Remove variable shadowing within the pipeline handler implementations. Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: Niklas Söderlund <niklas.soderlund@ragnatech.se> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
1680 lines
48 KiB
C++
1680 lines
48 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
|
/*
|
|
* Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd.
|
|
*
|
|
* raspberrypi.cpp - Pipeline handler for Raspberry Pi devices
|
|
*/
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <sys/mman.h>
|
|
#include <unordered_set>
|
|
|
|
#include <libcamera/camera.h>
|
|
#include <libcamera/control_ids.h>
|
|
#include <libcamera/file_descriptor.h>
|
|
#include <libcamera/formats.h>
|
|
#include <libcamera/ipa/raspberrypi.h>
|
|
#include <libcamera/logging.h>
|
|
#include <libcamera/property_ids.h>
|
|
#include <libcamera/request.h>
|
|
|
|
#include <linux/videodev2.h>
|
|
|
|
#include "libcamera/internal/bayer_format.h"
|
|
#include "libcamera/internal/camera_sensor.h"
|
|
#include "libcamera/internal/device_enumerator.h"
|
|
#include "libcamera/internal/ipa_manager.h"
|
|
#include "libcamera/internal/media_device.h"
|
|
#include "libcamera/internal/pipeline_handler.h"
|
|
#include "libcamera/internal/utils.h"
|
|
#include "libcamera/internal/v4l2_controls.h"
|
|
#include "libcamera/internal/v4l2_videodevice.h"
|
|
|
|
#include "dma_heaps.h"
|
|
#include "rpi_stream.h"
|
|
#include "staggered_ctrl.h"
|
|
|
|
namespace libcamera {
|
|
|
|
LOG_DEFINE_CATEGORY(RPI)
|
|
|
|
namespace {
|
|
|
|
bool isRaw(PixelFormat &pixFmt)
|
|
{
|
|
/*
|
|
* The isRaw test might be redundant right now the pipeline handler only
|
|
* supports RAW sensors. Leave it in for now, just as a sanity check.
|
|
*/
|
|
const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
|
|
if (!info.isValid())
|
|
return false;
|
|
|
|
return info.colourEncoding == PixelFormatInfo::ColourEncodingRAW;
|
|
}
|
|
|
|
double scoreFormat(double desired, double actual)
|
|
{
|
|
double score = desired - actual;
|
|
/* Smaller desired dimensions are preferred. */
|
|
if (score < 0.0)
|
|
score = (-score) / 8;
|
|
/* Penalise non-exact matches. */
|
|
if (actual != desired)
|
|
score *= 2;
|
|
|
|
return score;
|
|
}
|
|
|
|
V4L2DeviceFormat findBestMode(V4L2VideoDevice::Formats &formatsMap,
|
|
const Size &req)
|
|
{
|
|
double bestScore = std::numeric_limits<double>::max(), score;
|
|
V4L2DeviceFormat bestMode = {};
|
|
|
|
#define PENALTY_AR 1500.0
|
|
#define PENALTY_8BIT 2000.0
|
|
#define PENALTY_10BIT 1000.0
|
|
#define PENALTY_12BIT 0.0
|
|
#define PENALTY_UNPACKED 500.0
|
|
|
|
/* Calculate the closest/best mode from the user requested size. */
|
|
for (const auto &iter : formatsMap) {
|
|
V4L2PixelFormat v4l2Format = iter.first;
|
|
const PixelFormatInfo &info = PixelFormatInfo::info(v4l2Format);
|
|
|
|
for (const SizeRange &sz : iter.second) {
|
|
double modeWidth = sz.contains(req) ? req.width : sz.max.width;
|
|
double modeHeight = sz.contains(req) ? req.height : sz.max.height;
|
|
double reqAr = static_cast<double>(req.width) / req.height;
|
|
double modeAr = modeWidth / modeHeight;
|
|
|
|
/* Score the dimensions for closeness. */
|
|
score = scoreFormat(req.width, modeWidth);
|
|
score += scoreFormat(req.height, modeHeight);
|
|
score += PENALTY_AR * scoreFormat(reqAr, modeAr);
|
|
|
|
/* Add any penalties... this is not an exact science! */
|
|
if (!info.packed)
|
|
score += PENALTY_UNPACKED;
|
|
|
|
if (info.bitsPerPixel == 12)
|
|
score += PENALTY_12BIT;
|
|
else if (info.bitsPerPixel == 10)
|
|
score += PENALTY_10BIT;
|
|
else if (info.bitsPerPixel == 8)
|
|
score += PENALTY_8BIT;
|
|
|
|
if (score <= bestScore) {
|
|
bestScore = score;
|
|
bestMode.fourcc = v4l2Format;
|
|
bestMode.size = Size(modeWidth, modeHeight);
|
|
}
|
|
|
|
LOG(RPI, Info) << "Mode: " << modeWidth << "x" << modeHeight
|
|
<< " fmt " << v4l2Format.toString()
|
|
<< " Score: " << score
|
|
<< " (best " << bestScore << ")";
|
|
}
|
|
}
|
|
|
|
return bestMode;
|
|
}
|
|
|
|
enum class Unicam : unsigned int { Image, Embedded };
|
|
enum class Isp : unsigned int { Input, Output0, Output1, Stats };
|
|
|
|
} /* namespace */
|
|
|
|
class RPiCameraData : public CameraData
|
|
{
|
|
public:
|
|
RPiCameraData(PipelineHandler *pipe)
|
|
: CameraData(pipe), sensor_(nullptr), state_(State::Stopped),
|
|
supportsFlips_(false), flipsAlterBayerOrder_(false),
|
|
dropFrameCount_(0), ispOutputCount_(0)
|
|
{
|
|
}
|
|
|
|
void frameStarted(uint32_t sequence);
|
|
|
|
int loadIPA();
|
|
int configureIPA(const CameraConfiguration *config);
|
|
|
|
void queueFrameAction(unsigned int frame, const IPAOperationData &action);
|
|
|
|
/* bufferComplete signal handlers. */
|
|
void unicamBufferDequeue(FrameBuffer *buffer);
|
|
void ispInputDequeue(FrameBuffer *buffer);
|
|
void ispOutputDequeue(FrameBuffer *buffer);
|
|
|
|
void clearIncompleteRequests();
|
|
void handleStreamBuffer(FrameBuffer *buffer, RPi::Stream *stream);
|
|
void handleExternalBuffer(FrameBuffer *buffer, RPi::Stream *stream);
|
|
void handleState();
|
|
|
|
CameraSensor *sensor_;
|
|
/* Array of Unicam and ISP device streams and associated buffers/streams. */
|
|
RPi::Device<Unicam, 2> unicam_;
|
|
RPi::Device<Isp, 4> isp_;
|
|
/* The vector below is just for convenience when iterating over all streams. */
|
|
std::vector<RPi::Stream *> streams_;
|
|
/* Stores the ids of the buffers mapped in the IPA. */
|
|
std::unordered_set<unsigned int> ipaBuffers_;
|
|
|
|
/* DMAHEAP allocation helper. */
|
|
RPi::DmaHeap dmaHeap_;
|
|
FileDescriptor lsTable_;
|
|
|
|
RPi::StaggeredCtrl staggeredCtrl_;
|
|
uint32_t expectedSequence_;
|
|
bool sensorMetadata_;
|
|
|
|
/*
|
|
* All the functions in this class are called from a single calling
|
|
* thread. So, we do not need to have any mutex to protect access to any
|
|
* of the variables below.
|
|
*/
|
|
enum class State { Stopped, Idle, Busy, IpaComplete };
|
|
State state_;
|
|
std::queue<FrameBuffer *> bayerQueue_;
|
|
std::queue<FrameBuffer *> embeddedQueue_;
|
|
std::deque<Request *> requestQueue_;
|
|
|
|
/*
|
|
* Manage horizontal and vertical flips supported (or not) by the
|
|
* sensor. Also store the "native" Bayer order (that is, with no
|
|
* transforms applied).
