mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-21 15:25:36 +03:00
Merge branch 'master' into bfdev-configurable-transponder
This commit is contained in:
commit
65c4b26aa4
180 changed files with 2922 additions and 1416 deletions
6
Makefile
6
Makefile
|
@ -681,6 +681,7 @@ COMMON_SRC = \
|
|||
drivers/bus_i2c_config.c \
|
||||
drivers/bus_i2c_soft.c \
|
||||
drivers/bus_spi.c \
|
||||
drivers/bus_spi_config.c \
|
||||
drivers/bus_spi_soft.c \
|
||||
drivers/buttons.c \
|
||||
drivers/display.c \
|
||||
|
@ -711,6 +712,7 @@ COMMON_SRC = \
|
|||
io/serial.c \
|
||||
io/statusindicator.c \
|
||||
io/transponder_ir.c \
|
||||
io/rcsplit.c \
|
||||
msp/msp_serial.c \
|
||||
scheduler/scheduler.c \
|
||||
sensors/battery.c \
|
||||
|
@ -900,6 +902,7 @@ SPEED_OPTIMISED_SRC := $(SPEED_OPTIMISED_SRC) \
|
|||
|
||||
SIZE_OPTIMISED_SRC := $(SIZE_OPTIMISED_SRC) \
|
||||
drivers/bus_i2c_config.c \
|
||||
drivers/bus_spi_config.c \
|
||||
drivers/serial_escserial.c \
|
||||
drivers/serial_pinconfig.c \
|
||||
drivers/serial_uart_init.c \
|
||||
|
@ -1026,9 +1029,10 @@ F7EXCLUDES = \
|
|||
|
||||
SITLEXCLUDES = \
|
||||
drivers/adc.c \
|
||||
drivers/bus_spi.c \
|
||||
drivers/bus_i2c.c \
|
||||
drivers/bus_i2c_config.c \
|
||||
drivers/bus_spi.c \
|
||||
drivers/bus_spi_config.c \
|
||||
drivers/dma.c \
|
||||
drivers/pwm_output.c \
|
||||
drivers/timer.c \
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||

|
||||

|
||||
|
||||

|
||||
|
||||
Betaflight is flight controller software (firmware) used to fly multi-rotor craft and fixed wing craft.
|
||||
|
||||
|
|
|
@ -69,6 +69,7 @@
|
|||
#include "sensors/gyro.h"
|
||||
#include "sensors/sonar.h"
|
||||
|
||||
|
||||
#if defined(ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT)
|
||||
#define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_FLASH
|
||||
#elif defined(ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT)
|
||||
|
@ -262,20 +263,20 @@ static const blackboxSimpleFieldDefinition_t blackboxSlowFields[] = {
|
|||
|
||||
typedef enum BlackboxState {
|
||||
BLACKBOX_STATE_DISABLED = 0,
|
||||
BLACKBOX_STATE_STOPPED, //1
|
||||
BLACKBOX_STATE_PREPARE_LOG_FILE, //2
|
||||
BLACKBOX_STATE_SEND_HEADER, //3
|
||||
BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER, //4
|
||||
BLACKBOX_STATE_SEND_GPS_H_HEADER, //5
|
||||
BLACKBOX_STATE_SEND_GPS_G_HEADER, //6
|
||||
BLACKBOX_STATE_SEND_SLOW_HEADER, //7
|
||||
BLACKBOX_STATE_SEND_SYSINFO, //8
|
||||
BLACKBOX_STATE_PAUSED, //9
|
||||
BLACKBOX_STATE_RUNNING, //10
|
||||
BLACKBOX_STATE_SHUTTING_DOWN, //11
|
||||
BLACKBOX_STATE_START_ERASE, //12
|
||||
BLACKBOX_STATE_ERASING, //13
|
||||
BLACKBOX_STATE_ERASED //14
|
||||
BLACKBOX_STATE_STOPPED,
|
||||
BLACKBOX_STATE_PREPARE_LOG_FILE,
|
||||
BLACKBOX_STATE_SEND_HEADER,
|
||||
BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER,
|
||||
BLACKBOX_STATE_SEND_GPS_H_HEADER,
|
||||
BLACKBOX_STATE_SEND_GPS_G_HEADER,
|
||||
BLACKBOX_STATE_SEND_SLOW_HEADER,
|
||||
BLACKBOX_STATE_SEND_SYSINFO,
|
||||
BLACKBOX_STATE_PAUSED,
|
||||
BLACKBOX_STATE_RUNNING,
|
||||
BLACKBOX_STATE_SHUTTING_DOWN,
|
||||
BLACKBOX_STATE_START_ERASE,
|
||||
BLACKBOX_STATE_ERASING,
|
||||
BLACKBOX_STATE_ERASED
|
||||
} BlackboxState;
|
||||
|
||||
|
||||
|
@ -309,7 +310,8 @@ typedef struct blackboxMainState_s {
|
|||
} blackboxMainState_t;
|
||||
|
||||
typedef struct blackboxGpsState_s {
|
||||
int32_t GPS_home[2], GPS_coord[2];
|
||||
int32_t GPS_home[2];
|
||||
int32_t GPS_coord[2];
|
||||
uint8_t GPS_numSat;
|
||||
} blackboxGpsState_t;
|
||||
|
||||
|
@ -333,7 +335,6 @@ static BlackboxState blackboxState = BLACKBOX_STATE_DISABLED;
|
|||
static uint32_t blackboxLastArmingBeep = 0;
|
||||
static uint32_t blackboxLastFlightModeFlags = 0; // New event tracking of flight modes
|
||||
|
||||
|
||||
static struct {
|
||||
uint32_t headerIndex;
|
||||
|
||||
|
@ -352,7 +353,8 @@ static uint32_t blackboxConditionCache;
|
|||
STATIC_ASSERT((sizeof(blackboxConditionCache) * 8) >= FLIGHT_LOG_FIELD_CONDITION_LAST, too_many_flight_log_conditions);
|
||||
|
||||
static uint32_t blackboxIteration;
|
||||
static uint16_t blackboxPFrameIndex, blackboxIFrameIndex;
|
||||
static uint16_t blackboxPFrameIndex;
|
||||
static uint16_t blackboxIFrameIndex;
|
||||
static uint16_t blackboxSlowFrameIterationTimer;
|
||||
static bool blackboxLoggedAnyFrames;
|
||||
|
||||
|
@ -623,8 +625,6 @@ static void blackboxWriteMainStateArrayUsingAveragePredictor(int arrOffsetInHist
|
|||
|
||||
static void writeInterframe(void)
|
||||
{
|
||||
int32_t deltas[8];
|
||||
|
||||
blackboxMainState_t *blackboxCurrent = blackboxHistory[0];
|
||||
blackboxMainState_t *blackboxLast = blackboxHistory[1];
|
||||
|
||||
|
@ -638,6 +638,7 @@ static void writeInterframe(void)
|
|||
*/
|
||||
blackboxWriteSignedVB((int32_t) (blackboxHistory[0]->time - 2 * blackboxHistory[1]->time + blackboxHistory[2]->time));
|
||||
|
||||
int32_t deltas[8];
|
||||
arraySubInt32(deltas, blackboxCurrent->axisPID_P, blackboxLast->axisPID_P, XYZ_AXIS_COUNT);
|
||||
blackboxWriteSignedVBArray(deltas, XYZ_AXIS_COUNT);
|
||||
|
||||
|
@ -991,16 +992,16 @@ static void writeGPSFrame(timeUs_t currentTimeUs)
|
|||
blackboxWriteUnsignedVB(currentTimeUs - blackboxHistory[1]->time);
|
||||
}
|
||||
|
||||
blackboxWriteUnsignedVB(GPS_numSat);
|
||||
blackboxWriteSignedVB(GPS_coord[0] - gpsHistory.GPS_home[0]);
|
||||
blackboxWriteSignedVB(GPS_coord[1] - gpsHistory.GPS_home[1]);
|
||||
blackboxWriteUnsignedVB(GPS_altitude);
|
||||
blackboxWriteUnsignedVB(GPS_speed);
|
||||
blackboxWriteUnsignedVB(GPS_ground_course);
|
||||
blackboxWriteUnsignedVB(gpsSol.numSat);
|
||||
blackboxWriteSignedVB(gpsSol.llh.lat - gpsHistory.GPS_home[LAT]);
|
||||
blackboxWriteSignedVB(gpsSol.llh.lon - gpsHistory.GPS_home[LON]);
|
||||
blackboxWriteUnsignedVB(gpsSol.llh.alt);
|
||||
blackboxWriteUnsignedVB(gpsSol.groundSpeed);
|
||||
blackboxWriteUnsignedVB(gpsSol.groundCourse);
|
||||
|
||||
gpsHistory.GPS_numSat = GPS_numSat;
|
||||
gpsHistory.GPS_coord[0] = GPS_coord[0];
|
||||
gpsHistory.GPS_coord[1] = GPS_coord[1];
|
||||
gpsHistory.GPS_numSat = gpsSol.numSat;
|
||||
gpsHistory.GPS_coord[LAT] = gpsSol.llh.lat;
|
||||
gpsHistory.GPS_coord[LON] = gpsSol.llh.lon;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -1198,16 +1199,16 @@ static bool blackboxWriteSysinfo(void)
|
|||
|
||||
const controlRateConfig_t *currentControlRateProfile = controlRateProfiles(systemConfig()->activeRateProfile);
|
||||
switch (xmitState.headerIndex) {
|
||||
BLACKBOX_PRINT_HEADER_LINE("Firmware type", "%s", "Cleanflight");
|
||||
BLACKBOX_PRINT_HEADER_LINE("Firmware revision", "%s %s (%s) %s", FC_FIRMWARE_NAME, FC_VERSION_STRING, shortGitRevision, targetName);
|
||||
BLACKBOX_PRINT_HEADER_LINE("Firmware date", "%s %s", buildDate, buildTime);
|
||||
BLACKBOX_PRINT_HEADER_LINE("Craft name", "%s", systemConfig()->name);
|
||||
BLACKBOX_PRINT_HEADER_LINE("P interval", "%d/%d", blackboxConfig()->rate_num, blackboxConfig()->rate_denom);
