
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
|
|
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
|
|
ANDROID_CONTROL_AE_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
|
|
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
|
|
ANDROID_CONTROL_AE_COMPENSATION_STEP,
|
|
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
|
|
ANDROID_CONTROL_AF_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_AVAILABLE_EFFECTS,
|
|
ANDROID_CONTROL_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
|
|
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
|
|
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
|
|
ANDROID_CONTROL_MAX_REGIONS,
|
|
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
|
|
ANDROID_FLASH_INFO_AVAILABLE,
|
|
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
|
|
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
|
|
ANDROID_JPEG_MAX_SIZE,
|
|
ANDROID_LENS_FACING,
|
|
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
|
|
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
|
|
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
|
|
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
|
|
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
|
|
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
|
|
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
|
|
ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
|
|
ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
|
|
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
|
|
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
|
|
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
|
|
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
|
|
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
|
|
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
|
|
ANDROID_SCALER_CROPPING_TYPE,
|
|
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
|
|
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
|
|
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
|
|
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
|
|
ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
|
|
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
|
|
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
|
|
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
|
|
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
|
|
ANDROID_SENSOR_ORIENTATION,
|
|
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
|
|
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
|
|
ANDROID_SYNC_MAX_LATENCY,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
|
|
availableCharacteristicsKeys.data(),
|
|
availableCharacteristicsKeys.size());
|
|
|
|
std::vector<int32_t> availableRequestKeys = {
|
|
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
|
|
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
ANDROID_CONTROL_AE_LOCK,
|
|
ANDROID_CONTROL_AE_MODE,
|
|
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
|
|
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
|
|
ANDROID_CONTROL_AF_MODE,
|
|
ANDROID_CONTROL_AF_TRIGGER,
|
|
ANDROID_CONTROL_AWB_LOCK,
|
|
ANDROID_CONTROL_AWB_MODE,
|
|
ANDROID_CONTROL_CAPTURE_INTENT,
|
|
ANDROID_CONTROL_EFFECT_MODE,
|
|
ANDROID_CONTROL_MODE,
|
|
ANDROID_CONTROL_SCENE_MODE,
|
|
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
|
|
ANDROID_FLASH_MODE,
|
|
ANDROID_JPEG_ORIENTATION,
|
|
ANDROID_JPEG_QUALITY,
|
|
ANDROID_JPEG_THUMBNAIL_QUALITY,
|
|
ANDROID_JPEG_THUMBNAIL_SIZE,
|
|
ANDROID_LENS_APERTURE,
|
|
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
|
|
ANDROID_NOISE_REDUCTION_MODE,
|
|
ANDROID_SCALER_CROP_REGION,
|
|
ANDROID_STATISTICS_FACE_DETECT_MODE
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
|
|
availableRequestKeys.data(),
|
|
availableRequestKeys.size());
|
|
|
|
std::vector<int32_t> availableResultKeys = {
|
|
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
|
|
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
ANDROID_CONTROL_AE_LOCK,
|
|
ANDROID_CONTROL_AE_MODE,
|
|
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
|
|
ANDROID_CONTROL_AE_STATE,
|
|
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
|
|
ANDROID_CONTROL_AF_MODE,
|
|
ANDROID_CONTROL_AF_STATE,
|
|
ANDROID_CONTROL_AF_TRIGGER,
|
|
ANDROID_CONTROL_AWB_LOCK,
|
|
ANDROID_CONTROL_AWB_MODE,
|
|
ANDROID_CONTROL_AWB_STATE,
|
|
ANDROID_CONTROL_CAPTURE_INTENT,
|
|
ANDROID_CONTROL_EFFECT_MODE,
|
|
ANDROID_CONTROL_MODE,