|
|
*/
|
|
bool supportsFlips_;
|
|
bool flipsAlterBayerOrder_;
|
|
BayerFormat::Order nativeBayerOrder_;
|
|
|
|
unsigned int dropFrameCount_;
|
|
|
|
private:
|
|
void checkRequestCompleted();
|
|
void tryRunPipeline();
|
|
void tryFlushQueues();
|
|
FrameBuffer *updateQueue(std::queue<FrameBuffer *> &q, uint64_t timestamp,
|
|
RPi::Stream *stream);
|
|
|
|
unsigned int ispOutputCount_;
|
|
};
|
|
|
|
class RPiCameraConfiguration : public CameraConfiguration
|
|
{
|
|
public:
|
|
RPiCameraConfiguration(const RPiCameraData *data);
|
|
|
|
Status validate() override;
|
|
|
|
/* Cache the combinedTransform_ that will be applied to the sensor */
|
|
Transform combinedTransform_;
|
|
|
|
private:
|
|
const RPiCameraData *data_;
|
|
};
|
|
|
|
class PipelineHandlerRPi : public PipelineHandler
|
|
{
|
|
public:
|
|
PipelineHandlerRPi(CameraManager *manager);
|
|
|
|
CameraConfiguration *generateConfiguration(Camera *camera, const StreamRoles &roles) override;
|
|
int configure(Camera *camera, CameraConfiguration *config) override;
|
|
|
|
int exportFrameBuffers(Camera *camera, Stream *stream,
|
|
std::vector<std::unique_ptr<FrameBuffer>> *buffers) override;
|
|
|
|
int start(Camera *camera) override;
|
|
void stop(Camera *camera) override;
|
|
|
|
int queueRequestDevice(Camera *camera, Request *request) override;
|
|
|
|
bool match(DeviceEnumerator *enumerator) override;
|
|
|
|
private:
|
|
RPiCameraData *cameraData(const Camera *camera)
|
|
{
|
|
return static_cast<RPiCameraData *>(PipelineHandler::cameraData(camera));
|
|
}
|
|
|
|
int queueAllBuffers(Camera *camera);
|
|
int prepareBuffers(Camera *camera);
|
|
void freeBuffers(Camera *camera);
|
|
void mapBuffers(Camera *camera, const RPi::BufferMap &buffers, unsigned int mask);
|
|
|
|
MediaDevice *unicam_;
|
|
MediaDevice *isp_;
|
|
};
|
|
|
|
RPiCameraConfiguration::RPiCameraConfiguration(const RPiCameraData *data)
|
|
: CameraConfiguration(), data_(data)
|
|
{
|
|
}
|
|
|
|
CameraConfiguration::Status RPiCameraConfiguration::validate()
|
|
{
|
|
Status status = Valid;
|
|
|
|
if (config_.empty())
|
|
return Invalid;
|
|
|
|
/*
|
|
* What if the platform has a non-90 degree rotation? We can't even
|
|
* "adjust" the configuration and carry on. Alternatively, raising an
|
|
* error means the platform can never run. Let's just print a warning
|
|
* and continue regardless; the rotation is effectively set to zero.
|
|
*/
|
|
int32_t rotation = data_->sensor_->properties().get(properties::Rotation);
|
|
bool success;
|
|
Transform rotationTransform = transformFromRotation(rotation, &success);
|
|
if (!success)
|
|
LOG(RPI, Warning) << "Invalid rotation of " << rotation
|
|
<< " degrees - ignoring";
|
|
Transform combined = transform * rotationTransform;
|
|
|
|
/*
|
|
* We combine the platform and user transform, but must "adjust away"
|
|
* any combined result that includes a transform, as we can't do those.
|
|
* In this case, flipping only the transpose bit is helpful to
|
|
* applications - they either get the transform they requested, or have
|
|
* to do a simple transpose themselves (they don't have to worry about
|
|
* the other possible cases).
|
|
*/
|
|
if (!!(combined & Transform::Transpose)) {
|
|
/*
|
|
* Flipping the transpose bit in "transform" flips it in the
|
|
* combined result too (as it's the last thing that happens),
|
|
* which is of course clearing it.
|
|
*/
|
|
transform ^= Transform::Transpose;
|
|
combined &= ~Transform::Transpose;
|
|
status = Adjusted;
|
|
}
|
|
|
|
/*
|
|
* We also check if the sensor doesn't do h/vflips at all, in which
|
|
* case we clear them, and the application will have to do everything.
|
|
*/
|
|
if (!data_->supportsFlips_ && !!combined) {
|
|
/*
|
|
* If the sensor can do no transforms, then combined must be
|
|
* changed to the identity. The only user transform that gives
|
|
* rise to this the inverse of the rotation. (Recall that
|
|
* combined = transform * rotationTransform.)
|
|
*/
|
|
transform = -rotationTransform;
|
|
combined = Transform::Identity;
|
|
status = Adjusted;
|
|
}
|
|
|
|
/*
|
|
* Store the final combined transform that configure() will need to
|
|
* apply to the sensor to save us working it out again.
|
|
*/
|
|
combinedTransform_ = combined;
|
|
|
|
unsigned int rawCount = 0, outCount = 0, count = 0, maxIndex = 0;
|
|
std::pair<int, Size> outSize[2];
|
|
Size maxSize;
|
|
for (StreamConfiguration &cfg : config_) {
|
|
if (isRaw(cfg.pixelFormat)) {
|
|
/*
|
|
* Calculate the best sensor mode we can use based on
|
|
* the user request.
|
|
*/
|
|
V4L2VideoDevice::Formats fmts = data_->unicam_[Unicam::Image].dev()->formats();
|
|
V4L2DeviceFormat sensorFormat = findBestMode(fmts, cfg.size);
|
|
int ret = data_->unicam_[Unicam::Image].dev()->tryFormat(&sensorFormat);
|
|
if (ret)
|
|
return Invalid;
|
|
|
|
/*
|
|
* Some sensors change their Bayer order when they are
|
|
* h-flipped or v-flipped, according to the transform.
|
|
* If this one does, we must advertise the transformed
|
|
* Bayer order in the raw stream. Note how we must
|
|
* fetch the "native" (i.e. untransformed) Bayer order,
|
|
* because the sensor may currently be flipped!
|
|
*/
|
|
V4L2PixelFormat fourcc = sensorFormat.fourcc;
|
|
if (data_->flipsAlterBayerOrder_) {
|
|
BayerFormat bayer(fourcc);
|
|
bayer.order = data_->nativeBayerOrder_;
|
|
bayer = bayer.transform(combined);
|
|
fourcc = bayer.toV4L2PixelFormat();
|
|
}
|
|
|
|
PixelFormat sensorPixFormat = fourcc.toPixelFormat();
|
|
if (cfg.size != sensorFormat.size ||
|
|
cfg.pixelFormat != sensorPixFormat) {
|
|
cfg.size = sensorFormat.size;
|
|
cfg.pixelFormat = sensorPixFormat;
|
|
status = Adjusted;
|
|
}
|
|
|
|
cfg.stride = sensorFormat.planes[0].bpl;
|
|
cfg.frameSize = sensorFormat.planes[0].size;
|
|
|
|
rawCount++;
|
|
} else {
|
|
outSize[outCount] = std::make_pair(count, cfg.size);
|
|
/* Record the largest resolution for fixups later. */
|
|
if (maxSize < cfg.size) {
|
|
maxSize = cfg.size;
|
|
maxIndex = outCount;
|
|
}
|
|
outCount++;
|
|
}
|
|
|
|
count++;
|
|
|
|
/* Can only output 1 RAW stream, or 2 YUV/RGB streams. */
|
|
if (rawCount > 1 || outCount > 2) {
|
|
LOG(RPI, Error) << "Invalid number of streams requested";
|
|
return Invalid;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now do any fixups needed. For the two ISP outputs, one stream must be
|
|
* equal or smaller than the other in all dimensions.
|
|
*/
|
|
for (unsigned int i = 0; i < outCount; i++) {
|
|
outSize[i].second.width = std::min(outSize[i].second.width,
|
|
maxSize.width);
|
|
outSize[i].second.height = std::min(outSize[i].second.height,
|
|
maxSize.height);
|
|
|
|
if (config_.at(outSize[i].first).size != outSize[i].second) {
|
|
config_.at(outSize[i].first).size = outSize[i].second;
|
|
status = Adjusted;
|
|
}
|
|
|
|
/*
|
|
* Also validate the correct pixel formats here.
|
|
* Note that Output0 and Output1 support a different
|
|
* set of formats.