|
||||
BLACKBOX_PRINT_HEADER_LINE("minthrottle", "%d", motorConfig()->minthrottle);
|
||||
BLACKBOX_PRINT_HEADER_LINE("maxthrottle", "%d", motorConfig()->maxthrottle);
|
||||
BLACKBOX_PRINT_HEADER_LINE("Firmware type", "%s", "Cleanflight");
|
||||
BLACKBOX_PRINT_HEADER_LINE("Firmware revision", "%s %s (%s) %s", FC_FIRMWARE_NAME, FC_VERSION_STRING, shortGitRevision, targetName);
|
||||
BLACKBOX_PRINT_HEADER_LINE("Firmware date", "%s %s", buildDate, buildTime);
|
||||
BLACKBOX_PRINT_HEADER_LINE("Craft name", "%s", systemConfig()->name);
|
||||
BLACKBOX_PRINT_HEADER_LINE("P interval", "%d/%d", blackboxConfig()->rate_num, blackboxConfig()->rate_denom);
|
||||
BLACKBOX_PRINT_HEADER_LINE("minthrottle", "%d", motorConfig()->minthrottle);
|
||||
BLACKBOX_PRINT_HEADER_LINE("maxthrottle", "%d", motorConfig()->maxthrottle);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_scale","0x%x", castFloatBytesToInt(1.0f));
|
||||
BLACKBOX_PRINT_HEADER_LINE("motorOutput", "%d,%d", motorOutputLowInt,motorOutputHighInt);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_1G", "%u", acc.dev.acc_1G);
|
||||
BLACKBOX_PRINT_HEADER_LINE("motorOutput", "%d,%d", motorOutputLowInt,motorOutputHighInt);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_1G", "%u", acc.dev.acc_1G);
|
||||
|
||||
BLACKBOX_PRINT_HEADER_LINE_CUSTOM(
|
||||
if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_VBAT)) {
|
||||
|
@ -1217,10 +1218,10 @@ static bool blackboxWriteSysinfo(void)
|
|||
}
|
||||
);
|
||||
|
||||
BLACKBOX_PRINT_HEADER_LINE("vbatcellvoltage", "%u,%u,%u", batteryConfig()->vbatmincellvoltage,
|
||||
batteryConfig()->vbatwarningcellvoltage,
|
||||
batteryConfig()->vbatmaxcellvoltage);
|
||||
BLACKBOX_PRINT_HEADER_LINE("vbatref", "%u", vbatReference);
|
||||
BLACKBOX_PRINT_HEADER_LINE("vbatcellvoltage", "%u,%u,%u", batteryConfig()->vbatmincellvoltage,
|
||||
batteryConfig()->vbatwarningcellvoltage,
|
||||
batteryConfig()->vbatmaxcellvoltage);
|
||||
BLACKBOX_PRINT_HEADER_LINE("vbatref", "%u", vbatReference);
|
||||
|
||||
BLACKBOX_PRINT_HEADER_LINE_CUSTOM(
|
||||
if (batteryConfig()->currentMeterSource == CURRENT_METER_ADC) {
|
||||
|
@ -1228,92 +1229,92 @@ static bool blackboxWriteSysinfo(void)
|
|||
}
|
||||
);
|
||||
|
||||
BLACKBOX_PRINT_HEADER_LINE("looptime", "%d", gyro.targetLooptime);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_sync_denom", "%d", gyroConfig()->gyro_sync_denom);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pid_process_denom", "%d", pidConfig()->pid_process_denom);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_rate", "%d", currentControlRateProfile->rcRate8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_expo", "%d", currentControlRateProfile->rcExpo8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_rate_yaw", "%d", currentControlRateProfile->rcYawRate8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_expo_yaw", "%d", currentControlRateProfile->rcYawExpo8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("thr_mid", "%d", currentControlRateProfile->thrMid8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("thr_expo", "%d", currentControlRateProfile->thrExpo8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("tpa_rate", "%d", currentControlRateProfile->dynThrPID);
|
||||
BLACKBOX_PRINT_HEADER_LINE("tpa_breakpoint", "%d", currentControlRateProfile->tpa_breakpoint);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rates", "%d,%d,%d", currentControlRateProfile->rates[ROLL],
|
||||
currentControlRateProfile->rates[PITCH],
|
||||
currentControlRateProfile->rates[YAW]);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rollPID", "%d,%d,%d", currentPidProfile->pid[PID_ROLL].P,
|
||||
currentPidProfile->pid[PID_ROLL].I,
|
||||
currentPidProfile->pid[PID_ROLL].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pitchPID", "%d,%d,%d", currentPidProfile->pid[PID_PITCH].P,
|
||||
currentPidProfile->pid[PID_PITCH].I,
|
||||
currentPidProfile->pid[PID_PITCH].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("yawPID", "%d,%d,%d", currentPidProfile->pid[PID_YAW].P,
|
||||
currentPidProfile->pid[PID_YAW].I,
|
||||
currentPidProfile->pid[PID_YAW].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("altPID", "%d,%d,%d", currentPidProfile->pid[PID_ALT].P,
|
||||
currentPidProfile->pid[PID_ALT].I,
|
||||
currentPidProfile->pid[PID_ALT].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("posPID", "%d,%d,%d", currentPidProfile->pid[PID_POS].P,
|
||||
currentPidProfile->pid[PID_POS].I,
|
||||
currentPidProfile->pid[PID_POS].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("posrPID", "%d,%d,%d", currentPidProfile->pid[PID_POSR].P,
|
||||
currentPidProfile->pid[PID_POSR].I,
|
||||
currentPidProfile->pid[PID_POSR].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("navrPID", "%d,%d,%d", currentPidProfile->pid[PID_NAVR].P,
|
||||
currentPidProfile->pid[PID_NAVR].I,
|
||||
currentPidProfile->pid[PID_NAVR].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("levelPID", "%d,%d,%d", currentPidProfile->pid[PID_LEVEL].P,
|
||||
currentPidProfile->pid[PID_LEVEL].I,
|
||||
currentPidProfile->pid[PID_LEVEL].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("magPID", "%d", currentPidProfile->pid[PID_MAG].P);
|
||||
BLACKBOX_PRINT_HEADER_LINE("velPID", "%d,%d,%d", currentPidProfile->pid[PID_VEL].P,
|
||||
currentPidProfile->pid[PID_VEL].I,
|
||||
currentPidProfile->pid[PID_VEL].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_filter_type", "%d", currentPidProfile->dterm_filter_type);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_lpf_hz", "%d", currentPidProfile->dterm_lpf_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("yaw_lpf_hz", "%d", currentPidProfile->yaw_lpf_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_notch_hz", "%d", currentPidProfile->dterm_notch_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_notch_cutoff", "%d", currentPidProfile->dterm_notch_cutoff);
|
||||
BLACKBOX_PRINT_HEADER_LINE("iterm_windup", "%d", currentPidProfile->itermWindupPointPercent);
|
||||
BLACKBOX_PRINT_HEADER_LINE("vbat_pid_gain", "%d", currentPidProfile->vbatPidCompensation);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pidAtMinThrottle", "%d", currentPidProfile->pidAtMinThrottle);
|
||||
BLACKBOX_PRINT_HEADER_LINE("looptime", "%d", gyro.targetLooptime);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_sync_denom", "%d", gyroConfig()->gyro_sync_denom);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pid_process_denom", "%d", pidConfig()->pid_process_denom);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_rate", "%d", currentControlRateProfile->rcRate8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_expo", "%d", currentControlRateProfile->rcExpo8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_rate_yaw", "%d", currentControlRateProfile->rcYawRate8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_expo_yaw", "%d", currentControlRateProfile->rcYawExpo8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("thr_mid", "%d", currentControlRateProfile->thrMid8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("thr_expo", "%d", currentControlRateProfile->thrExpo8);