|
|
ANDROID_CONTROL_SCENE_MODE,
|
|
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
|
|
ANDROID_FLASH_MODE,
|
|
ANDROID_FLASH_STATE,
|
|
ANDROID_JPEG_GPS_COORDINATES,
|
|
ANDROID_JPEG_GPS_PROCESSING_METHOD,
|
|
ANDROID_JPEG_GPS_TIMESTAMP,
|
|
ANDROID_JPEG_ORIENTATION,
|
|
ANDROID_JPEG_QUALITY,
|
|
ANDROID_JPEG_SIZE,
|
|
ANDROID_JPEG_THUMBNAIL_QUALITY,
|
|
ANDROID_JPEG_THUMBNAIL_SIZE,
|
|
ANDROID_LENS_APERTURE,
|
|
ANDROID_LENS_FOCAL_LENGTH,
|
|
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
|
|
ANDROID_LENS_STATE,
|
|
ANDROID_NOISE_REDUCTION_MODE,
|
|
ANDROID_REQUEST_PIPELINE_DEPTH,
|
|
ANDROID_SCALER_CROP_REGION,
|
|
ANDROID_SENSOR_EXPOSURE_TIME,
|
|
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
|
|
ANDROID_SENSOR_TEST_PATTERN_MODE,
|
|
ANDROID_SENSOR_TIMESTAMP,
|
|
ANDROID_STATISTICS_FACE_DETECT_MODE,
|
|
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
|
|
ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
|
|
ANDROID_STATISTICS_SCENE_FLICKER,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
|
|
availableResultKeys.data(),
|
|
availableResultKeys.size());
|
|
|
|
if (!staticMetadata_->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct static metadata";
|
|
staticMetadata_.reset();
|
|
return nullptr;
|
|
}
|
|
|
|
return staticMetadata_->get();
|
|
}
|
|
|
|
std::unique_ptr<CameraMetadata> CameraDevice::requestTemplatePreview()
|
|
{
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 20 entries, 35 bytes
|
|
*/
|
|
auto requestTemplate = std::make_unique<CameraMetadata>(21, 36);
|
|
if (!requestTemplate->isValid()) {
|
|
return nullptr;
|
|
}
|
|
|
|
/* Get the FPS range registered in the static metadata. */
|
|
camera_metadata_ro_entry_t entry;
|
|
bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
|
|
&entry);
|
|
if (!found) {
|
|
LOG(HAL, Error) << "Cannot create capture template without FPS range";
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
|
|
* has been assembled as {{min, max} {max, max}}.
|
|
*/
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
|
|
entry.data.i32, 2);
|
|
|
|
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
|
|
&aeMode, 1);
|
|
|
|
int32_t aeExposureCompensation = 0;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
&aeExposureCompensation, 1);
|
|
|
|
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
|
|
&aePrecaptureTrigger, 1);
|
|
|
|
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
|
|
&aeLock, 1);
|
|
|
|
uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
|
|
&aeAntibandingMode, 1);
|
|
|
|
uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, &afMode, 1);
|
|
|
|
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
|
|
&afTrigger, 1);
|
|
|
|
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
|
|
&awbMode, 1);
|
|
|
|
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
|
|
&awbLock, 1);
|
|
|
|
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_FLASH_MODE,
|
|
&flashMode, 1);
|
|
|
|
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
|
|
&faceDetectMode, 1);
|
|
|
|
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
|
|
&noiseReduction, 1);
|
|
|
|
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
&aberrationMode, 1);
|
|
|
|
uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_MODE, &controlMode, 1);
|
|
|
|
float lensAperture = 2.53 / 100;
|
|
requestTemplate->addEntry(ANDROID_LENS_APERTURE, &lensAperture, 1);
|
|
|
|
uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
|
|
&opticalStabilization, 1);
|
|
|
|
uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
|
|
&captureIntent, 1);
|
|
|
|
return requestTemplate;
|
|
}
|
|
|
|
std::unique_ptr<CameraMetadata> CameraDevice::requestTemplateVideo()
|
|
{
|
|
std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
|
|
if (!previewTemplate)
|
|
return nullptr;
|
|
|
|
/*
|
|
* The video template requires a fixed FPS range. Everything else
|
|
* stays the same as the preview template.
|
|
*/
|
|
camera_metadata_ro_entry_t entry;
|
|
staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
|
|
&entry);
|
|
|
|
/*
|
|
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
|
|
* has been assembled as {{min, max} {max, max}}.
|
|
*/
|
|
previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
|
|
entry.data.i32 + 2, 2);
|
|
|
|
return previewTemplate;
|
|
}
|
|
|
|
/*
|
|
* Produce a metadata pack to be used as template for a capture request.