|
|
*
|
|
* Output 0 must be for the largest resolution. We will
|
|
* have that fixed up in the code above.
|
|
*
|
|
*/
|
|
StreamConfiguration &cfg = config_.at(outSize[i].first);
|
|
PixelFormat &cfgPixFmt = cfg.pixelFormat;
|
|
V4L2VideoDevice *dev;
|
|
|
|
if (i == maxIndex)
|
|
dev = data_->isp_[Isp::Output0].dev();
|
|
else
|
|
dev = data_->isp_[Isp::Output1].dev();
|
|
|
|
V4L2VideoDevice::Formats fmts = dev->formats();
|
|
|
|
if (fmts.find(V4L2PixelFormat::fromPixelFormat(cfgPixFmt, false)) == fmts.end()) {
|
|
/* If we cannot find a native format, use a default one. */
|
|
cfgPixFmt = formats::NV12;
|
|
status = Adjusted;
|
|
}
|
|
|
|
V4L2DeviceFormat format = {};
|
|
format.fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
|
|
format.size = cfg.size;
|
|
|
|
int ret = dev->tryFormat(&format);
|
|
if (ret)
|
|
return Invalid;
|
|
|
|
cfg.stride = format.planes[0].bpl;
|
|
cfg.frameSize = format.planes[0].size;
|
|
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
PipelineHandlerRPi::PipelineHandlerRPi(CameraManager *manager)
|
|
: PipelineHandler(manager), unicam_(nullptr), isp_(nullptr)
|
|
{
|
|
}
|
|
|
|
CameraConfiguration *PipelineHandlerRPi::generateConfiguration(Camera *camera,
|
|
const StreamRoles &roles)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
CameraConfiguration *config = new RPiCameraConfiguration(data);
|
|
V4L2DeviceFormat sensorFormat;
|
|
unsigned int bufferCount;
|
|
PixelFormat pixelFormat;
|
|
V4L2VideoDevice::Formats fmts;
|
|
Size size;
|
|
|
|
if (roles.empty())
|
|
return config;
|
|
|
|
unsigned int rawCount = 0;
|
|
unsigned int outCount = 0;
|
|
for (const StreamRole role : roles) {
|
|
switch (role) {
|
|
case StreamRole::Raw:
|
|
size = data->sensor_->resolution();
|
|
fmts = data->unicam_[Unicam::Image].dev()->formats();
|
|
sensorFormat = findBestMode(fmts, size);
|
|
pixelFormat = sensorFormat.fourcc.toPixelFormat();
|
|
ASSERT(pixelFormat.isValid());
|
|
bufferCount = 2;
|
|
rawCount++;
|
|
break;
|
|
|
|
case StreamRole::StillCapture:
|
|
fmts = data->isp_[Isp::Output0].dev()->formats();
|
|
pixelFormat = formats::NV12;
|
|
/* Return the largest sensor resolution. */
|
|
size = data->sensor_->resolution();
|
|
bufferCount = 1;
|
|
outCount++;
|
|
break;
|
|
|
|
case StreamRole::VideoRecording:
|
|
fmts = data->isp_[Isp::Output0].dev()->formats();
|
|
pixelFormat = formats::NV12;
|
|
size = { 1920, 1080 };
|
|
bufferCount = 4;
|
|
outCount++;
|
|
break;
|
|
|
|
case StreamRole::Viewfinder:
|
|
fmts = data->isp_[Isp::Output0].dev()->formats();
|
|
pixelFormat = formats::ARGB8888;
|
|
size = { 800, 600 };
|
|
bufferCount = 4;
|
|
outCount++;
|
|
break;
|
|
|
|
default:
|
|
LOG(RPI, Error) << "Requested stream role not supported: "
|
|
<< role;
|
|
delete config;
|
|
return nullptr;
|
|
}
|
|
|
|
if (rawCount > 1 || outCount > 2) {
|
|
LOG(RPI, Error) << "Invalid stream roles requested";
|
|
delete config;
|
|
return nullptr;
|
|
}
|
|
|
|
/* Translate the V4L2PixelFormat to PixelFormat. */
|
|
std::map<PixelFormat, std::vector<SizeRange>> deviceFormats;
|
|
for (const auto &format : fmts) {
|
|
PixelFormat pf = format.first.toPixelFormat();
|
|
if (pf.isValid())
|
|
deviceFormats[pf] = format.second;
|
|
}
|
|
|
|
/* Add the stream format based on the device node used for the use case. */
|
|
StreamFormats formats(deviceFormats);
|
|
StreamConfiguration cfg(formats);
|
|
cfg.size = size;
|
|
cfg.pixelFormat = pixelFormat;
|
|
cfg.bufferCount = bufferCount;
|
|
config->addConfiguration(cfg);
|
|
}
|
|
|
|
config->validate();
|
|
|
|
return config;
|
|
}
|
|
|
|
int PipelineHandlerRPi::configure(Camera *camera, CameraConfiguration *config)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
int ret;
|
|
|
|
/* Start by resetting the Unicam and ISP stream states. */
|
|
for (auto const stream : data->streams_)
|
|
stream->reset();
|
|
|
|
Size maxSize, sensorSize;
|
|
unsigned int maxIndex = 0;
|
|
bool rawStream = false;
|
|
|
|
/*
|
|
* Look for the RAW stream (if given) size as well as the largest
|
|
* ISP output size.
|
|
*/
|
|
for (unsigned i = 0; i < config->size(); i++) {
|
|
StreamConfiguration &cfg = config->at(i);
|
|
|
|
if (isRaw(cfg.pixelFormat)) {
|
|
/*
|
|
* If we have been given a RAW stream, use that size
|
|
* for setting up the sensor.
|
|
*/
|
|
sensorSize = cfg.size;
|
|
rawStream = true;
|
|
} else {
|
|
if (cfg.size > maxSize) {
|
|
maxSize = config->at(i).size;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* First calculate the best sensor mode we can use based on the user request. */
|
|
V4L2VideoDevice::Formats fmts = data->unicam_[Unicam::Image].dev()->formats();
|
|
V4L2DeviceFormat sensorFormat = findBestMode(fmts, rawStream ? sensorSize : maxSize);
|
|
|
|
/*
|
|
* Unicam image output format. The ISP input format gets set at start,
|
|
* just in case we have swapped bayer orders due to flips.
|
|
*/
|
|
ret = data->unicam_[Unicam::Image].dev()->setFormat(&sensorFormat);
|
|
if (ret)
|
|
return ret;
|
|
|
|
LOG(RPI, Info) << "Sensor: " << camera->id()
|
|
<< " - Selected mode: " << sensorFormat.toString();
|
|
|
|
/*
|
|
* This format may be reset on start() if the bayer order has changed
|
|
* because of flips in the sensor.
|
|
*/
|
|
ret = data->isp_[Isp::Input].dev()->setFormat(&sensorFormat);
|
|
|
|
/*
|
|
* See which streams are requested, and route the user
|
|
* StreamConfiguration appropriately.
|
|
*/
|
|
V4L2DeviceFormat format = {};
|
|
for (unsigned i = 0; i < config->size(); i++) {
|
|
StreamConfiguration &cfg = config->at(i);
|
|
|
|
if (isRaw(cfg.pixelFormat)) {
|
|
cfg.setStream(&data->unicam_[Unicam::Image]);
|
|
/*
|
|
* We must set both Unicam streams as external, even
|
|
* though the application may only request RAW frames.
|
|
* This is because we match timestamps on both streams
|
|
* to synchronise buffers.
|
|
*/
|
|
data->unicam_[Unicam::Image].setExternal(true);
|
|
data->unicam_[Unicam::Embedded].setExternal(true);
|
|
continue;
|
|
}
|
|
|
|
if (i == maxIndex) {
|
|
/* ISP main output format. */
|
|
V4L2VideoDevice *dev = data->isp_[Isp::Output0].dev();
|
|
V4L2PixelFormat fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
|
|
format.size = cfg.size;
|
|
format.fourcc = fourcc;
|
|
|
|
ret = dev->setFormat(&format);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
if (format.size != cfg.size || format.fourcc != fourcc) {
|
|
LOG(RPI, Error)
|
|
<< "Failed to set format on ISP capture0 device: "
|
|
<< format.toString();
|
|
return -EINVAL;
|
|
}
|
|
|
|
cfg.setStream(&data->isp_[Isp::Output0]);
|
|
data->isp_[Isp::Output0].setExternal(true);
|
|
}
|
|
|
|
/*
|
|
* ISP second output format. This fallthrough means that if a
|
|
* second output stream has not been configured, we simply use
|
|
* the Output0 configuration.