|
||||
BLACKBOX_PRINT_HEADER_LINE("tpa_rate", "%d", currentControlRateProfile->dynThrPID);
|
||||
BLACKBOX_PRINT_HEADER_LINE("tpa_breakpoint", "%d", currentControlRateProfile->tpa_breakpoint);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rates", "%d,%d,%d", currentControlRateProfile->rates[ROLL],
|
||||
currentControlRateProfile->rates[PITCH],
|
||||
currentControlRateProfile->rates[YAW]);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rollPID", "%d,%d,%d", currentPidProfile->pid[PID_ROLL].P,
|
||||
currentPidProfile->pid[PID_ROLL].I,
|
||||
currentPidProfile->pid[PID_ROLL].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pitchPID", "%d,%d,%d", currentPidProfile->pid[PID_PITCH].P,
|
||||
currentPidProfile->pid[PID_PITCH].I,
|
||||
currentPidProfile->pid[PID_PITCH].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("yawPID", "%d,%d,%d", currentPidProfile->pid[PID_YAW].P,
|
||||
currentPidProfile->pid[PID_YAW].I,
|
||||
currentPidProfile->pid[PID_YAW].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("altPID", "%d,%d,%d", currentPidProfile->pid[PID_ALT].P,
|
||||
currentPidProfile->pid[PID_ALT].I,
|
||||
currentPidProfile->pid[PID_ALT].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("posPID", "%d,%d,%d", currentPidProfile->pid[PID_POS].P,
|
||||
currentPidProfile->pid[PID_POS].I,
|
||||
currentPidProfile->pid[PID_POS].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("posrPID", "%d,%d,%d", currentPidProfile->pid[PID_POSR].P,
|
||||
currentPidProfile->pid[PID_POSR].I,
|
||||
currentPidProfile->pid[PID_POSR].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("navrPID", "%d,%d,%d", currentPidProfile->pid[PID_NAVR].P,
|
||||
currentPidProfile->pid[PID_NAVR].I,
|
||||
currentPidProfile->pid[PID_NAVR].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("levelPID", "%d,%d,%d", currentPidProfile->pid[PID_LEVEL].P,
|
||||
currentPidProfile->pid[PID_LEVEL].I,
|
||||
currentPidProfile->pid[PID_LEVEL].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("magPID", "%d", currentPidProfile->pid[PID_MAG].P);
|
||||
BLACKBOX_PRINT_HEADER_LINE("velPID", "%d,%d,%d", currentPidProfile->pid[PID_VEL].P,
|
||||
currentPidProfile->pid[PID_VEL].I,
|
||||
currentPidProfile->pid[PID_VEL].D);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_filter_type", "%d", currentPidProfile->dterm_filter_type);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_lpf_hz", "%d", currentPidProfile->dterm_lpf_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("yaw_lpf_hz", "%d", currentPidProfile->yaw_lpf_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_notch_hz", "%d", currentPidProfile->dterm_notch_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_notch_cutoff", "%d", currentPidProfile->dterm_notch_cutoff);
|
||||
BLACKBOX_PRINT_HEADER_LINE("iterm_windup", "%d", currentPidProfile->itermWindupPointPercent);
|
||||
BLACKBOX_PRINT_HEADER_LINE("vbat_pid_gain", "%d", currentPidProfile->vbatPidCompensation);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pidAtMinThrottle", "%d", currentPidProfile->pidAtMinThrottle);
|
||||
|
||||
// Betaflight PID controller parameters
|
||||
BLACKBOX_PRINT_HEADER_LINE("anti_gravity_threshold", "%d", currentPidProfile->itermThrottleThreshold);
|
||||
BLACKBOX_PRINT_HEADER_LINE("anti_gravity_gain", "%d", currentPidProfile->itermAcceleratorGain);
|
||||
BLACKBOX_PRINT_HEADER_LINE("setpoint_relaxation_ratio", "%d", currentPidProfile->setpointRelaxRatio);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_setpoint_weight", "%d", currentPidProfile->dtermSetpointWeight);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_limit_yaw", "%d", currentPidProfile->yawRateAccelLimit);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_limit", "%d", currentPidProfile->rateAccelLimit);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pidsum_limit", "%d", currentPidProfile->pidSumLimit);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pidsum_limit_yaw", "%d", currentPidProfile->pidSumLimitYaw);
|
||||
BLACKBOX_PRINT_HEADER_LINE("anti_gravity_threshold", "%d", currentPidProfile->itermThrottleThreshold);
|
||||
BLACKBOX_PRINT_HEADER_LINE("anti_gravity_gain", "%d", currentPidProfile->itermAcceleratorGain);
|
||||
BLACKBOX_PRINT_HEADER_LINE("setpoint_relaxation_ratio", "%d", currentPidProfile->setpointRelaxRatio);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dterm_setpoint_weight", "%d", currentPidProfile->dtermSetpointWeight);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_limit_yaw", "%d", currentPidProfile->yawRateAccelLimit);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_limit", "%d", currentPidProfile->rateAccelLimit);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pidsum_limit", "%d", currentPidProfile->pidSumLimit);
|
||||
BLACKBOX_PRINT_HEADER_LINE("pidsum_limit_yaw", "%d", currentPidProfile->pidSumLimitYaw);
|
||||
// End of Betaflight controller parameters
|
||||
|
||||
BLACKBOX_PRINT_HEADER_LINE("deadband", "%d", rcControlsConfig()->deadband);
|
||||
BLACKBOX_PRINT_HEADER_LINE("yaw_deadband", "%d", rcControlsConfig()->yaw_deadband);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_lpf", "%d", gyroConfig()->gyro_lpf);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_lowpass_type", "%d", gyroConfig()->gyro_soft_lpf_type);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_lowpass_hz", "%d", gyroConfig()->gyro_soft_lpf_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_notch_hz", "%d,%d", gyroConfig()->gyro_soft_notch_hz_1,
|
||||
gyroConfig()->gyro_soft_notch_hz_2);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_notch_cutoff", "%d,%d", gyroConfig()->gyro_soft_notch_cutoff_1,
|
||||
gyroConfig()->gyro_soft_notch_cutoff_2);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_lpf_hz", "%d", (int)(accelerometerConfig()->acc_lpf_hz * 100.0f));
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_hardware", "%d", accelerometerConfig()->acc_hardware);
|
||||
BLACKBOX_PRINT_HEADER_LINE("baro_hardware", "%d", barometerConfig()->baro_hardware);
|
||||
BLACKBOX_PRINT_HEADER_LINE("mag_hardware", "%d", compassConfig()->mag_hardware);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_cal_on_first_arm", "%d", armingConfig()->gyro_cal_on_first_arm);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_interpolation", "%d", rxConfig()->rcInterpolation);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_interpolation_interval", "%d", rxConfig()->rcInterpolationInterval);
|
||||
BLACKBOX_PRINT_HEADER_LINE("airmode_activate_throttle", "%d", rxConfig()->airModeActivateThreshold);
|
||||
BLACKBOX_PRINT_HEADER_LINE("serialrx_provider", "%d", rxConfig()->serialrx_provider);
|
||||
BLACKBOX_PRINT_HEADER_LINE("use_unsynced_pwm", "%d", motorConfig()->dev.useUnsyncedPwm);
