libcamera/src/ipa/rkisp1/algorithms/agc.cpp
Laurent Pinchart d22c0020ef ipa: rkisp1: Register algorithms
To prepare for dynamic instantiation of algorithms from the tuning file,
register the algorithms with the Module class.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
2022-06-29 17:21:12 +03:00

362 lines
12 KiB
C++

/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021-2022, Ideas On Board
*
* agc.cpp - AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>
#include <libcamera/ipa/core_ipa_interface.h>
#include "libipa/histogram.h"
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::rkisp1::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*/
LOG_DEFINE_CATEGORY(RkISP1Agc)
/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kNumStartupFrames = 10;
/* Target value to reach for the top 2% of the histogram */
static constexpr double kEvGainTarget = 0.5;
/*
* Relative luminance target.
*
* It's a number that's chosen so that, when the camera points at a grey
* target, the resulting image brightness is considered right.
*
* \todo Why is the value different between IPU3 and RkISP1 ?
*/
static constexpr double kRelativeLuminanceTarget = 0.4;
Agc::Agc()
: frameCount_(0), numCells_(0), numHistBins_(0), filteredExposure_(0s)
{
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
{
/* Configure the default exposure and gain. */
context.frameContext.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
context.frameContext.agc.exposure = 10ms / context.configuration.sensor.lineDuration;
/*
* According to the RkISP1 documentation:
* - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries,
* - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries.
*/
if (context.configuration.hw.revision < RKISP1_V12) {
numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10;
} else {
numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12;
}
/*
* Define the measurement window for AGC as a centered rectangle
* covering 3/4 of the image width and height.
*/
context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8;
context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8;
context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;
/* \todo Use actual frame index by populating it in the frameContext. */
frameCount_ = 0;
return 0;
}
/**
* \brief Apply a filter on the exposure value to limit the speed of changes
* \param[in] exposureValue The target exposure from the AGC algorithm
*
* The speed of the filter is adaptive, and will produce the target quicker
* during startup, or when the target exposure is within 20% of the most recent
* filter output.
*
* \return The filtered exposure
*/
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
{
double speed = 0.2;
/* Adapt instantly if we are in startup phase. */
if (frameCount_ < kNumStartupFrames)
speed = 1.0;
/*
* If we are close to the desired result, go faster to avoid making
* multiple micro-adjustments.
* \todo Make this customisable?
*/
if (filteredExposure_ < 1.2 * exposureValue &&
filteredExposure_ > 0.8 * exposureValue)
speed = sqrt(speed);
filteredExposure_ = speed * exposureValue +
filteredExposure_ * (1.0 - speed);
LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;
return filteredExposure_;
}
/**
* \brief Estimate the new exposure and gain values
* \param[inout] frameContext The shared IPA frame Context
* \param[in] yGain The gain calculated on the current brightness level
* \param[in] iqMeanGain The gain calculated based on the relative luminance target
*/
void Agc::computeExposure(IPAContext &context, double yGain, double iqMeanGain)
{
IPASessionConfiguration &configuration = context.configuration;
IPAFrameContext &frameContext = context.frameContext;
/* Get the effective exposure and gain applied on the sensor. */
uint32_t exposure = frameContext.sensor.exposure;
double analogueGain = frameContext.sensor.gain;
/* Use the highest of the two gain estimates. */
double evGain = std::max(yGain, iqMeanGain);
utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed;
utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed,
kMaxShutterSpeed);
double minAnalogueGain = std::max(configuration.agc.minAnalogueGain,
kMinAnalogueGain);
double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain,
kMaxAnalogueGain);
/* Consider within 1% of the target as correctly exposed. */
if (utils::abs_diff(evGain, 1.0) < 0.01)
return;
/* extracted from Rpi::Agc::computeTargetExposure. */
/* Calculate the shutter time in seconds. */
utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
/*
* Update the exposure value for the next computation using the values
* of exposure and gain really used by the sensor.
*/
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
<< " Shutter speed " << currentShutter
<< " Gain " << analogueGain
<< " Needed ev gain " << evGain;
/*
* Calculate the current exposure value for the scene as the latest
* exposure value applied multiplied by the new estimated gain.
*/
utils::Duration exposureValue = effectiveExposureValue * evGain;
/* Clamp the exposure value to the min and max authorized. */
utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
exposureValue = std::min(exposureValue, maxTotalExposure);
LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
<< ", maximum is " << maxTotalExposure;
/*
* Divide the exposure value as new exposure and gain values.
* \todo estimate if we need to desaturate
*/
exposureValue = filterExposure(exposureValue);
/*
* Push the shutter time up to the maximum first, and only then
* increase the gain.