|
|
*/
|
|
V4L2VideoDevice *dev = data->isp_[Isp::Output1].dev();
|
|
format.fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
|
|
format.size = cfg.size;
|
|
|
|
ret = dev->setFormat(&format);
|
|
if (ret) {
|
|
LOG(RPI, Error)
|
|
<< "Failed to set format on ISP capture1 device: "
|
|
<< format.toString();
|
|
return ret;
|
|
}
|
|
/*
|
|
* If we have not yet provided a stream for this config, it
|
|
* means this is to be routed from Output1.
|
|
*/
|
|
if (!cfg.stream()) {
|
|
cfg.setStream(&data->isp_[Isp::Output1]);
|
|
data->isp_[Isp::Output1].setExternal(true);
|
|
}
|
|
}
|
|
|
|
/* ISP statistics output format. */
|
|
format = {};
|
|
format.fourcc = V4L2PixelFormat(V4L2_META_FMT_BCM2835_ISP_STATS);
|
|
ret = data->isp_[Isp::Stats].dev()->setFormat(&format);
|
|
if (ret) {
|
|
LOG(RPI, Error) << "Failed to set format on ISP stats stream: "
|
|
<< format.toString();
|
|
return ret;
|
|
}
|
|
|
|
/* Unicam embedded data output format. */
|
|
format = {};
|
|
format.fourcc = V4L2PixelFormat(V4L2_META_FMT_SENSOR_DATA);
|
|
LOG(RPI, Debug) << "Setting embedded data format.";
|
|
ret = data->unicam_[Unicam::Embedded].dev()->setFormat(&format);
|
|
if (ret) {
|
|
LOG(RPI, Error) << "Failed to set format on Unicam embedded: "
|
|
<< format.toString();
|
|
return ret;
|
|
}
|
|
|
|
/* Adjust aspect ratio by providing crops on the input image. */
|
|
Rectangle crop{ 0, 0, sensorFormat.size };
|
|
|
|
int ar = maxSize.height * sensorFormat.size.width - maxSize.width * sensorFormat.size.height;
|
|
if (ar > 0)
|
|
crop.width = maxSize.width * sensorFormat.size.height / maxSize.height;
|
|
else if (ar < 0)
|
|
crop.height = maxSize.height * sensorFormat.size.width / maxSize.width;
|
|
|
|
crop.width &= ~1;
|
|
crop.height &= ~1;
|
|
|
|
crop.x = (sensorFormat.size.width - crop.width) >> 1;
|
|
crop.y = (sensorFormat.size.height - crop.height) >> 1;
|
|
data->isp_[Isp::Input].dev()->setSelection(V4L2_SEL_TGT_CROP, &crop);
|
|
|
|
ret = data->configureIPA(config);
|
|
if (ret)
|
|
LOG(RPI, Error) << "Failed to configure the IPA: " << ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int PipelineHandlerRPi::exportFrameBuffers([[maybe_unused]] Camera *camera, Stream *stream,
|
|
std::vector<std::unique_ptr<FrameBuffer>> *buffers)
|
|
{
|
|
RPi::Stream *s = static_cast<RPi::Stream *>(stream);
|
|
unsigned int count = stream->configuration().bufferCount;
|
|
int ret = s->dev()->exportBuffers(count, buffers);
|
|
|
|
s->setExportedBuffers(buffers);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int PipelineHandlerRPi::start(Camera *camera)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
int ret;
|
|
|
|
/* Allocate buffers for internal pipeline usage. */
|
|
ret = prepareBuffers(camera);
|
|
if (ret) {
|
|
LOG(RPI, Error) << "Failed to allocate buffers";
|
|
stop(camera);
|
|
return ret;
|
|
}
|
|
|
|
ret = queueAllBuffers(camera);
|
|
if (ret) {
|
|
LOG(RPI, Error) << "Failed to queue buffers";
|
|
stop(camera);
|
|
return ret;
|
|
}
|
|
|
|
/* Start the IPA. */
|
|
ret = data->ipa_->start();
|
|
if (ret) {
|
|
LOG(RPI, Error)
|
|
<< "Failed to start IPA for " << camera->id();
|
|
stop(camera);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* IPA configure may have changed the sensor flips - hence the bayer
|
|
* order. Get the sensor format and set the ISP input now.
|
|
*/
|
|
V4L2DeviceFormat sensorFormat;
|
|
data->unicam_[Unicam::Image].dev()->getFormat(&sensorFormat);
|
|
ret = data->isp_[Isp::Input].dev()->setFormat(&sensorFormat);
|
|
if (ret) {
|
|
stop(camera);
|
|
return ret;
|
|
}
|
|
|
|
/* Enable SOF event generation. */
|
|
data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(true);
|
|
|
|
/*
|
|
* Write the last set of gain and exposure values to the camera before
|
|
* starting. First check that the staggered ctrl has been initialised
|
|
* by configure().
|
|
*/
|
|
ASSERT(data->staggeredCtrl_);
|
|
data->staggeredCtrl_.reset();
|
|
data->staggeredCtrl_.write();
|
|
data->expectedSequence_ = 0;
|
|
|
|
data->state_ = RPiCameraData::State::Idle;
|
|
|
|
/* Start all streams. */
|
|
for (auto const stream : data->streams_) {
|
|
ret = stream->dev()->streamOn();
|
|
if (ret) {
|
|
stop(camera);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void PipelineHandlerRPi::stop(Camera *camera)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
|
|
data->state_ = RPiCameraData::State::Stopped;
|
|
|
|
/* Disable SOF event generation. */
|
|
data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(false);
|
|
|
|
/* This also stops the streams. */
|
|
data->clearIncompleteRequests();
|
|
data->bayerQueue_ = {};
|
|
data->embeddedQueue_ = {};
|
|
|
|
/* Stop the IPA. */
|
|
data->ipa_->stop();
|
|
|
|
freeBuffers(camera);
|
|
}
|
|
|
|
int PipelineHandlerRPi::queueRequestDevice(Camera *camera, Request *request)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
|
|
if (data->state_ == RPiCameraData::State::Stopped)
|
|
return -EINVAL;
|
|
|
|
LOG(RPI, Debug) << "queueRequestDevice: New request.";
|
|
|
|
/* Push all buffers supplied in the Request to the respective streams. */
|
|
for (auto stream : data->streams_) {
|
|
if (!stream->isExternal())
|
|
continue;
|
|
|
|
FrameBuffer *buffer = request->findBuffer(stream);
|
|
if (buffer && stream->getBufferId(buffer) == -1) {
|
|
/*
|
|
* This buffer is not recognised, so it must have been allocated
|
|
* outside the v4l2 device. Store it in the stream buffer list
|
|
* so we can track it.
|
|
*/
|
|
stream->setExternalBuffer(buffer);
|
|
}
|
|
/*
|
|
* If no buffer is provided by the request for this stream, we
|
|
* queue a nullptr to the stream to signify that it must use an
|
|
* internally allocated buffer for this capture request. This
|
|
* buffer will not be given back to the application, but is used
|
|
* to support the internal pipeline flow.
|
|
*
|
|
* The below queueBuffer() call will do nothing if there are not
|
|
* enough internal buffers allocated, but this will be handled by
|
|
* queuing the request for buffers in the RPiStream object.