|
||||
BLACKBOX_PRINT_HEADER_LINE("motor_pwm_protocol", "%d", motorConfig()->dev.motorPwmProtocol);
|
||||
BLACKBOX_PRINT_HEADER_LINE("motor_pwm_rate", "%d", motorConfig()->dev.motorPwmRate);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dshot_idle_value", "%d", motorConfig()->digitalIdleOffsetValue);
|
||||
BLACKBOX_PRINT_HEADER_LINE("debug_mode", "%d", systemConfig()->debug_mode);
|
||||
BLACKBOX_PRINT_HEADER_LINE("features", "%d", featureConfig()->enabledFeatures);
|
||||
BLACKBOX_PRINT_HEADER_LINE("deadband", "%d", rcControlsConfig()->deadband);
|
||||
BLACKBOX_PRINT_HEADER_LINE("yaw_deadband", "%d", rcControlsConfig()->yaw_deadband);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_lpf", "%d", gyroConfig()->gyro_lpf);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_lowpass_type", "%d", gyroConfig()->gyro_soft_lpf_type);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_lowpass_hz", "%d", gyroConfig()->gyro_soft_lpf_hz);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_notch_hz", "%d,%d", gyroConfig()->gyro_soft_notch_hz_1,
|
||||
gyroConfig()->gyro_soft_notch_hz_2);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_notch_cutoff", "%d,%d", gyroConfig()->gyro_soft_notch_cutoff_1,
|
||||
gyroConfig()->gyro_soft_notch_cutoff_2);
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_lpf_hz", "%d", (int)(accelerometerConfig()->acc_lpf_hz * 100.0f));
|
||||
BLACKBOX_PRINT_HEADER_LINE("acc_hardware", "%d", accelerometerConfig()->acc_hardware);
|
||||
BLACKBOX_PRINT_HEADER_LINE("baro_hardware", "%d", barometerConfig()->baro_hardware);
|
||||
BLACKBOX_PRINT_HEADER_LINE("mag_hardware", "%d", compassConfig()->mag_hardware);
|
||||
BLACKBOX_PRINT_HEADER_LINE("gyro_cal_on_first_arm", "%d", armingConfig()->gyro_cal_on_first_arm);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_interpolation", "%d", rxConfig()->rcInterpolation);
|
||||
BLACKBOX_PRINT_HEADER_LINE("rc_interpolation_interval", "%d", rxConfig()->rcInterpolationInterval);
|
||||
BLACKBOX_PRINT_HEADER_LINE("airmode_activate_throttle", "%d", rxConfig()->airModeActivateThreshold);
|
||||
BLACKBOX_PRINT_HEADER_LINE("serialrx_provider", "%d", rxConfig()->serialrx_provider);
|
||||
BLACKBOX_PRINT_HEADER_LINE("use_unsynced_pwm", "%d", motorConfig()->dev.useUnsyncedPwm);
|
||||
BLACKBOX_PRINT_HEADER_LINE("motor_pwm_protocol", "%d", motorConfig()->dev.motorPwmProtocol);
|
||||
BLACKBOX_PRINT_HEADER_LINE("motor_pwm_rate", "%d", motorConfig()->dev.motorPwmRate);
|
||||
BLACKBOX_PRINT_HEADER_LINE("dshot_idle_value", "%d", motorConfig()->digitalIdleOffsetValue);
|
||||
BLACKBOX_PRINT_HEADER_LINE("debug_mode", "%d", systemConfig()->debug_mode);
|
||||
BLACKBOX_PRINT_HEADER_LINE("features", "%d", featureConfig()->enabledFeatures);
|
||||
|
||||
default:
|
||||
return true;
|
||||
|
@ -1369,30 +1370,25 @@ void blackboxLogEvent(FlightLogEvent event, flightLogEventData_t *data)
|
|||
/* If an arming beep has played since it was last logged, write the time of the arming beep to the log as a synchronization point */
|
||||
static void blackboxCheckAndLogArmingBeep(void)
|
||||
{
|
||||
flightLogEvent_syncBeep_t eventData;
|
||||
|
||||
// Use != so that we can still detect a change if the counter wraps
|
||||
if (getArmingBeepTimeMicros() != blackboxLastArmingBeep) {
|
||||
blackboxLastArmingBeep = getArmingBeepTimeMicros();
|
||||
|
||||
flightLogEvent_syncBeep_t eventData;
|
||||
eventData.time = blackboxLastArmingBeep;
|
||||
|
||||
blackboxLogEvent(FLIGHT_LOG_EVENT_SYNC_BEEP, (flightLogEventData_t *) &eventData);
|
||||
blackboxLogEvent(FLIGHT_LOG_EVENT_SYNC_BEEP, (flightLogEventData_t *)&eventData);
|
||||
}
|
||||
}
|
||||
|
||||
/* monitor the flight mode event status and trigger an event record if the state changes */
|
||||
static void blackboxCheckAndLogFlightMode(void)
|
||||
{
|
||||
flightLogEvent_flightMode_t eventData; // Add new data for current flight mode flags
|
||||
|
||||
// Use != so that we can still detect a change if the counter wraps
|
||||
if (memcmp(&rcModeActivationMask, &blackboxLastFlightModeFlags, sizeof(blackboxLastFlightModeFlags))) {
|
||||
flightLogEvent_flightMode_t eventData; // Add new data for current flight mode flags
|
||||
eventData.lastFlags = blackboxLastFlightModeFlags;
|
||||
memcpy(&blackboxLastFlightModeFlags, &rcModeActivationMask, sizeof(blackboxLastFlightModeFlags));
|
||||
memcpy(&eventData.flags, &rcModeActivationMask, sizeof(eventData.flags));
|
||||
|
||||
blackboxLogEvent(FLIGHT_LOG_EVENT_FLIGHTMODE, (flightLogEventData_t *) &eventData);
|
||||
blackboxLogEvent(FLIGHT_LOG_EVENT_FLIGHTMODE, (flightLogEventData_t *)&eventData);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1478,8 +1474,9 @@ static void blackboxLogIteration(timeUs_t currentTimeUs)
|
|||
if (blackboxShouldLogGpsHomeFrame()) {
|
||||
writeGPSHomeFrame();
|
||||
writeGPSFrame(currentTimeUs);
|
||||
} else if (GPS_numSat != gpsHistory.GPS_numSat || GPS_coord[0] != gpsHistory.GPS_coord[0]
|
||||
|| GPS_coord[1] != gpsHistory.GPS_coord[1]) {
|
||||
} else if (gpsSol.numSat != gpsHistory.GPS_numSat
|
||||
|| gpsSol.llh.lat != gpsHistory.GPS_coord[LAT]
|
||||
|| gpsSol.llh.lon != gpsHistory.GPS_coord[LON]) {
|
||||
//We could check for velocity changes as well but I doubt it changes independent of position
|
||||
writeGPSFrame(currentTimeUs);
|
||||
}
|
||||
|
|
|
@ -511,6 +511,14 @@ bool isBlackboxDeviceFull(void)
|
|||
}
|
||||
}
|
||||
|
||||
unsigned int blackboxGetLogNumber()
|
||||
{
|
||||
#ifdef USE_SDCARD
|
||||
return blackboxSDCard.largestLogFileNumber;
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Call once every loop iteration in order to maintain the global blackboxHeaderBudget with the number of bytes we can
|
||||
* transmit this iteration.
|
||||
|
|
|
@ -52,6 +52,7 @@ bool blackboxDeviceBeginLog(void);
|
|||
bool blackboxDeviceEndLog(bool retainLog);
|
||||
|
||||
bool isBlackboxDeviceFull(void);
|
||||
unsigned int blackboxGetLogNumber();
|
||||
|
||||
void blackboxReplenishHeaderBudget();
|
||||
blackboxBufferReserveStatus_e blackboxDeviceReserveBufferSpace(int32_t bytes);
|
||||
|
|
|
@ -315,10 +315,7 @@ static int cmsDrawMenuEntry(displayPort_t *pDisplay, OSD_Entry *p, uint8_t row)
|
|||
#ifdef OSD
|
||||
case OME_VISIBLE:
|
||||
if (IS_PRINTVALUE(p) && p->data) {
|
||||
uint32_t address = (uint32_t)p->data;
|
||||
uint16_t *val;
|
||||
|
||||
val = (uint16_t *)address;
|
||||
uint16_t *val = (uint16_t *)p->data;
|
||||
|
||||
if (VISIBLE(*val)) {
|
||||
cnt = displayWrite(pDisplay, RIGHT_MENU_COLUMN(pDisplay), row, "YES");
|
||||
|
@ -577,7 +574,7 @@ STATIC_UNIT_TESTED void cmsMenuOpen(void)
|
|||
return;
|
||||
cmsInMenu = true;
|
||||
currentCtx = (cmsCtx_t){ &menuMain, 0, 0 };
|
||||
DISABLE_ARMING_FLAG(OK_TO_ARM);
|
||||
setArmingDisabled(ARMING_DISABLED_CMS_MENU);
|
||||
} else {
|
||||
// Switch display
|
||||
displayPort_t *pNextDisplay = cmsDisplayPortSelectNext();
|
||||
|