|
|
*/
|
|
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
|
|
{
|
|
auto it = requestTemplates_.find(type);
|
|
if (it != requestTemplates_.end())
|
|
return it->second->get();
|
|
|
|
/* Use the capture intent matching the requested template type. */
|
|
std::unique_ptr<CameraMetadata> requestTemplate;
|
|
uint8_t captureIntent;
|
|
switch (type) {
|
|
case CAMERA3_TEMPLATE_PREVIEW:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
|
requestTemplate = requestTemplatePreview();
|
|
break;
|
|
case CAMERA3_TEMPLATE_STILL_CAPTURE:
|
|
/*
|
|
* Use the preview template for still capture, they only differ
|
|
* for the torch mode we currently do not support.
|
|
*/
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
|
|
requestTemplate = requestTemplatePreview();
|
|
break;
|
|
case CAMERA3_TEMPLATE_VIDEO_RECORD:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
|
|
requestTemplate = requestTemplateVideo();
|
|
break;
|
|
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
|
|
requestTemplate = requestTemplateVideo();
|
|
break;
|
|
/* \todo Implement templates generation for the remaining use cases. */
|
|
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
|
|
case CAMERA3_TEMPLATE_MANUAL:
|
|
default:
|
|
LOG(HAL, Error) << "Unsupported template request type: " << type;
|
|
return nullptr;
|
|
}
|
|
|
|
if (!requestTemplate || !requestTemplate->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct request template";
|
|
return nullptr;
|
|
}
|
|
|
|
requestTemplate->updateEntry(ANDROID_CONTROL_CAPTURE_INTENT,
|
|
&captureIntent, 1);
|
|
|
|
requestTemplates_[type] = std::move(requestTemplate);
|
|
return requestTemplates_[type]->get();
|
|
}
|
|
|
|
PixelFormat CameraDevice::toPixelFormat(int format) const
|
|
{
|
|
/* Translate Android format code to libcamera pixel format. */
|
|
auto it = formatsMap_.find(format);
|
|
if (it == formatsMap_.end()) {
|
|
LOG(HAL, Error) << "Requested format " << utils::hex(format)
|
|
<< " not supported";
|
|
return PixelFormat();
|
|
}
|
|
|
|
return it->second;
|
|
}
|
|
|
|
/*
|
|
* Inspect the stream_list to produce a list of StreamConfiguration to
|
|
* be use to configure the Camera.
|
|
*/
|
|
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
|
|
{
|
|
/* Before any configuration attempt, stop the camera if it's running. */
|
|
if (running_) {
|
|
worker_.stop();
|
|
camera_->stop();
|
|
running_ = false;
|
|
}
|
|
|
|
if (stream_list->num_streams == 0) {
|
|
LOG(HAL, Error) << "No streams in configuration";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Generate an empty configuration, and construct a StreamConfiguration
|
|
* for each camera3_stream to add to it.
|
|
*/
|
|
config_ = camera_->generateConfiguration();
|
|
if (!config_) {
|
|
LOG(HAL, Error) << "Failed to generate camera configuration";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Clear and remove any existing configuration from previous calls, and
|
|
* ensure the required entries are available without further
|
|
* reallocation.
|
|
*/
|
|
streams_.clear();
|
|
streams_.reserve(stream_list->num_streams);
|
|
|
|
std::vector<Camera3StreamConfig> streamConfigs;
|
|
streamConfigs.reserve(stream_list->num_streams);
|
|
|
|
/* First handle all non-MJPEG streams. */
|
|
camera3_stream_t *jpegStream = nullptr;
|
|
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
|
|
camera3_stream_t *stream = stream_list->streams[i];
|
|
Size size(stream->width, stream->height);
|
|
|
|
PixelFormat format = toPixelFormat(stream->format);
|
|
|
|
LOG(HAL, Info) << "Stream #" << i
|
|
<< ", direction: " << stream->stream_type
|
|
<< ", width: " << stream->width
|
|
<< ", height: " << stream->height
|
|
<< ", format: " << utils::hex(stream->format)
|
|
<< " (" << format.toString() << ")";
|
|
|
|
if (!format.isValid())
|
|
return -EINVAL;
|
|
|
|
/* Defer handling of MJPEG streams until all others are known. */
|
|
if (stream->format == HAL_PIXEL_FORMAT_BLOB) {
|
|
if (jpegStream) {
|
|
LOG(HAL, Error)
|
|
<< "Multiple JPEG streams are not supported";
|
|
return -EINVAL;
|
|
}
|
|
|
|
jpegStream = stream;
|
|
continue;
|
|
}
|
|
|
|
Camera3StreamConfig streamConfig;
|
|
streamConfig.streams = { { stream, CameraStream::Type::Direct } };
|
|
streamConfig.config.size = size;
|
|
streamConfig.config.pixelFormat = format;
|
|
streamConfigs.push_back(std::move(streamConfig));
|
|
|
|
/* This stream will be produced by hardware. */
|
|
stream->usage |= GRALLOC_USAGE_HW_CAMERA_WRITE;
|
|
}
|
|
|
|
/* Now handle the MJPEG streams, adding a new stream if required. */
|
|
if (jpegStream) {
|
|
CameraStream::Type type;
|
|
int index = -1;
|
|
|
|
/* Search for a compatible stream in the non-JPEG ones. */
|
|
for (size_t i = 0; i < streamConfigs.size(); ++i) {
|
|
Camera3StreamConfig &streamConfig = streamConfigs[i];
|
|
const auto &cfg = streamConfig.config;
|
|
|
|
/*
|
|
* \todo The PixelFormat must also be compatible with
|
|
* the encoder.