|
|
*/
|
|
int ret = stream->queueBuffer(buffer);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Push the request to the back of the queue. */
|
|
data->requestQueue_.push_back(request);
|
|
data->handleState();
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool PipelineHandlerRPi::match(DeviceEnumerator *enumerator)
|
|
{
|
|
DeviceMatch unicam("unicam");
|
|
DeviceMatch isp("bcm2835-isp");
|
|
|
|
unicam.add("unicam-embedded");
|
|
unicam.add("unicam-image");
|
|
|
|
isp.add("bcm2835-isp0-output0"); /* Input */
|
|
isp.add("bcm2835-isp0-capture1"); /* Output 0 */
|
|
isp.add("bcm2835-isp0-capture2"); /* Output 1 */
|
|
isp.add("bcm2835-isp0-capture3"); /* Stats */
|
|
|
|
unicam_ = acquireMediaDevice(enumerator, unicam);
|
|
if (!unicam_)
|
|
return false;
|
|
|
|
isp_ = acquireMediaDevice(enumerator, isp);
|
|
if (!isp_)
|
|
return false;
|
|
|
|
std::unique_ptr<RPiCameraData> data = std::make_unique<RPiCameraData>(this);
|
|
if (!data->dmaHeap_.isValid())
|
|
return false;
|
|
|
|
/* Locate and open the unicam video streams. */
|
|
data->unicam_[Unicam::Embedded] = RPi::Stream("Unicam Embedded", unicam_->getEntityByName("unicam-embedded"));
|
|
data->unicam_[Unicam::Image] = RPi::Stream("Unicam Image", unicam_->getEntityByName("unicam-image"));
|
|
|
|
/* Tag the ISP input stream as an import stream. */
|
|
data->isp_[Isp::Input] = RPi::Stream("ISP Input", isp_->getEntityByName("bcm2835-isp0-output0"), true);
|
|
data->isp_[Isp::Output0] = RPi::Stream("ISP Output0", isp_->getEntityByName("bcm2835-isp0-capture1"));
|
|
data->isp_[Isp::Output1] = RPi::Stream("ISP Output1", isp_->getEntityByName("bcm2835-isp0-capture2"));
|
|
data->isp_[Isp::Stats] = RPi::Stream("ISP Stats", isp_->getEntityByName("bcm2835-isp0-capture3"));
|
|
|
|
/* This is just for convenience so that we can easily iterate over all streams. */
|
|
for (auto &stream : data->unicam_)
|
|
data->streams_.push_back(&stream);
|
|
for (auto &stream : data->isp_)
|
|
data->streams_.push_back(&stream);
|
|
|
|
/* Open all Unicam and ISP streams. */
|
|
for (auto const stream : data->streams_) {
|
|
if (stream->dev()->open())
|
|
return false;
|
|
}
|
|
|
|
/* Wire up all the buffer connections. */
|
|
data->unicam_[Unicam::Image].dev()->frameStart.connect(data.get(), &RPiCameraData::frameStarted);
|
|
data->unicam_[Unicam::Image].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
|
|
data->unicam_[Unicam::Embedded].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
|
|
data->isp_[Isp::Input].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispInputDequeue);
|
|
data->isp_[Isp::Output0].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
|
|
data->isp_[Isp::Output1].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
|
|
data->isp_[Isp::Stats].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
|
|
|
|
/* Identify the sensor. */
|
|
for (MediaEntity *entity : unicam_->entities()) {
|
|
if (entity->function() == MEDIA_ENT_F_CAM_SENSOR) {
|
|
data->sensor_ = new CameraSensor(entity);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!data->sensor_)
|
|
return false;
|
|
|
|
if (data->sensor_->init())
|
|
return false;
|
|
|
|
if (data->loadIPA()) {
|
|
LOG(RPI, Error) << "Failed to load a suitable IPA library";
|
|
return false;
|
|
}
|
|
|
|
/* Register the controls that the Raspberry Pi IPA can handle. */
|
|
data->controlInfo_ = RPi::Controls;
|
|
/* Initialize the camera properties. */
|
|
data->properties_ = data->sensor_->properties();
|
|
|
|
/*
|
|
* We cache three things about the sensor in relation to transforms
|
|
* (meaning horizontal and vertical flips).
|
|
*
|
|
* Firstly, does it support them?
|
|
* Secondly, if you use them does it affect the Bayer ordering?
|
|
* Thirdly, what is the "native" Bayer order, when no transforms are
|
|
* applied?
|
|
*
|
|
* As part of answering the final question, we reset the camera to
|
|
* no transform at all.
|
|
*/
|
|
|
|
V4L2VideoDevice *dev = data->unicam_[Unicam::Image].dev();
|
|
const struct v4l2_query_ext_ctrl *hflipCtrl = dev->controlInfo(V4L2_CID_HFLIP);
|
|
if (hflipCtrl) {
|
|
/* We assume it will support vflips too... */
|
|
data->supportsFlips_ = true;
|
|
data->flipsAlterBayerOrder_ = hflipCtrl->flags & V4L2_CTRL_FLAG_MODIFY_LAYOUT;
|
|
|
|
ControlList ctrls(dev->controls());
|
|
ctrls.set(V4L2_CID_HFLIP, 0);
|
|
ctrls.set(V4L2_CID_VFLIP, 0);
|
|
dev->setControls(&ctrls);
|
|
}
|
|
|
|
/* Look for a valid Bayer format. */
|
|
BayerFormat bayerFormat;
|
|
for (const auto &iter : dev->formats()) {
|
|
V4L2PixelFormat v4l2Format = iter.first;
|
|
bayerFormat = BayerFormat(v4l2Format);
|
|
if (bayerFormat.isValid())
|
|
break;
|
|
}
|
|
|
|
if (!bayerFormat.isValid()) {
|
|
LOG(RPI, Error) << "No Bayer format found";
|
|
return false;
|
|
}
|
|
data->nativeBayerOrder_ = bayerFormat.order;
|
|
|
|
/*
|
|
* List the available streams an application may request. At present, we
|
|
* do not advertise Unicam Embedded and ISP Statistics streams, as there
|
|
* is no mechanism for the application to request non-image buffer formats.
|
|
*/
|
|
std::set<Stream *> streams;
|
|
streams.insert(&data->unicam_[Unicam::Image]);
|
|
streams.insert(&data->isp_[Isp::Output0]);
|
|
streams.insert(&data->isp_[Isp::Output1]);
|
|
|
|
/* Create and register the camera. */
|
|
std::shared_ptr<Camera> camera =
|
|
Camera::create(this, data->sensor_->id(), streams);
|
|
registerCamera(std::move(camera), std::move(data));
|
|
|
|
return true;
|
|
}
|
|
|
|
int PipelineHandlerRPi::queueAllBuffers(Camera *camera)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
int ret;
|
|
|
|
for (auto const stream : data->streams_) {
|
|
if (!stream->isExternal()) {
|
|
ret = stream->queueAllBuffers();
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* For external streams, we must queue up a set of internal
|
|
* buffers to handle the number of drop frames requested by
|
|
* the IPA. This is done by passing nullptr in queueBuffer().
|
|
*
|
|
* The below queueBuffer() call will do nothing if there
|
|
* are not enough internal buffers allocated, but this will
|
|
* be handled by queuing the request for buffers in the
|
|
* RPiStream object.
|
|
*/
|
|
unsigned int i;
|
|
for (i = 0; i < data->dropFrameCount_; i++) {
|
|
int ret = stream->queueBuffer(nullptr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int PipelineHandlerRPi::prepareBuffers(Camera *camera)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
int ret;
|
|
|
|
/*
|
|
* Decide how many internal buffers to allocate. For now, simply look
|
|
* at how many external buffers will be provided. Will need to improve
|
|
* this logic. However, we really must have all streams allocate the same
|
|
* number of buffers to simplify error handling in queueRequestDevice().
|
|
*/
|
|
unsigned int maxBuffers = 0;
|
|
for (const Stream *s : camera->streams())
|
|
if (static_cast<const RPi::Stream *>(s)->isExternal())
|
|
maxBuffers = std::max(maxBuffers, s->configuration().bufferCount);
|
|
|
|
for (auto const stream : data->streams_) {
|
|
ret = stream->prepareBuffers(maxBuffers);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Pass the stats and embedded data buffers to the IPA. No other
|
|
* buffers need to be passed.
|
|
*/
|
|
mapBuffers(camera, data->isp_[Isp::Stats].getBuffers(), RPi::BufferMask::STATS);
|
|
mapBuffers(camera, data->unicam_[Unicam::Embedded].getBuffers(), RPi::BufferMask::EMBEDDED_DATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void PipelineHandlerRPi::mapBuffers(Camera *camera, const RPi::BufferMap &buffers, unsigned int mask)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
std::vector<IPABuffer> ipaBuffers;
|
|
/*
|
|
* Link the FrameBuffers with the id (key value) in the map stored in
|
|
* the RPi stream object - along with an identifier mask.