@ -645,7 +642,7 @@ long cmsMenuExit(displayPort_t *pDisplay, const void *ptr)
|
|||
systemReset();
|
||||
}
|
||||
|
||||
ENABLE_ARMING_FLAG(OK_TO_ARM);
|
||||
unsetArmingDisabled(ARMING_DISABLED_CMS_MENU);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -757,10 +754,7 @@ STATIC_UNIT_TESTED uint16_t cmsHandleKey(displayPort_t *pDisplay, uint8_t key)
|
|||
#ifdef OSD
|
||||
case OME_VISIBLE:
|
||||
if (p->data) {
|
||||
uint32_t address = (uint32_t)p->data;
|
||||
uint16_t *val;
|
||||
|
||||
val = (uint16_t *)address;
|
||||
uint16_t *val = (uint16_t *)p->data;
|
||||
|
||||
if (key == KEY_RIGHT)
|
||||
*val |= VISIBLE_FLAG;
|
||||
|
|
|
@ -107,7 +107,8 @@
|
|||
#define PG_SONAR_CONFIG 516
|
||||
#define PG_ESC_SENSOR_CONFIG 517
|
||||
#define PG_I2C_CONFIG 518
|
||||
#define PG_BETAFLIGHT_END 518
|
||||
#define PG_DASHBOARD_CONFIG 519
|
||||
#define PG_BETAFLIGHT_END 519
|
||||
|
||||
|
||||
// OSD configuration (subject to change)
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#include "platform.h"
|
||||
#include "common/axis.h"
|
||||
#include "drivers/exti.h"
|
||||
#include "drivers/bus.h"
|
||||
#include "drivers/sensor.h"
|
||||
#include "drivers/accgyro/accgyro_mpu.h"
|
||||
#if defined(SIMULATOR_BUILD) && defined(SIMULATOR_MULTITHREAD)
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/bus.h"
|
||||
#include "drivers/exti.h"
|
||||
#include "drivers/sensor.h"
|
||||
|
||||
|
|
|
@ -103,6 +103,7 @@ bool bmi160Detect(const busDevice_t *bus)
|
|||
return true;
|
||||
IOInit(bus->spi.csnPin, OWNER_MPU_CS, 0);
|
||||
IOConfigGPIO(bus->spi.csnPin, SPI_IO_CS_CFG);
|
||||
IOHi(bus->spi.csnPin);
|
||||
|
||||
spiSetDivisor(BMI160_SPI_INSTANCE, BMI160_SPI_DIVISOR);
|
||||
|
||||
|
|
|
@ -34,7 +34,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/sensor.h"
|
||||
#include "drivers/bus.h"
|
||||
|
||||
enum pios_bmi160_orientation { // clockwise rotation from board forward
|
||||
PIOS_BMI160_TOP_0DEG,
|
||||
|
|
|
@ -69,6 +69,7 @@ static void icm20689SpiInit(const busDevice_t *bus)
|
|||
|
||||
IOInit(bus->spi.csnPin, OWNER_MPU_CS, 0);
|
||||
IOConfigGPIO(bus->spi.csnPin, SPI_IO_CS_CFG);
|
||||
IOHi(bus->spi.csnPin);
|
||||
|
||||
spiSetDivisor(ICM20689_SPI_INSTANCE, SPI_CLOCK_STANDARD);
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
*/
|
||||
#pragma once
|
||||
|
||||
#include "drivers/sensor.h"
|
||||
#include "drivers/bus.h"
|
||||
|
||||
#define ICM20689_WHO_AM_I_CONST (0x98)
|
||||
#define ICM20689_BIT_RESET (0x80)
|
||||
|
|
|
@ -155,6 +155,7 @@ bool mpu6000SpiDetect(const busDevice_t *bus)
|
|||
|
||||
IOInit(bus->spi.csnPin, OWNER_MPU_CS, 0);
|
||||
IOConfigGPIO(bus->spi.csnPin, SPI_IO_CS_CFG);
|
||||
IOHi(bus->spi.csnPin);
|
||||
|
||||
spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_CLOCK_INITIALIZATON);
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/sensor.h"
|
||||
#include "drivers/bus.h"
|
||||
|
||||
#define MPU6000_CONFIG 0x1A
|
||||
|
||||
|
|
|
@ -77,6 +77,7 @@ static void mpu6500SpiInit(const busDevice_t *bus)
|
|||
|
||||
IOInit(bus->spi.csnPin, OWNER_MPU_CS, 0);
|
||||
IOConfigGPIO(bus->spi.csnPin, SPI_IO_CS_CFG);
|
||||
IOHi(bus->spi.csnPin);
|
||||
|
||||
spiSetDivisor(MPU6500_SPI_INSTANCE, SPI_CLOCK_FAST);
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/sensor.h"
|
||||
#include "drivers/bus.h"
|
||||
|
||||
uint8_t mpu6500SpiDetect(const busDevice_t *bus);
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/sensor.h"
|
||||
#include "drivers/bus.h"
|
||||
|
||||
#define mpu9250_CONFIG 0x1A
|
||||
|
||||
|
|
|
@ -19,6 +19,21 @@
|
|||
|
||||
#include "platform.h"
|
||||
|
||||
#include "drivers/bus_i2c.h"
|
||||
#include "drivers/io_types.h"
|
||||
|
||||
typedef union busDevice_u {
|
||||
struct deviceSpi_s {
|
||||
SPI_TypeDef *instance;
|
||||
IO_t csnPin;
|
||||
} spi;
|
||||
struct deviceI2C_s {
|
||||
I2CDevice device;
|
||||
uint8_t address;
|
||||
} i2c;
|
||||
} busDevice_t;
|
||||
|
||||
|
||||
#ifdef TARGET_BUS_INIT
|
||||
void targetBusInit(void);
|
||||
#endif
|
||||
|
|
|
@ -45,6 +45,14 @@ typedef enum I2CDevice {
|
|||
#define I2CDEV_COUNT 4
|
||||
#endif
|
||||
|
||||
// Macros to convert between CLI bus number and I2CDevice.
|
||||
#define I2C_CFG_TO_DEV(x) ((x) - 1)
|
||||
#define I2C_DEV_TO_CFG(x) ((x) + 1)
|
||||
|
||||
// I2C device address range in 8-bit address mode
|
||||
#define I2C_ADDR8_MIN 8
|
||||
#define I2C_ADDR8_MAX 119
|
||||
|
||||
typedef struct i2cConfig_s {
|
||||
ioTag_t ioTagScl[I2CDEV_COUNT];
|
||||
ioTag_t ioTagSda[I2CDEV_COUNT];
|
||||
|
|
|
@ -72,14 +72,14 @@
|
|||
|
||||
static spiDevice_t spiHardwareMap[] = {
|
||||
#if defined(STM32F1)
|
||||
{ .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = 0, false },
|
||||
{ .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = 0, false },
|
||||
{ .dev = SPI1, .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = 0, false },
|
||||
{ .dev = SPI2, .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = 0, false },
|
||||
#else
|
||||
{ .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = GPIO_AF_SPI1, false },
|
||||
{ .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = GPIO_AF_SPI2, false },
|
||||
{ .dev = SPI1, .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = GPIO_AF_SPI1, false },
|
||||
{ .dev = SPI2, .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = GPIO_AF_SPI2, false },
|
||||
#endif
|
||||
#if defined(STM32F3) || defined(STM32F4)
|
||||
{ .dev = SPI3, .nss = IO_TAG(SPI3_NSS_PIN), .sck = IO_TAG(SPI3_SCK_PIN), .miso = IO_TAG(SPI3_MISO_PIN), .mosi = IO_TAG(SPI3_MOSI_PIN), .rcc = RCC_APB1(SPI3), .af = GPIO_AF_SPI3, false }
|
||||
{ .dev = SPI3, .sck = IO_TAG(SPI3_SCK_PIN), .miso = IO_TAG(SPI3_MISO_PIN), .mosi = IO_TAG(SPI3_MOSI_PIN), .rcc = RCC_APB1(SPI3), .af = GPIO_AF_SPI3, false }
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -124,21 +124,11 @@ void spiInitDevice(SPIDevice device)
|
|||
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_CFG, spi->af);
|
||||
IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_CFG, spi->af);
|
||||
IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);
|
||||
|
||||
if (spi->nss) {
|
||||
IOInit(IOGetByTag(spi->nss), OWNER_SPI_CS, RESOURCE_INDEX(device));
|
||||
IOConfigGPIOAF(IOGetByTag(spi->nss), SPI_IO_CS_CFG, spi->af);
|
||||
}
|
||||
#endif
|
||||
#if defined(STM32F10X)
|
||||
IOConfigGPIO(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG);
|
||||
IOConfigGPIO(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG);
|
||||
IOConfigGPIO(IOGetByTag(spi->mosi), SPI_IO_AF_MOSI_CFG);
|
||||
|
||||
if (spi->nss) {
|
||||
IOInit(IOGetByTag(spi->nss), OWNER_SPI_CS, RESOURCE_INDEX(device));
|
||||
IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Init SPI hardware
|
||||
|
@ -168,11 +158,6 @@ void spiInitDevice(SPIDevice device)
|
|||
|
||||
SPI_Init(spi->dev, &spiInit);
|
||||
SPI_Cmd(spi->dev, ENABLE);
|
||||
|
||||
if (spi->nss) {
|
||||
// Drive NSS high to disable connected SPI device.