|
|
*/
|
|
if (cfg.size.width != jpegStream->width ||
|
|
cfg.size.height != jpegStream->height)
|
|
continue;
|
|
|
|
LOG(HAL, Info)
|
|
<< "Android JPEG stream mapped to libcamera stream " << i;
|
|
|
|
type = CameraStream::Type::Mapped;
|
|
index = i;
|
|
|
|
/*
|
|
* The source stream will be read by software to
|
|
* produce the JPEG stream.
|
|
*/
|
|
camera3_stream_t *stream = streamConfig.streams[0].stream;
|
|
stream->usage |= GRALLOC_USAGE_SW_READ_OFTEN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Without a compatible match for JPEG encoding we must
|
|
* introduce a new stream to satisfy the request requirements.
|
|
*/
|
|
if (index < 0) {
|
|
/*
|
|
* \todo The pixelFormat should be a 'best-fit' choice
|
|
* and may require a validation cycle. This is not yet
|
|
* handled, and should be considered as part of any
|
|
* stream configuration reworks.
|
|
*/
|
|
Camera3StreamConfig streamConfig;
|
|
streamConfig.config.size.width = jpegStream->width;
|
|
streamConfig.config.size.height = jpegStream->height;
|
|
streamConfig.config.pixelFormat = formats::NV12;
|
|
streamConfigs.push_back(std::move(streamConfig));
|
|
|
|
LOG(HAL, Info) << "Adding " << streamConfig.config.toString()
|
|
<< " for MJPEG support";
|
|
|
|
type = CameraStream::Type::Internal;
|
|
index = streamConfigs.size() - 1;
|
|
}
|
|
|
|
/* The JPEG stream will be produced by software. */
|
|
jpegStream->usage |= GRALLOC_USAGE_SW_WRITE_OFTEN;
|
|
|
|
streamConfigs[index].streams.push_back({ jpegStream, type });
|
|
}
|
|
|
|
sortCamera3StreamConfigs(streamConfigs, jpegStream);
|
|
for (const auto &streamConfig : streamConfigs) {
|
|
config_->addConfiguration(streamConfig.config);
|
|
|
|
for (auto &stream : streamConfig.streams) {
|
|
streams_.emplace_back(this, stream.type, stream.stream,
|
|
config_->size() - 1);
|
|
stream.stream->priv = static_cast<void *>(&streams_.back());
|
|
}
|
|
}
|
|
|
|
switch (config_->validate()) {
|
|
case CameraConfiguration::Valid:
|
|
break;
|
|
case CameraConfiguration::Adjusted:
|
|
LOG(HAL, Info) << "Camera configuration adjusted";
|
|
|
|
for (const StreamConfiguration &cfg : *config_)
|
|
LOG(HAL, Info) << " - " << cfg.toString();
|
|
|
|
config_.reset();
|
|
return -EINVAL;
|
|
case CameraConfiguration::Invalid:
|
|
LOG(HAL, Info) << "Camera configuration invalid";
|
|
config_.reset();
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Once the CameraConfiguration has been adjusted/validated
|
|
* it can be applied to the camera.
|
|
*/
|
|
int ret = camera_->configure(config_.get());
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to configure camera '"
|
|
<< camera_->id() << "'";
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Configure the HAL CameraStream instances using the associated
|
|
* StreamConfiguration and set the number of required buffers in
|
|
* the Android camera3_stream_t.