|
|
*
|
|
* This will allow us to identify buffers passed between the pipeline
|
|
* handler and the IPA.
|
|
*/
|
|
for (auto const &it : buffers) {
|
|
ipaBuffers.push_back({ .id = mask | it.first,
|
|
.planes = it.second->planes() });
|
|
data->ipaBuffers_.insert(mask | it.first);
|
|
}
|
|
|
|
data->ipa_->mapBuffers(ipaBuffers);
|
|
}
|
|
|
|
void PipelineHandlerRPi::freeBuffers(Camera *camera)
|
|
{
|
|
RPiCameraData *data = cameraData(camera);
|
|
|
|
/* Copy the buffer ids from the unordered_set to a vector to pass to the IPA. */
|
|
std::vector<unsigned int> ipaBuffers(data->ipaBuffers_.begin(), data->ipaBuffers_.end());
|
|
data->ipa_->unmapBuffers(ipaBuffers);
|
|
data->ipaBuffers_.clear();
|
|
|
|
for (auto const stream : data->streams_)
|
|
stream->releaseBuffers();
|
|
}
|
|
|
|
void RPiCameraData::frameStarted(uint32_t sequence)
|
|
{
|
|
LOG(RPI, Debug) << "frame start " << sequence;
|
|
|
|
/* Write any controls for the next frame as soon as we can. */
|
|
staggeredCtrl_.write();
|
|
}
|
|
|
|
int RPiCameraData::loadIPA()
|
|
{
|
|
ipa_ = IPAManager::createIPA(pipe_, 1, 1);
|
|
if (!ipa_)
|
|
return -ENOENT;
|
|
|
|
ipa_->queueFrameAction.connect(this, &RPiCameraData::queueFrameAction);
|
|
|
|
IPASettings settings{
|
|
.configurationFile = ipa_->configurationFile(sensor_->model() + ".json")
|
|
};
|
|
|
|
return ipa_->init(settings);
|
|
}
|
|
|
|
int RPiCameraData::configureIPA(const CameraConfiguration *config)
|
|
{
|
|
/* We know config must be an RPiCameraConfiguration. */
|
|
const RPiCameraConfiguration *rpiConfig =
|
|
static_cast<const RPiCameraConfiguration *>(config);
|
|
|
|
std::map<unsigned int, IPAStream> streamConfig;
|
|
std::map<unsigned int, const ControlInfoMap &> entityControls;
|
|
IPAOperationData ipaConfig = {};
|
|
|
|
/* Get the device format to pass to the IPA. */
|
|
V4L2DeviceFormat sensorFormat;
|
|
unicam_[Unicam::Image].dev()->getFormat(&sensorFormat);
|
|
/* Inform IPA of stream configuration and sensor controls. */
|
|
unsigned int i = 0;
|
|
for (auto const &stream : isp_) {
|
|
if (stream.isExternal()) {
|
|
streamConfig[i++] = {
|
|
.pixelFormat = stream.configuration().pixelFormat,
|
|
.size = stream.configuration().size
|
|
};
|
|
}
|
|
}
|
|
|
|
entityControls.emplace(0, unicam_[Unicam::Image].dev()->controls());
|
|
entityControls.emplace(1, isp_[Isp::Input].dev()->controls());
|
|
|
|
/* Always send the user transform to the IPA. */
|
|
ipaConfig.data = { static_cast<unsigned int>(config->transform) };
|
|
|
|
/* Allocate the lens shading table via dmaHeap and pass to the IPA. */
|
|
if (!lsTable_.isValid()) {
|
|
lsTable_ = dmaHeap_.alloc("ls_grid", RPi::MaxLsGridSize);
|
|
if (!lsTable_.isValid())
|
|
return -ENOMEM;
|
|
|
|
/* Allow the IPA to mmap the LS table via the file descriptor. */
|
|
ipaConfig.operation = RPi::IPA_CONFIG_LS_TABLE;
|
|
ipaConfig.data.push_back(static_cast<unsigned int>(lsTable_.fd()));
|
|
}
|
|
|
|
CameraSensorInfo sensorInfo = {};
|
|
int ret = sensor_->sensorInfo(&sensorInfo);
|
|
if (ret) {
|
|
LOG(RPI, Error) << "Failed to retrieve camera sensor info";
|
|
return ret;
|
|
}
|
|
|
|
/* Ready the IPA - it must know about the sensor resolution. */
|
|
IPAOperationData result;
|
|
|
|
ipa_->configure(sensorInfo, streamConfig, entityControls, ipaConfig,
|
|
&result);
|
|
|
|
unsigned int resultIdx = 0;
|
|
if (result.operation & RPi::IPA_CONFIG_STAGGERED_WRITE) {
|
|
/*
|
|
* Setup our staggered control writer with the sensor default
|
|
* gain and exposure delays.
|
|
*/
|
|
if (!staggeredCtrl_) {
|
|
staggeredCtrl_.init(unicam_[Unicam::Image].dev(),
|
|
{ { V4L2_CID_ANALOGUE_GAIN, result.data[resultIdx++] },
|
|
{ V4L2_CID_EXPOSURE, result.data[resultIdx++] } });
|
|
sensorMetadata_ = result.data[resultIdx++];
|
|
}
|
|
}
|
|
|
|
if (result.operation & RPi::IPA_CONFIG_SENSOR) {
|
|
const ControlList &ctrls = result.controls[0];
|
|
if (!staggeredCtrl_.set(ctrls))
|
|
LOG(RPI, Error) << "V4L2 staggered set failed";
|
|
}
|
|
|
|
if (result.operation & RPi::IPA_CONFIG_DROP_FRAMES) {
|
|
/* Configure the number of dropped frames required on startup. */
|
|
dropFrameCount_ = result.data[resultIdx++];
|
|
}
|
|
|
|
/*
|
|
* Configure the H/V flip controls based on the combination of
|
|
* the sensor and user transform.
|
|
*/
|
|
if (supportsFlips_) {
|
|
ControlList ctrls(unicam_[Unicam::Image].dev()->controls());
|
|
ctrls.set(V4L2_CID_HFLIP,
|
|
static_cast<int32_t>(!!(rpiConfig->combinedTransform_ & Transform::HFlip)));
|
|
ctrls.set(V4L2_CID_VFLIP,
|
|
static_cast<int32_t>(!!(rpiConfig->combinedTransform_ & Transform::VFlip)));
|
|
unicam_[Unicam::Image].dev()->setControls(&ctrls);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void RPiCameraData::queueFrameAction([[maybe_unused]] unsigned int frame,
|
|
const IPAOperationData &action)
|
|
{
|
|
/*
|
|
* The following actions can be handled when the pipeline handler is in
|
|
* a stopped state.
|
|
*/
|
|
switch (action.operation) {
|
|
case RPi::IPA_ACTION_V4L2_SET_STAGGERED: {
|
|
const ControlList &controls = action.controls[0];
|
|
if (!staggeredCtrl_.set(controls))
|
|
LOG(RPI, Error) << "V4L2 staggered set failed";
|
|
goto done;
|
|
}
|
|
|
|
case RPi::IPA_ACTION_V4L2_SET_ISP: {
|
|
ControlList controls = action.controls[0];
|
|
isp_[Isp::Input].dev()->setControls(&controls);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (state_ == State::Stopped)
|
|
goto done;
|
|
|
|
/*
|
|
* The following actions must not be handled when the pipeline handler
|
|
* is in a stopped state.