|
||||
IOHi(IOGetByTag(spi->nss));
|
||||
}
|
||||
}
|
||||
|
||||
bool spiInit(SPIDevice device)
|
||||
|
|
|
@ -71,7 +71,6 @@ typedef enum SPIDevice {
|
|||
|
||||
typedef struct SPIDevice_s {
|
||||
SPI_TypeDef *dev;
|
||||
ioTag_t nss;
|
||||
ioTag_t sck;
|
||||
ioTag_t mosi;
|
||||
ioTag_t miso;
|
||||
|
@ -86,6 +85,7 @@ typedef struct SPIDevice_s {
|
|||
#endif
|
||||
} spiDevice_t;
|
||||
|
||||
void spiPreInitCs(ioTag_t iotag);
|
||||
bool spiInit(SPIDevice device);
|
||||
void spiSetDivisor(SPI_TypeDef *instance, uint16_t divisor);
|
||||
uint8_t spiTransferByte(SPI_TypeDef *instance, uint8_t in);
|
||||
|
|
37
src/main/drivers/bus_spi_config.c
Normal file
37
src/main/drivers/bus_spi_config.c
Normal file
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
* This file is part of Cleanflight.
|
||||
*
|
||||
* Cleanflight is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Cleanflight is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <platform.h>
|
||||
|
||||
#include "drivers/bus_spi.h"
|
||||
#include "drivers/io.h"
|
||||
|
||||
// Bring a pin for possible CS line to pull-up state in preparation for
|
||||
// sequential initialization by relevant drivers.
|
||||
// Note that the pin is set to input for safety at this point.
|
||||
|
||||
void spiPreInitCs(ioTag_t iotag)
|
||||
{
|
||||
IO_t io = IOGetByTag(iotag);
|
||||
if (io) {
|
||||
IOInit(io, OWNER_SPI_PREINIT, 0);
|
||||
IOConfigGPIO(io, IOCFG_IPU);
|
||||
}
|
||||
}
|
|
@ -70,10 +70,10 @@
|
|||
|
||||
|
||||
static spiDevice_t spiHardwareMap[] = {
|
||||
{ .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = GPIO_AF5_SPI1, .leadingEdge = false, .dmaIrqHandler = DMA2_ST3_HANDLER },
|
||||
{ .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = GPIO_AF5_SPI2, .leadingEdge = false, .dmaIrqHandler = DMA1_ST4_HANDLER },
|
||||
{ .dev = SPI3, .nss = IO_TAG(SPI3_NSS_PIN), .sck = IO_TAG(SPI3_SCK_PIN), .miso = IO_TAG(SPI3_MISO_PIN), .mosi = IO_TAG(SPI3_MOSI_PIN), .rcc = RCC_APB1(SPI3), .af = GPIO_AF6_SPI3, .leadingEdge = false, .dmaIrqHandler = DMA1_ST7_HANDLER },
|
||||
{ .dev = SPI4, .nss = IO_TAG(SPI4_NSS_PIN), .sck = IO_TAG(SPI4_SCK_PIN), .miso = IO_TAG(SPI4_MISO_PIN), .mosi = IO_TAG(SPI4_MOSI_PIN), .rcc = RCC_APB2(SPI4), .af = GPIO_AF5_SPI4, .leadingEdge = false, .dmaIrqHandler = DMA2_ST1_HANDLER }
|
||||
{ .dev = SPI1, .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = GPIO_AF5_SPI1, .leadingEdge = false, .dmaIrqHandler = DMA2_ST3_HANDLER },
|
||||
{ .dev = SPI2, .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = GPIO_AF5_SPI2, .leadingEdge = false, .dmaIrqHandler = DMA1_ST4_HANDLER },
|
||||
{ .dev = SPI3, .sck = IO_TAG(SPI3_SCK_PIN), .miso = IO_TAG(SPI3_MISO_PIN), .mosi = IO_TAG(SPI3_MOSI_PIN), .rcc = RCC_APB1(SPI3), .af = GPIO_AF6_SPI3, .leadingEdge = false, .dmaIrqHandler = DMA1_ST7_HANDLER },
|
||||
{ .dev = SPI4, .sck = IO_TAG(SPI4_SCK_PIN), .miso = IO_TAG(SPI4_MISO_PIN), .mosi = IO_TAG(SPI4_MOSI_PIN), .rcc = RCC_APB2(SPI4), .af = GPIO_AF5_SPI4, .leadingEdge = false, .dmaIrqHandler = DMA2_ST1_HANDLER }
|
||||
};
|
||||
|
||||
SPIDevice spiDeviceByInstance(SPI_TypeDef *instance)
|
||||
|
@ -159,21 +159,11 @@ void spiInitDevice(SPIDevice device)
|
|||
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_HIGH, spi->af);
|
||||
IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG, spi->af);
|
||||
IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);
|
||||
|
||||
if (spi->nss) {
|
||||
IOInit(IOGetByTag(spi->nss), OWNER_SPI_CS, RESOURCE_INDEX(device));
|
||||
IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG);
|
||||
}
|
||||
#endif
|
||||
#if defined(STM32F10X)
|
||||
IOConfigGPIO(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG);
|
||||
IOConfigGPIO(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG);
|
||||
IOConfigGPIO(IOGetByTag(spi->mosi), SPI_IO_AF_MOSI_CFG);
|
||||
|
||||
if (spi->nss) {
|
||||
IOInit(IOGetByTag(spi->nss), OWNER_SPI_CS, RESOURCE_INDEX(device));
|
||||
IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG);
|
||||
}
|
||||
#endif
|
||||
spiHardwareMap[device].hspi.Instance = spi->dev;
|
||||
// Init SPI hardware
|
||||
|
@ -198,11 +188,7 @@ void spiInitDevice(SPIDevice device)
|
|||
spiHardwareMap[device].hspi.Init.CLKPhase = SPI_PHASE_2EDGE;
|
||||
}
|
||||
|
||||
if (HAL_SPI_Init(&spiHardwareMap[device].hspi) == HAL_OK)
|
||||
{
|
||||
if (spi->nss) {
|
||||
IOHi(IOGetByTag(spi->nss));
|
||||
}
|
||||
if (HAL_SPI_Init(&spiHardwareMap[device].hspi) == HAL_OK) {
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/bus.h"
|
||||
#include "drivers/sensor.h"
|
||||
|
||||
typedef struct magDev_s {
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "platform.h"
|
||||
|
||||
|
@ -66,13 +67,23 @@ bool displayIsGrabbed(const displayPort_t *instance)
|
|||
return (instance && instance->grabCount > 0);
|
||||
}
|
||||
|
||||
void displaySetXY(displayPort_t *instance, uint8_t x, uint8_t y)
|
||||
{
|
||||
instance->posX = x;
|
||||
instance->posY = y;
|
||||
}
|
||||
|
||||
int displayWrite(displayPort_t *instance, uint8_t x, uint8_t y, const char *s)
|
||||
{
|
||||
return instance->vTable->write(instance, x, y, s);
|
||||
instance->posX = x + strlen(s);
|
||||
instance->posY = y;
|
||||
return instance->vTable->writeString(instance, x, y, s);
|
||||
}
|
||||
|
||||
int displayWriteChar(displayPort_t *instance, uint8_t x, uint8_t y, uint8_t c)
|
||||
{
|
||||
instance->posX = x + 1;
|
||||
instance->posY = y;
|
||||
return instance->vTable->writeChar(instance, x, y, c);
|
||||
}
|
||||
|
||||
|
|
|
@ -20,8 +20,11 @@
|
|||
struct displayPortVTable_s;
|
||||
typedef struct displayPort_s {
|
||||
const struct displayPortVTable_s *vTable;
|
||||
void *device;
|
||||
uint8_t rows;
|
||||
uint8_t cols;
|
||||
uint8_t posX;
|
||||
uint8_t posY;
|
||||
|
||||
// CMS state
|
||||
bool cleared;
|
||||
|
@ -35,7 +38,7 @@ typedef struct displayPortVTable_s {
|
|||
int (*clearScreen)(displayPort_t *displayPort);
|
||||
int (*drawScreen)(displayPort_t *displayPort);
|
||||
int (*screenSize)(const displayPort_t *displayPort);
|
||||
int (*write)(displayPort_t *displayPort, uint8_t x, uint8_t y, const char *text);
|
||||
int (*writeString)(displayPort_t *displayPort, uint8_t x, uint8_t y, const char *text);
|
||||
int (*writeChar)(displayPort_t *displayPort, uint8_t x, uint8_t y, uint8_t c);
|
||||
bool (*isTransferInProgress)(const displayPort_t *displayPort);
|
||||
int (*heartbeat)(displayPort_t *displayPort);
|
||||
|
@ -58,6 +61,7 @@ bool displayIsGrabbed(const displayPort_t *instance);