|
|
*/
|
|
for (CameraStream &cameraStream : streams_) {
|
|
ret = cameraStream.configure();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to configure camera stream";
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
|
|
{
|
|
std::vector<FrameBuffer::Plane> planes;
|
|
for (int i = 0; i < camera3buffer->numFds; i++) {
|
|
/* Skip unused planes. */
|
|
if (camera3buffer->data[i] == -1)
|
|
break;
|
|
|
|
FrameBuffer::Plane plane;
|
|
plane.fd = FileDescriptor(camera3buffer->data[i]);
|
|
if (!plane.fd.isValid()) {
|
|
LOG(HAL, Error) << "Failed to obtain FileDescriptor ("
|
|
<< camera3buffer->data[i] << ") "
|
|
<< " on plane " << i;
|
|
return nullptr;
|
|
}
|
|
|
|
off_t length = lseek(plane.fd.fd(), 0, SEEK_END);
|
|
if (length == -1) {
|
|
LOG(HAL, Error) << "Failed to query plane length";
|
|
return nullptr;
|
|
}
|
|
|
|
plane.length = length;
|
|
planes.push_back(std::move(plane));
|
|
}
|
|
|
|
return new FrameBuffer(std::move(planes));
|
|
}
|
|
|
|
int CameraDevice::processControls(Camera3RequestDescriptor *descriptor)
|
|
{
|
|
const CameraMetadata &settings = descriptor->settings_;
|
|
if (!settings.isValid())
|
|
return 0;
|
|
|
|
/* Translate the Android request settings to libcamera controls. */
|
|
camera_metadata_ro_entry_t entry;
|
|
if (settings.getEntry(ANDROID_SCALER_CROP_REGION, &entry)) {
|
|
const int32_t *data = entry.data.i32;
|
|
Rectangle cropRegion{ data[0], data[1],
|
|
static_cast<unsigned int>(data[2]),
|
|
static_cast<unsigned int>(data[3]) };
|
|
ControlList &controls = descriptor->request_->controls();
|
|
controls.set(controls::ScalerCrop, cropRegion);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
|
|
{
|
|
if (!camera3Request) {
|
|
LOG(HAL, Error) << "No capture request provided";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!camera3Request->num_output_buffers) {
|
|
LOG(HAL, Error) << "No output buffers provided";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Start the camera if that's the first request we handle. */
|
|
if (!running_) {
|
|
worker_.start();
|
|
|
|
int ret = camera_->start();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to start camera";
|
|
return ret;
|
|
}
|
|
|
|
running_ = true;
|
|
}
|
|
|
|
/*
|
|
* Save the request descriptors for use at completion time.
|
|
* The descriptor and the associated memory reserved here are freed
|
|
* at request complete time.
|
|
*/
|
|
Camera3RequestDescriptor *descriptor =
|
|
new Camera3RequestDescriptor(camera_.get(), camera3Request);
|
|
/*
|
|
* \todo The Android request model is incremental, settings passed in
|
|
* previous requests are to be effective until overridden explicitly in
|
|
* a new request. Do we need to cache settings incrementally here, or is
|
|
* it handled by the Android camera service ?
|
|
*/
|
|
if (camera3Request->settings)
|
|
lastSettings_ = camera3Request->settings;
|
|
else
|
|
descriptor->settings_ = lastSettings_;
|
|
|
|
LOG(HAL, Debug) << "Queueing request " << descriptor->request_->cookie()
|
|
<< " with " << descriptor->buffers_.size() << " streams";
|
|
for (unsigned int i = 0; i < descriptor->buffers_.size(); ++i) {
|
|
const camera3_stream_buffer_t &camera3Buffer = descriptor->buffers_[i];
|
|
camera3_stream *camera3Stream = camera3Buffer.stream;
|
|
CameraStream *cameraStream = static_cast<CameraStream *>(camera3Stream->priv);
|
|
|
|
std::stringstream ss;
|
|
ss << i << " - (" << camera3Stream->width << "x"
|
|
<< camera3Stream->height << ")"
|
|
<< "[" << utils::hex(camera3Stream->format) << "] -> "
|
|
<< "(" << cameraStream->configuration().size.toString() << ")["
|
|
<< cameraStream->configuration().pixelFormat.toString() << "]";
|
|
|
|
/*
|
|
* Inspect the camera stream type, create buffers opportunely
|
|
* and add them to the Request if required.