|
|
*/
|
|
switch (action.operation) {
|
|
case RPi::IPA_ACTION_STATS_METADATA_COMPLETE: {
|
|
unsigned int bufferId = action.data[0];
|
|
FrameBuffer *buffer = isp_[Isp::Stats].getBuffers().at(bufferId);
|
|
|
|
handleStreamBuffer(buffer, &isp_[Isp::Stats]);
|
|
/* Fill the Request metadata buffer with what the IPA has provided */
|
|
requestQueue_.front()->metadata() = std::move(action.controls[0]);
|
|
state_ = State::IpaComplete;
|
|
break;
|
|
}
|
|
|
|
case RPi::IPA_ACTION_EMBEDDED_COMPLETE: {
|
|
unsigned int bufferId = action.data[0];
|
|
FrameBuffer *buffer = unicam_[Unicam::Embedded].getBuffers().at(bufferId);
|
|
handleStreamBuffer(buffer, &unicam_[Unicam::Embedded]);
|
|
break;
|
|
}
|
|
|
|
case RPi::IPA_ACTION_RUN_ISP: {
|
|
unsigned int bufferId = action.data[0];
|
|
FrameBuffer *buffer = unicam_[Unicam::Image].getBuffers().at(bufferId);
|
|
|
|
LOG(RPI, Debug) << "Input re-queue to ISP, buffer id " << bufferId
|
|
<< ", timestamp: " << buffer->metadata().timestamp;
|
|
|
|
isp_[Isp::Input].queueBuffer(buffer);
|
|
ispOutputCount_ = 0;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(RPI, Error) << "Unknown action " << action.operation;
|
|
break;
|
|
}
|
|
|
|
done:
|
|
handleState();
|
|
}
|
|
|
|
void RPiCameraData::unicamBufferDequeue(FrameBuffer *buffer)
|
|
{
|
|
RPi::Stream *stream = nullptr;
|
|
int index;
|
|
|
|
if (state_ == State::Stopped)
|
|
return;
|
|
|
|
for (RPi::Stream &s : unicam_) {
|
|
index = s.getBufferId(buffer);
|
|
if (index != -1) {
|
|
stream = &s;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* The buffer must belong to one of our streams. */
|
|
ASSERT(stream);
|
|
|
|
LOG(RPI, Debug) << "Stream " << stream->name() << " buffer dequeue"
|
|
<< ", buffer id " << index
|
|
<< ", timestamp: " << buffer->metadata().timestamp;
|
|
|
|
if (stream == &unicam_[Unicam::Image]) {
|
|
bayerQueue_.push(buffer);
|
|
} else {
|
|
embeddedQueue_.push(buffer);
|
|
|
|
std::unordered_map<uint32_t, int32_t> ctrl;
|
|
int offset = buffer->metadata().sequence - expectedSequence_;
|
|
staggeredCtrl_.get(ctrl, offset);
|
|
|
|
expectedSequence_ = buffer->metadata().sequence + 1;
|
|
|
|
/*
|
|
* Sensor metadata is unavailable, so put the expected ctrl
|
|
* values (accounting for the staggered delays) into the empty
|
|
* metadata buffer.
|
|
*/
|
|
if (!sensorMetadata_) {
|
|
const FrameBuffer &fb = buffer->planes();
|
|
uint32_t *mem = static_cast<uint32_t *>(::mmap(nullptr, fb.planes()[0].length,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED,
|
|
fb.planes()[0].fd.fd(), 0));
|
|
mem[0] = ctrl[V4L2_CID_EXPOSURE];
|
|
mem[1] = ctrl[V4L2_CID_ANALOGUE_GAIN];
|
|
munmap(mem, fb.planes()[0].length);
|
|
}
|
|
}
|
|
|
|
handleState();
|
|
}
|
|
|
|
void RPiCameraData::ispInputDequeue(FrameBuffer *buffer)
|
|
{
|
|
if (state_ == State::Stopped)
|
|
return;
|
|
|
|
LOG(RPI, Debug) << "Stream ISP Input buffer complete"
|
|
<< ", buffer id " << unicam_[Unicam::Image].getBufferId(buffer)
|
|
<< ", timestamp: " << buffer->metadata().timestamp;
|
|
|
|
/* The ISP input buffer gets re-queued into Unicam. */
|
|
handleStreamBuffer(buffer, &unicam_[Unicam::Image]);
|
|
handleState();
|
|
}
|
|
|
|
void RPiCameraData::ispOutputDequeue(FrameBuffer *buffer)
|
|
{
|
|
RPi::Stream *stream = nullptr;
|
|
int index;
|
|
|
|
if (state_ == State::Stopped)
|
|
return;
|
|
|
|
for (RPi::Stream &s : isp_) {
|
|
index = s.getBufferId(buffer);
|
|
if (index != -1) {
|
|
stream = &s;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* The buffer must belong to one of our ISP output streams. */
|
|
ASSERT(stream);
|
|
|
|
LOG(RPI, Debug) << "Stream " << stream->name() << " buffer complete"
|
|
<< ", buffer id " << index
|
|
<< ", timestamp: " << buffer->metadata().timestamp;
|
|
|
|
/*
|
|
* ISP statistics buffer must not be re-queued or sent back to the
|
|
* application until after the IPA signals so.
|
|
*/
|
|
if (stream == &isp_[Isp::Stats]) {
|
|
IPAOperationData op;
|
|
op.operation = RPi::IPA_EVENT_SIGNAL_STAT_READY;
|
|
op.data = { RPi::BufferMask::STATS | static_cast<unsigned int>(index) };
|
|
ipa_->processEvent(op);
|
|
} else {
|
|
/* Any other ISP output can be handed back to the application now. */
|
|
handleStreamBuffer(buffer, stream);
|
|
}
|
|
|
|
/*
|
|
* Increment the number of ISP outputs generated.
|
|
* This is needed to track dropped frames.
|
|
*/
|
|
ispOutputCount_++;
|
|
|
|
handleState();
|
|
}
|
|
|
|
void RPiCameraData::clearIncompleteRequests()
|
|
{
|
|
/*
|
|
* Queue up any buffers passed in the request.
|
|
* This is needed because streamOff() will then mark the buffers as
|
|
* cancelled.
|
|
*/
|
|
for (auto const request : requestQueue_) {
|
|
for (auto const stream : streams_) {
|
|
if (!stream->isExternal())
|
|
continue;
|
|
|
|
FrameBuffer *buffer = request->findBuffer(stream);
|
|
if (buffer)
|
|
stream->queueBuffer(buffer);
|
|
}
|
|
}
|
|
|
|
/* Stop all streams. */
|
|
for (auto const stream : streams_)
|
|
stream->dev()->streamOff();
|
|
|
|
/*
|
|
* All outstanding requests (and associated buffers) must be returned
|
|
* back to the pipeline. The buffers would have been marked as
|
|
* cancelled by the call to streamOff() earlier.
|
|
*/
|
|
while (!requestQueue_.empty()) {
|
|
Request *request = requestQueue_.front();
|
|
/*
|
|
* A request could be partially complete,
|
|
* i.e. we have returned some buffers, but still waiting
|
|
* for others or waiting for metadata.
|
|
*/
|
|
for (auto const stream : streams_) {
|
|
if (!stream->isExternal())
|
|
continue;
|
|
|
|
FrameBuffer *buffer = request->findBuffer(stream);
|
|
/*
|
|
* Has the buffer already been handed back to the
|
|
* request? If not, do so now.
|
|
*/
|
|
if (buffer && buffer->request())
|
|
pipe_->completeBuffer(camera_, request, buffer);
|
|
}
|
|
|
|
pipe_->completeRequest(camera_, request);
|
|
requestQueue_.pop_front();
|
|
}
|
|
}
|
|
|
|
void RPiCameraData::handleStreamBuffer(FrameBuffer *buffer, RPi::Stream *stream)
|
|
{
|
|
if (stream->isExternal()) {
|
|
/*
|
|
* It is possible to be here without a pending request, so check
|
|
* that we actually have one to action, otherwise we just return
|
|
* buffer back to the stream.
|
|
*/
|
|
Request *request = requestQueue_.empty() ? nullptr : requestQueue_.front();
|
|
if (!dropFrameCount_ && request && request->findBuffer(stream) == buffer) {
|
|
/*
|
|
* Check if this is an externally provided buffer, and if
|
|
* so, we must stop tracking it in the pipeline handler.
|
|
*/
|
|
handleExternalBuffer(buffer, stream);
|
|
/*
|
|
* Tag the buffer as completed, returning it to the
|
|
* application.
|
|
*/
|
|
pipe_->completeBuffer(camera_, request, buffer);
|
|
} else {
|
|
/*
|
|
* This buffer was not part of the Request, or there is no
|
|
* pending request, so we can recycle it.