*/
utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
minShutterSpeed, maxShutterSpeed);
double stepGain = std::clamp(exposureValue / shutterTime,
minAnalogueGain, maxAnalogueGain);
LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
<< shutterTime << " and "
<< stepGain;
/* Update the estimated exposure and gain. */
frameContext.agc.exposure = shutterTime / configuration.sensor.lineDuration;
frameContext.agc.gain = stepGain;
}
/**
* \brief Estimate the relative luminance of the frame with a given gain
* \param[in] ae The RkISP1 statistics and ISP results
* \param[in] gain The gain to apply to the frame
*
* This function estimates the average relative luminance of the frame that
* would be output by the sensor if an additional \a gain was applied.
*
* The estimation is based on the AE statistics for the current frame. Y
* averages for all cells are first multiplied by the gain, and then saturated
* to approximate the sensor behaviour at high brightness values. The
* approximation is quite rough, as it doesn't take into account non-linearities
* when approaching saturation. In this case, saturating after the conversion to
* YUV doesn't take into account the fact that the R, G and B components
* contribute differently to the relative luminance.
*
* \todo Have a dedicated YUV algorithm ?
*
* The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
* theoretical perfect reflector of 100% reference white.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Relative_luminance
*
* \return The relative luminance
*/
double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae,
double gain)
{
double ySum = 0.0;
/* Sum the averages, saturated to 255. */
for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++)
ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0);
/* \todo Weight with the AWB gains */
return ySum / numCells_ / 255;
}
/**
* \brief Estimate the mean value of the top 2% of the histogram
* \param[in] hist The histogram statistics computed by the ImgU
* \return The mean value of the top 2% of the histogram
*/
double Agc::measureBrightness(const rkisp1_cif_isp_hist_stat *hist) const
{
Histogram histogram{ Span<const uint32_t>(hist->hist_bins, numHistBins_) };
/* Estimate the quantile mean of the top 2% of the histogram. */
return histogram.interQuantileMean(0.98, 1.0);
}
/**
* \brief Process RkISP1 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] stats The RKISP1 statistics and ISP results
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context,
[[maybe_unused]] IPAFrameContext *frameContext,
const rkisp1_stat_buffer *stats)
{
const rkisp1_cif_isp_stat *params = &stats->params;
ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
const rkisp1_cif_isp_ae_stat *ae = &params->ae;
const rkisp1_cif_isp_hist_stat *hist = &params->hist;
double iqMean = measureBrightness(hist);
double iqMeanGain = kEvGainTarget * numHistBins_ / iqMean;
/*
* Estimate the gain needed to achieve a relative luminance target. To
* account for non-linearity caused by saturation, the value needs to be
* estimated in an iterative process, as multiplying by a gain will not
* increase the relative luminance by the same factor if some image
* regions are saturated.
*/
double yGain = 1.0;
double yTarget = kRelativeLuminanceTarget;
for (unsigned int i = 0; i < 8; i++) {
double yValue = estimateLuminance(ae, yGain);
double extra_gain = std::min(10.0, yTarget / (yValue + .001));
yGain *= extra_gain;
LOG(RkISP1Agc, Debug) << "Y value: " << yValue
<< ", Y target: " << yTarget
<< ", gives gain " << yGain;
if (extra_gain < 1.01)
break;
}
computeExposure(context, yGain, iqMeanGain);
frameCount_++;
}
/**
* \copydoc libcamera::ipa::Algorithm::prepare
*/
void Agc::prepare(IPAContext &context, rkisp1_params_cfg *params)
{
if (context.frameContext.frameCount > 0)
return;
/* Configure the measurement window. */
params->meas.aec_config.meas_window = context.configuration.agc.measureWindow;
/* Use a continuous method for measure. */
params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0;
/* Estimate Y as (R + G + B) x (85/256). */
params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1;
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC;
params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC;
/* Configure histogram. */
params->meas.hst_config.meas_window = context.configuration.agc.measureWindow;
/* Produce the luminance histogram. */
params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM;
/* Set an average weighted histogram. */
for (unsigned int histBin = 0; histBin < numHistBins_; histBin++)
params->meas.hst_config.hist_weight[histBin] = 1;
/* Step size can't be less than 3. */
params->meas.hst_config.histogram_predivider = 4;
/* Update the configuration for histogram. */
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST;
/* Enable the histogram measure unit. */
params->module_ens |= RKISP1_CIF_ISP_MODULE_HST;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
}
REGISTER_IPA_ALGORITHM(Agc, "Agc")
} /* namespace ipa::rkisp1::algorithms */
} /* namespace libcamera */