|
|
*/
|
|
FrameBuffer *buffer = nullptr;
|
|
switch (cameraStream->type()) {
|
|
case CameraStream::Type::Mapped:
|
|
/*
|
|
* Mapped streams don't need buffers added to the
|
|
* Request.
|
|
*/
|
|
LOG(HAL, Debug) << ss.str() << " (mapped)";
|
|
continue;
|
|
|
|
case CameraStream::Type::Direct:
|
|
/*
|
|
* Create a libcamera buffer using the dmabuf
|
|
* descriptors of the camera3Buffer for each stream and
|
|
* associate it with the Camera3RequestDescriptor for
|
|
* lifetime management only.
|
|
*/
|
|
buffer = createFrameBuffer(*camera3Buffer.buffer);
|
|
descriptor->frameBuffers_.emplace_back(buffer);
|
|
LOG(HAL, Debug) << ss.str() << " (direct)";
|
|
break;
|
|
|
|
case CameraStream::Type::Internal:
|
|
/*
|
|
* Get the frame buffer from the CameraStream internal
|
|
* buffer pool.
|
|
*
|
|
* The buffer has to be returned to the CameraStream
|
|
* once it has been processed.
|
|
*/
|
|
buffer = cameraStream->getBuffer();
|
|
LOG(HAL, Debug) << ss.str() << " (internal)";
|
|
break;
|
|
}
|
|
|
|
if (!buffer) {
|
|
LOG(HAL, Error) << "Failed to create buffer";
|
|
delete descriptor;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
descriptor->request_->addBuffer(cameraStream->stream(), buffer,
|
|
camera3Buffer.acquire_fence);
|
|
}
|
|
|
|
/*
|
|
* Translate controls from Android to libcamera and queue the request
|
|
* to the CameraWorker thread.
|
|
*/
|
|
int ret = processControls(descriptor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
worker_.queueRequest(descriptor->request_.get());
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::requestComplete(Request *request)
|
|
{
|
|
const Request::BufferMap &buffers = request->buffers();
|
|
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
|
|
std::unique_ptr<CameraMetadata> resultMetadata;
|
|
Camera3RequestDescriptor *descriptor =
|
|
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
|
|
|
|
if (request->status() != Request::RequestComplete) {
|
|
LOG(HAL, Error) << "Request not successfully completed: "
|
|
<< request->status();
|
|
status = CAMERA3_BUFFER_STATUS_ERROR;
|
|
}
|
|
|
|
LOG(HAL, Debug) << "Request " << request->cookie() << " completed with "
|
|
<< descriptor->buffers_.size() << " streams";
|
|
|
|
/*
|
|
* \todo The timestamp used for the metadata is currently always taken
|
|
* from the first buffer (which may be the first stream) in the Request.
|
|
* It might be appropriate to return a 'correct' (as determined by
|
|
* pipeline handlers) timestamp in the Request itself.
|
|
*/
|
|
uint64_t timestamp = buffers.begin()->second->metadata().timestamp;
|
|
resultMetadata = getResultMetadata(*descriptor, timestamp);
|
|
|
|
/* Handle any JPEG compression. */
|
|
for (camera3_stream_buffer_t &buffer : descriptor->buffers_) {
|
|
CameraStream *cameraStream =
|
|
static_cast<CameraStream *>(buffer.stream->priv);
|
|
|
|
if (cameraStream->camera3Stream().format != HAL_PIXEL_FORMAT_BLOB)
|
|
continue;
|
|
|
|
FrameBuffer *src = request->findBuffer(cameraStream->stream());
|
|
if (!src) {
|
|
LOG(HAL, Error) << "Failed to find a source stream buffer";
|
|
continue;
|
|
}
|
|
|
|
int ret = cameraStream->process(*src,
|
|
*buffer.buffer,
|
|
descriptor->settings_,
|
|
resultMetadata.get());
|
|
if (ret) {
|
|
status = CAMERA3_BUFFER_STATUS_ERROR;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Return the FrameBuffer to the CameraStream now that we're
|
|
* done processing it.