|
|||
void displayClearScreen(displayPort_t *instance);
|
||||
void displayDrawScreen(displayPort_t *instance);
|
||||
int displayScreenSize(const displayPort_t *instance);
|
||||
void displaySetXY(displayPort_t *instance, uint8_t x, uint8_t y);
|
||||
int displayWrite(displayPort_t *instance, uint8_t x, uint8_t y, const char *s);
|
||||
int displayWriteChar(displayPort_t *instance, uint8_t x, uint8_t y, uint8_t c);
|
||||
bool displayIsTransferInProgress(const displayPort_t *instance);
|
||||
|
|
|
@ -176,78 +176,76 @@ static const uint8_t multiWiiFont[][5] = { // Refer to "Times New Roman" Font Da
|
|||
{ 0x7A, 0x7E, 0x7E, 0x7E, 0x7A }, // (131) - 0x00C8 Vertical Bargraph - 6 (full)
|
||||
};
|
||||
|
||||
#define OLED_address 0x3C // OLED at address 0x3C in 7bit
|
||||
|
||||
static bool i2c_OLED_send_cmd(uint8_t command)
|
||||
static bool i2c_OLED_send_cmd(busDevice_t *bus, uint8_t command)
|
||||
{
|
||||
return i2cWrite(OLED_I2C_INSTANCE, OLED_address, 0x80, command);
|
||||
return i2cWrite(bus->i2c.device, bus->i2c.address, 0x80, command);
|
||||
}
|
||||
|
||||
static bool i2c_OLED_send_byte(uint8_t val)
|
||||
static bool i2c_OLED_send_byte(busDevice_t *bus, uint8_t val)
|
||||
{
|
||||
return i2cWrite(OLED_I2C_INSTANCE, OLED_address, 0x40, val);
|
||||
return i2cWrite(bus->i2c.device, bus->i2c.address, 0x40, val);
|
||||
}
|
||||
|
||||
void i2c_OLED_clear_display(void)
|
||||
void i2c_OLED_clear_display(busDevice_t *bus)
|
||||
{
|
||||
i2c_OLED_send_cmd(0xa6); // Set Normal Display
|
||||
i2c_OLED_send_cmd(0xae); // Display OFF
|
||||
i2c_OLED_send_cmd(0x20); // Set Memory Addressing Mode
|
||||
i2c_OLED_send_cmd(0x00); // Set Memory Addressing Mode to Horizontal addressing mode
|
||||
i2c_OLED_send_cmd(0xb0); // set page address to 0
|
||||
i2c_OLED_send_cmd(0x40); // Display start line register to 0
|
||||
i2c_OLED_send_cmd(0); // Set low col address to 0
|
||||
i2c_OLED_send_cmd(0x10); // Set high col address to 0
|
||||
i2c_OLED_send_cmd(bus, 0xa6); // Set Normal Display
|
||||
i2c_OLED_send_cmd(bus, 0xae); // Display OFF
|
||||
i2c_OLED_send_cmd(bus, 0x20); // Set Memory Addressing Mode
|
||||
i2c_OLED_send_cmd(bus, 0x00); // Set Memory Addressing Mode to Horizontal addressing mode
|
||||
i2c_OLED_send_cmd(bus, 0xb0); // set page address to 0
|
||||
i2c_OLED_send_cmd(bus, 0x40); // Display start line register to 0
|
||||
i2c_OLED_send_cmd(bus, 0); // Set low col address to 0
|
||||
i2c_OLED_send_cmd(bus, 0x10); // Set high col address to 0
|
||||
for(uint16_t i = 0; i < 1024; i++) { // fill the display's RAM with graphic... 128*64 pixel picture
|
||||
i2c_OLED_send_byte(0x00); // clear
|
||||
i2c_OLED_send_byte(bus, 0x00); // clear
|
||||
}
|
||||
i2c_OLED_send_cmd(0x81); // Setup CONTRAST CONTROL, following byte is the contrast Value... always a 2 byte instruction
|
||||
i2c_OLED_send_cmd(200); // Here you can set the brightness 1 = dull, 255 is very bright
|
||||
i2c_OLED_send_cmd(0xaf); // display on
|
||||
i2c_OLED_send_cmd(bus, 0x81); // Setup CONTRAST CONTROL, following byte is the contrast Value... always a 2 byte instruction
|
||||
i2c_OLED_send_cmd(bus, 200); // Here you can set the brightness 1 = dull, 255 is very bright
|
||||
i2c_OLED_send_cmd(bus, 0xaf); // display on
|
||||
}
|
||||
|
||||
void i2c_OLED_clear_display_quick(void)
|
||||
void i2c_OLED_clear_display_quick(busDevice_t *bus)
|
||||
{
|
||||
i2c_OLED_send_cmd(0xb0); // set page address to 0
|
||||
i2c_OLED_send_cmd(0x40); // Display start line register to 0
|
||||
i2c_OLED_send_cmd(0); // Set low col address to 0
|
||||
i2c_OLED_send_cmd(0x10); // Set high col address to 0
|
||||
i2c_OLED_send_cmd(bus, 0xb0); // set page address to 0
|
||||
i2c_OLED_send_cmd(bus, 0x40); // Display start line register to 0
|
||||
i2c_OLED_send_cmd(bus, 0); // Set low col address to 0
|
||||
i2c_OLED_send_cmd(bus, 0x10); // Set high col address to 0
|
||||
for(uint16_t i = 0; i < 1024; i++) { // fill the display's RAM with graphic... 128*64 pixel picture
|
||||
i2c_OLED_send_byte(0x00); // clear
|
||||
i2c_OLED_send_byte(bus, 0x00); // clear
|
||||
}
|
||||
}
|
||||
|
||||
void i2c_OLED_set_xy(uint8_t col, uint8_t row)
|
||||
void i2c_OLED_set_xy(busDevice_t *bus, uint8_t col, uint8_t row)
|
||||
{
|
||||
i2c_OLED_send_cmd(0xb0 + row); //set page address
|
||||
i2c_OLED_send_cmd(0x00 + ((CHARACTER_WIDTH_TOTAL * col) & 0x0f)); //set low col address
|
||||
i2c_OLED_send_cmd(0x10 + (((CHARACTER_WIDTH_TOTAL * col) >> 4) & 0x0f)); //set high col address
|
||||
i2c_OLED_send_cmd(bus, 0xb0 + row); //set page address
|
||||
i2c_OLED_send_cmd(bus, 0x00 + ((CHARACTER_WIDTH_TOTAL * col) & 0x0f)); //set low col address
|
||||
i2c_OLED_send_cmd(bus, 0x10 + (((CHARACTER_WIDTH_TOTAL * col) >> 4) & 0x0f)); //set high col address
|
||||
}
|
||||
|
||||
void i2c_OLED_set_line(uint8_t row)
|
||||
void i2c_OLED_set_line(busDevice_t *bus, uint8_t row)
|
||||
{
|
||||
i2c_OLED_send_cmd(0xb0 + row); //set page address
|
||||
i2c_OLED_send_cmd(0); //set low col address
|
||||
i2c_OLED_send_cmd(0x10); //set high col address
|
||||
i2c_OLED_send_cmd(bus, 0xb0 + row); //set page address
|
||||
i2c_OLED_send_cmd(bus, 0); //set low col address
|
||||
i2c_OLED_send_cmd(bus, 0x10); //set high col address
|
||||
}
|
||||
|
||||
void i2c_OLED_send_char(unsigned char ascii)
|
||||
void i2c_OLED_send_char(busDevice_t *bus, unsigned char ascii)
|
||||
{
|
||||
unsigned char i;
|
||||
uint8_t buffer;
|
||||
for (i = 0; i < 5; i++) {
|
||||
buffer = multiWiiFont[ascii - 32][i];
|
||||
buffer ^= CHAR_FORMAT; // apply
|
||||
i2c_OLED_send_byte(buffer);
|
||||
i2c_OLED_send_byte(bus, buffer);
|
||||
}
|
||||
i2c_OLED_send_byte(CHAR_FORMAT); // the gap
|
||||
i2c_OLED_send_byte(bus, CHAR_FORMAT); // the gap
|
||||
}
|
||||
|
||||
void i2c_OLED_send_string(const char *string)
|
||||
void i2c_OLED_send_string(busDevice_t *bus, const char *string)
|
||||
{
|
||||
// Sends a string of chars until null terminator
|
||||
while (*string) {
|
||||
i2c_OLED_send_char(*string);
|
||||
i2c_OLED_send_char(bus, *string);
|
||||
string++;
|
||||
}
|
||||
}
|
||||
|
@ -255,38 +253,38 @@ void i2c_OLED_send_string(const char *string)
|
|||
/**
|
||||
* according to http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf Chapter 4.4 Page 15
|
||||
*/
|
||||
bool ug2864hsweg01InitI2C(void)
|
||||
bool ug2864hsweg01InitI2C(busDevice_t *bus)
|
||||
{
|
||||
|
||||
// Set display OFF
|
||||
if (!i2c_OLED_send_cmd(0xAE)) {
|
||||
if (!i2c_OLED_send_cmd(bus, 0xAE)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