|
|
*/
|
|
stream->returnBuffer(buffer);
|
|
}
|
|
} else {
|
|
/* Simply re-queue the buffer to the requested stream. */
|
|
stream->queueBuffer(buffer);
|
|
}
|
|
}
|
|
|
|
void RPiCameraData::handleExternalBuffer(FrameBuffer *buffer, RPi::Stream *stream)
|
|
{
|
|
unsigned int id = stream->getBufferId(buffer);
|
|
|
|
if (!(id & RPi::BufferMask::EXTERNAL_BUFFER))
|
|
return;
|
|
|
|
/* Stop the Stream object from tracking the buffer. */
|
|
stream->removeExternalBuffer(buffer);
|
|
}
|
|
|
|
void RPiCameraData::handleState()
|
|
{
|
|
switch (state_) {
|
|
case State::Stopped:
|
|
case State::Busy:
|
|
break;
|
|
|
|
case State::IpaComplete:
|
|
/* If the request is completed, we will switch to Idle state. */
|
|
checkRequestCompleted();
|
|
/*
|
|
* No break here, we want to try running the pipeline again.
|
|
* The fallthrough clause below suppresses compiler warnings.
|
|
*/
|
|
[[fallthrough]];
|
|
|
|
case State::Idle:
|
|
tryRunPipeline();
|
|
tryFlushQueues();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void RPiCameraData::checkRequestCompleted()
|
|
{
|
|
bool requestCompleted = false;
|
|
/*
|
|
* If we are dropping this frame, do not touch the request, simply
|
|
* change the state to IDLE when ready.
|
|
*/
|
|
if (!dropFrameCount_) {
|
|
Request *request = requestQueue_.front();
|
|
if (request->hasPendingBuffers())
|
|
return;
|
|
|
|
/* Must wait for metadata to be filled in before completing. */
|
|
if (state_ != State::IpaComplete)
|
|
return;
|
|
|
|
pipe_->completeRequest(camera_, request);
|
|
requestQueue_.pop_front();
|
|
requestCompleted = true;
|
|
}
|
|
|
|
/*
|
|
* Make sure we have three outputs completed in the case of a dropped
|
|
* frame.
|
|
*/
|
|
if (state_ == State::IpaComplete &&
|
|
((ispOutputCount_ == 3 && dropFrameCount_) || requestCompleted)) {
|
|
state_ = State::Idle;
|
|
if (dropFrameCount_) {
|
|
dropFrameCount_--;
|
|
LOG(RPI, Info) << "Dropping frame at the request of the IPA ("
|
|
<< dropFrameCount_ << " left)";
|
|
}
|
|
}
|
|
}
|
|
|
|
void RPiCameraData::tryRunPipeline()
|
|
{
|
|
FrameBuffer *bayerBuffer, *embeddedBuffer;
|
|
IPAOperationData op;
|
|
|
|
/* If any of our request or buffer queues are empty, we cannot proceed. */
|
|
if (state_ != State::Idle || requestQueue_.empty() ||
|
|
bayerQueue_.empty() || embeddedQueue_.empty())
|
|
return;
|
|
|
|
/* Start with the front of the bayer buffer queue. */
|
|
bayerBuffer = bayerQueue_.front();
|
|
|
|
/*
|
|
* Find the embedded data buffer with a matching timestamp to pass to
|
|
* the IPA. Any embedded buffers with a timestamp lower than the
|
|
* current bayer buffer will be removed and re-queued to the driver.
|
|
*/
|
|
embeddedBuffer = updateQueue(embeddedQueue_, bayerBuffer->metadata().timestamp,
|
|
&unicam_[Unicam::Embedded]);
|
|
|
|
if (!embeddedBuffer) {
|
|
LOG(RPI, Debug) << "Could not find matching embedded buffer";
|
|
|
|
/*
|
|
* Look the other way, try to match a bayer buffer with the
|
|
* first embedded buffer in the queue. This will also do some
|
|
* housekeeping on the bayer image queue - clear out any
|
|
* buffers that are older than the first buffer in the embedded
|
|
* queue.
|
|
*
|
|
* But first check if the embedded queue has emptied out.
|
|
*/
|
|
if (embeddedQueue_.empty())
|
|
return;
|
|
|
|
embeddedBuffer = embeddedQueue_.front();
|
|
bayerBuffer = updateQueue(bayerQueue_, embeddedBuffer->metadata().timestamp,
|
|
&unicam_[Unicam::Image]);
|
|
|
|
if (!bayerBuffer) {
|
|
LOG(RPI, Debug) << "Could not find matching bayer buffer - ending.";
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Take the first request from the queue and action the IPA. */
|
|
Request *request = requestQueue_.front();
|
|
|
|
/*
|
|
* Process all the user controls by the IPA. Once this is complete, we
|
|
* queue the ISP output buffer listed in the request to start the HW
|
|
* pipeline.
|
|
*/
|
|
op.operation = RPi::IPA_EVENT_QUEUE_REQUEST;
|
|
op.controls = { request->controls() };
|
|
ipa_->processEvent(op);
|
|
|
|
/* Ready to use the buffers, pop them off the queue. */
|
|
bayerQueue_.pop();
|
|
embeddedQueue_.pop();
|
|
|
|
/* Set our state to say the pipeline is active. */
|
|
state_ = State::Busy;
|
|
|
|
unsigned int bayerId = unicam_[Unicam::Image].getBufferId(bayerBuffer);
|
|
unsigned int embeddedId = unicam_[Unicam::Embedded].getBufferId(embeddedBuffer);
|
|
|
|
LOG(RPI, Debug) << "Signalling RPi::IPA_EVENT_SIGNAL_ISP_PREPARE:"
|
|
<< " Bayer buffer id: " << bayerId
|
|
<< " Embedded buffer id: " << embeddedId;
|
|
|
|
op.operation = RPi::IPA_EVENT_SIGNAL_ISP_PREPARE;
|
|
op.data = { RPi::BufferMask::EMBEDDED_DATA | embeddedId,
|
|
RPi::BufferMask::BAYER_DATA | bayerId };
|
|
ipa_->processEvent(op);
|
|
}
|
|
|
|
void RPiCameraData::tryFlushQueues()
|
|
{
|
|
/*
|
|
* It is possible for us to end up in a situation where all available
|
|
* Unicam buffers have been dequeued but do not match. This can happen
|
|
* when the system is heavily loaded and we get out of lock-step with
|
|
* the two channels.
|
|
*
|
|
* In such cases, the best thing to do is the re-queue all the buffers
|
|
* and give a chance for the hardware to return to lock-step. We do have
|
|
* to drop all interim frames.
|
|
*/
|
|
if (unicam_[Unicam::Image].getBuffers().size() == bayerQueue_.size() &&
|
|
unicam_[Unicam::Embedded].getBuffers().size() == embeddedQueue_.size()) {
|
|
/* This cannot happen when Unicam streams are external. */
|
|
assert(!unicam_[Unicam::Image].isExternal());
|
|
|
|
LOG(RPI, Warning) << "Flushing all buffer queues!";
|
|
|
|
while (!bayerQueue_.empty()) {
|
|
unicam_[Unicam::Image].queueBuffer(bayerQueue_.front());
|
|
bayerQueue_.pop();
|
|
}
|
|
|
|
while (!embeddedQueue_.empty()) {
|
|
unicam_[Unicam::Embedded].queueBuffer(embeddedQueue_.front());
|
|
embeddedQueue_.pop();
|
|
}
|
|
}
|
|
}
|
|
|
|
FrameBuffer *RPiCameraData::updateQueue(std::queue<FrameBuffer *> &q, uint64_t timestamp,
|
|
RPi::Stream *stream)
|
|
{
|
|
/*
|
|
* If the unicam streams are external (both have be to the same), then we
|
|
* can only return out the top buffer in the queue, and assume they have
|
|
* been synced by queuing at the same time. We cannot drop these frames,
|
|
* as they may have been provided externally.
|
|
*/
|
|
while (!q.empty()) {
|
|
FrameBuffer *b = q.front();
|
|
if (!stream->isExternal() && b->metadata().timestamp < timestamp) {
|
|
q.pop();
|
|
stream->queueBuffer(b);
|
|
LOG(RPI, Warning) << "Dropping unmatched input frame in stream "
|
|
<< stream->name();
|
|
} else if (stream->isExternal() || b->metadata().timestamp == timestamp) {
|
|
/* The calling function will pop the item from the queue. */
|
|
return b;
|
|
} else {
|
|
break; /* Only higher timestamps from here. */
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
REGISTER_PIPELINE_HANDLER(PipelineHandlerRPi)
|
|
|
|
} /* namespace libcamera */
|