|
|
*/
|
|
if (cameraStream->type() == CameraStream::Type::Internal)
|
|
cameraStream->putBuffer(src);
|
|
}
|
|
|
|
/* Prepare to call back the Android camera stack. */
|
|
camera3_capture_result_t captureResult = {};
|
|
captureResult.frame_number = descriptor->frameNumber_;
|
|
captureResult.num_output_buffers = descriptor->buffers_.size();
|
|
for (camera3_stream_buffer_t &buffer : descriptor->buffers_) {
|
|
buffer.acquire_fence = -1;
|
|
buffer.release_fence = -1;
|
|
buffer.status = status;
|
|
}
|
|
captureResult.output_buffers = descriptor->buffers_.data();
|
|
|
|
if (status == CAMERA3_BUFFER_STATUS_OK) {
|
|
notifyShutter(descriptor->frameNumber_, timestamp);
|
|
|
|
captureResult.partial_result = 1;
|
|
captureResult.result = resultMetadata->get();
|
|
}
|
|
|
|
if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
|
|
/* \todo Improve error handling. In case we notify an error
|
|
* because the metadata generation fails, a shutter event has
|
|
* already been notified for this frame number before the error
|
|
* is here signalled. Make sure the error path plays well with
|
|
* the camera stack state machine.
|
|
*/
|
|
notifyError(descriptor->frameNumber_,
|
|
descriptor->buffers_[0].stream);
|
|
}
|
|
|
|
callbacks_->process_capture_result(callbacks_, &captureResult);
|
|
|
|
delete descriptor;
|
|
}
|
|
|
|
std::string CameraDevice::logPrefix() const
|
|
{
|
|
return "'" + camera_->id() + "'";
|
|
}
|
|
|
|
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
|
|
{
|
|
camera3_notify_msg_t notify = {};
|
|
|
|
notify.type = CAMERA3_MSG_SHUTTER;
|
|
notify.message.shutter.frame_number = frameNumber;
|
|
notify.message.shutter.timestamp = timestamp;
|
|
|
|
callbacks_->notify(callbacks_, ¬ify);
|
|
}
|
|
|
|
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
|
|
{
|
|
camera3_notify_msg_t notify = {};
|
|
|
|
/*
|
|
* \todo Report and identify the stream number or configuration to
|
|
* clarify the stream that failed.
|
|
*/
|
|
LOG(HAL, Error) << "Error occurred on frame " << frameNumber << " ("
|
|
<< toPixelFormat(stream->format).toString() << ")";
|
|
|
|
notify.type = CAMERA3_MSG_ERROR;
|
|
notify.message.error.error_stream = stream;
|
|
notify.message.error.frame_number = frameNumber;
|
|
notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
|
|
|
|
callbacks_->notify(callbacks_, ¬ify);
|
|
}
|
|
|
|
/*
|
|
* Produce a set of fixed result metadata.
|
|
*/
|
|
std::unique_ptr<CameraMetadata>
|
|
CameraDevice::getResultMetadata(const Camera3RequestDescriptor &descriptor,
|
|
int64_t timestamp) const
|
|
{
|
|
const ControlList &metadata = descriptor.request_->metadata();
|
|
const CameraMetadata &settings = descriptor.settings_;
|
|
camera_metadata_ro_entry_t entry;
|
|
bool found;
|
|
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 40 entries, 156 bytes
|
|
*
|
|
* Reserve more space for the JPEG metadata set by the post-processor.
|
|
* Currently:
|
|
* ANDROID_JPEG_GPS_COORDINATES (double x 3) = 24 bytes
|
|
* ANDROID_JPEG_GPS_PROCESSING_METHOD (byte x 32) = 32 bytes
|
|
* ANDROID_JPEG_GPS_TIMESTAMP (int64) = 8 bytes
|
|
* ANDROID_JPEG_SIZE (int32_t) = 4 bytes
|
|
* ANDROID_JPEG_QUALITY (byte) = 1 byte
|
|
* ANDROID_JPEG_ORIENTATION (int32_t) = 4 bytes
|
|
* ANDROID_JPEG_THUMBNAIL_QUALITY (byte) = 1 byte
|
|
* ANDROID_JPEG_THUMBNAIL_SIZE (int32 x 2) = 8 bytes
|
|
* Total bytes for JPEG metadata: 82
|
|
*/
|
|
std::unique_ptr<CameraMetadata> resultMetadata =
|
|
std::make_unique<CameraMetadata>(44, 166);
|
|
if (!resultMetadata->isValid()) {
|
|
LOG(HAL, Error) << "Failed to allocate static metadata";
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* \todo The value of the results metadata copied from the settings
|
|
* will have to be passed to the libcamera::Camera and extracted
|
|
* from libcamera::Request::metadata.
|
|
*/
|
|
|
|
uint8_t value = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
&value, 1);
|
|
|
|
value = ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE, &value, 1);
|
|
|
|
int32_t value32 = 0;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
&value32, 1);
|
|
|
|
value = ANDROID_CONTROL_AE_LOCK_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AE_MODE_ON;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_MODE, &value, 1);
|
|
|
|
if (settings.getEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, &entry))
|
|
/*
|
|
* \todo Retrieve the AE FPS range from the libcamera metadata.
|
|
* As libcamera does not support that control, as a temporary
|
|
* workaround return what the framework asked.
|
|
*/
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
|
|
entry.data.i32, 2);
|
|
|
|
value = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
|
|
found = settings.getEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &entry);
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
|
|
found ? entry.data.u8 : &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AE_STATE_CONVERGED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AF_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_MODE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AF_STATE_INACTIVE;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AF_TRIGGER_IDLE;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_TRIGGER, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AWB_MODE_AUTO;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_MODE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AWB_LOCK_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_AWB_STATE_CONVERGED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_CAPTURE_INTENT, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_EFFECT_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_EFFECT_MODE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_MODE_AUTO;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_MODE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_SCENE_MODE_DISABLED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_SCENE_MODE, &value, 1);
|
|
|
|
value = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &value, 1);
|
|
|
|
value = ANDROID_FLASH_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_FLASH_MODE, &value, 1);
|
|
|
|
value = ANDROID_FLASH_STATE_UNAVAILABLE;
|
|
resultMetadata->addEntry(ANDROID_FLASH_STATE, &value, 1);
|
|
|
|
if (settings.getEntry(ANDROID_LENS_APERTURE, &entry))
|
|
resultMetadata->addEntry(ANDROID_LENS_APERTURE, entry.data.f, 1);
|
|
|
|
float focal_length = 1.0;
|
|
resultMetadata->addEntry(ANDROID_LENS_FOCAL_LENGTH, &focal_length, 1);
|
|
|
|
value = ANDROID_LENS_STATE_STATIONARY;
|
|
resultMetadata->addEntry(ANDROID_LENS_STATE, &value, 1);
|
|
|
|
value = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
|
|
&value, 1);
|
|
|
|
value32 = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_TEST_PATTERN_MODE,
|
|
&value32, 1);
|
|
|
|
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
|
|
|
|
value = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
|
|
&value, 1);
|
|
|
|
value = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
|
|
&value, 1);
|
|
|
|
value = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
|
|
&value, 1);
|
|
|
|
value = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
|
|
&value, 1);
|
|
|
|
value = ANDROID_NOISE_REDUCTION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_NOISE_REDUCTION_MODE, &value, 1);
|
|
|
|
/* 33.3 msec */
|
|
const int64_t rolling_shutter_skew = 33300000;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
|
|
&rolling_shutter_skew, 1);
|
|
|
|
/* Add metadata tags reported by libcamera. */
|
|
if (metadata.contains(controls::draft::PipelineDepth)) {
|
|
uint8_t pipeline_depth =
|
|
metadata.get<int32_t>(controls::draft::PipelineDepth);
|
|
resultMetadata->addEntry(ANDROID_REQUEST_PIPELINE_DEPTH,
|
|
&pipeline_depth, 1);
|
|
}
|
|
|
|
if (metadata.contains(controls::ExposureTime)) {
|
|
int64_t exposure = metadata.get(controls::ExposureTime) * 1000ULL;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
|
|
&exposure, 1);
|
|
}
|
|
|
|
if (metadata.contains(controls::ScalerCrop)) {
|
|
Rectangle crop = metadata.get(controls::ScalerCrop);
|
|
int32_t cropRect[] = {
|
|
crop.x, crop.y, static_cast<int32_t>(crop.width),
|
|
static_cast<int32_t>(crop.height),
|
|
};
|
|
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, cropRect, 4);
|
|
}
|
|
|
|
/*
|
|
* Return the result metadata pack even is not valid: get() will return
|
|
* nullptr.
|
|
*/
|
|
if (!resultMetadata->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct result metadata";
|
|
}
|
|
|
|
return resultMetadata;
|
|
}
|