i2c_OLED_send_cmd(0xD4); // Set Display Clock Divide Ratio / OSC Frequency
|
||||
i2c_OLED_send_cmd(0x80); // Display Clock Divide Ratio / OSC Frequency
|
||||
i2c_OLED_send_cmd(0xA8); // Set Multiplex Ratio
|
||||
i2c_OLED_send_cmd(0x3F); // Multiplex Ratio for 128x64 (64-1)
|
||||
i2c_OLED_send_cmd(0xD3); // Set Display Offset
|
||||
i2c_OLED_send_cmd(0x00); // Display Offset
|
||||
i2c_OLED_send_cmd(0x40); // Set Display Start Line
|
||||
i2c_OLED_send_cmd(0x8D); // Set Charge Pump
|
||||
i2c_OLED_send_cmd(0x14); // Charge Pump (0x10 External, 0x14 Internal DC/DC)
|
||||
i2c_OLED_send_cmd(0xA1); // Set Segment Re-Map
|
||||
i2c_OLED_send_cmd(0xC8); // Set Com Output Scan Direction
|
||||
i2c_OLED_send_cmd(0xDA); // Set COM Hardware Configuration
|
||||
i2c_OLED_send_cmd(0x12); // COM Hardware Configuration
|
||||
i2c_OLED_send_cmd(0x81); // Set Contrast
|
||||
i2c_OLED_send_cmd(0xCF); // Contrast
|
||||
i2c_OLED_send_cmd(0xD9); // Set Pre-Charge Period
|
||||
i2c_OLED_send_cmd(0xF1); // Set Pre-Charge Period (0x22 External, 0xF1 Internal)
|
||||
i2c_OLED_send_cmd(0xDB); // Set VCOMH Deselect Level
|
||||
i2c_OLED_send_cmd(0x40); // VCOMH Deselect Level
|
||||
i2c_OLED_send_cmd(0xA4); // Set all pixels OFF
|
||||
i2c_OLED_send_cmd(0xA6); // Set display not inverted
|
||||
i2c_OLED_send_cmd(0xAF); // Set display On
|
||||
i2c_OLED_send_cmd(bus, 0xD4); // Set Display Clock Divide Ratio / OSC Frequency
|
||||
i2c_OLED_send_cmd(bus, 0x80); // Display Clock Divide Ratio / OSC Frequency
|
||||
i2c_OLED_send_cmd(bus, 0xA8); // Set Multiplex Ratio
|
||||
i2c_OLED_send_cmd(bus, 0x3F); // Multiplex Ratio for 128x64 (64-1)
|
||||
i2c_OLED_send_cmd(bus, 0xD3); // Set Display Offset
|
||||
i2c_OLED_send_cmd(bus, 0x00); // Display Offset
|
||||
i2c_OLED_send_cmd(bus, 0x40); // Set Display Start Line
|
||||
i2c_OLED_send_cmd(bus, 0x8D); // Set Charge Pump
|
||||
i2c_OLED_send_cmd(bus, 0x14); // Charge Pump (0x10 External, 0x14 Internal DC/DC)
|
||||
i2c_OLED_send_cmd(bus, 0xA1); // Set Segment Re-Map
|
||||
i2c_OLED_send_cmd(bus, 0xC8); // Set Com Output Scan Direction
|
||||
i2c_OLED_send_cmd(bus, 0xDA); // Set COM Hardware Configuration
|
||||
i2c_OLED_send_cmd(bus, 0x12); // COM Hardware Configuration
|
||||
i2c_OLED_send_cmd(bus, 0x81); // Set Contrast
|
||||
i2c_OLED_send_cmd(bus, 0xCF); // Contrast
|
||||
i2c_OLED_send_cmd(bus, 0xD9); // Set Pre-Charge Period
|
||||
i2c_OLED_send_cmd(bus, 0xF1); // Set Pre-Charge Period (0x22 External, 0xF1 Internal)
|
||||
i2c_OLED_send_cmd(bus, 0xDB); // Set VCOMH Deselect Level
|
||||
i2c_OLED_send_cmd(bus, 0x40); // VCOMH Deselect Level
|
||||
i2c_OLED_send_cmd(bus, 0xA4); // Set all pixels OFF
|
||||
i2c_OLED_send_cmd(bus, 0xA6); // Set display not inverted
|
||||
i2c_OLED_send_cmd(bus, 0xAF); // Set display On
|
||||
|
||||
i2c_OLED_clear_display();
|
||||
i2c_OLED_clear_display(bus);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -17,6 +17,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "drivers/bus.h"
|
||||
|
||||
#define SCREEN_WIDTH 128
|
||||
#define SCREEN_HEIGHT 64
|
||||
|
||||
|
@ -34,12 +36,11 @@
|
|||
#define VERTICAL_BARGRAPH_ZERO_CHARACTER (128 + 32)
|
||||
#define VERTICAL_BARGRAPH_CHARACTER_COUNT 7
|
||||
|
||||
bool ug2864hsweg01InitI2C(void);
|
||||
|
||||
void i2c_OLED_set_xy(uint8_t col, uint8_t row);
|
||||
void i2c_OLED_set_line(uint8_t row);
|
||||
void i2c_OLED_send_char(unsigned char ascii);
|
||||
void i2c_OLED_send_string(const char *string);
|
||||
void i2c_OLED_clear_display(void);
|
||||
void i2c_OLED_clear_display_quick(void);
|
||||
bool ug2864hsweg01InitI2C(busDevice_t *bus);
|
||||
|
||||
void i2c_OLED_set_xy(busDevice_t *bus, uint8_t col, uint8_t row);
|
||||
void i2c_OLED_set_line(busDevice_t *bus, uint8_t row);
|
||||
void i2c_OLED_send_char(busDevice_t *bus, unsigned char ascii);
|
||||
void i2c_OLED_send_string(busDevice_t *bus, const char *string);
|
||||
void i2c_OLED_clear_display(busDevice_t *bus);
|
||||
void i2c_OLED_clear_display_quick(busDevice_t *bus);
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
// number of bytes needed is #LEDs * 24 bytes + 42 trailing bytes)
|
||||
#define WS2811_DMA_BUFFER_SIZE (WS2811_DATA_BUFFER_SIZE + WS2811_DELAY_BUFFER_LENGTH)
|
||||
|
||||
#define WS2811_TIMER_MHZ 24
|
||||
#define WS2811_TIMER_MHZ 48
|
||||
#define WS2811_CARRIER_HZ 800000
|
||||
|
||||
void ws2811LedStripInit(ioTag_t ioTag);
|
||||
|
|
|
@ -397,6 +397,7 @@ void max7456Init(const vcdProfile_t *pVcdProfile)
|
|||
#endif
|
||||
IOInit(max7456CsPin, OWNER_OSD_CS, 0);
|
||||
IOConfigGPIO(max7456CsPin, SPI_IO_CS_CFG);
|
||||
IOHi(max7456CsPin);
|
||||
|
||||
spiSetDivisor(MAX7456_SPI_INSTANCE, SPI_CLOCK_STANDARD);
|
||||
// force soft reset on Max7456
|
||||
|
|
|
@ -21,6 +21,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#define SYM_END_OF_FONT 0xFF
|
||||
|
||||
// Character Symbols
|
||||
#define SYM_BLANK 0x20
|
||||
|
||||
|
|
|
@ -28,14 +28,13 @@
|
|||
#include "timer.h"
|
||||
#include "drivers/pwm_output.h"
|
||||
|
||||
#define MULTISHOT_5US_PW (MULTISHOT_TIMER_MHZ * 5)
|
||||
#define MULTISHOT_20US_MULT (MULTISHOT_TIMER_MHZ * 20 / 1000.0f)
|
||||
|
||||
#define DSHOT_MAX_COMMAND 47
|
||||
|
||||
static pwmWriteFuncPtr pwmWritePtr;
|
||||
static pwmWriteFunc *pwmWrite;
|
||||
static pwmOutputPort_t motors[MAX_SUPPORTED_MOTORS];
|
||||
static pwmCompleteWriteFuncPtr pwmCompleteWritePtr = NULL;
|
||||
static pwmCompleteWriteFunc *pwmCompleteWrite = NULL;
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
loadDmaBufferFunc *loadDmaBuffer;
|
||||
#endif
|
||||
|
||||
#ifdef USE_SERVOS
|
||||
static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS];
|
||||
|
@ -43,10 +42,11 @@ static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS];
|
|||
|
||||
#ifdef BEEPER
|
||||
static pwmOutputPort_t beeperPwm;
|
||||
static uint16_t freqBeep=0;
|
||||
static uint16_t freqBeep = 0;
|
||||
#endif
|
||||
|
||||
bool pwmMotorsEnabled = false;
|
||||
bool isDshot = false;
|
||||
|
||||
static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8_t output)
|
||||
{
|
||||
|
@ -96,16 +96,19 @@ static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8
|
|||
#endif
|
||||
}
|
||||
|
||||
static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHardware, uint8_t mhz, uint16_t period, uint16_t value, uint8_t inversion)
|
||||
static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHardware, uint32_t hz, uint16_t period, uint16_t value, uint8_t inversion)
|
||||
{
|
||||
#if defined(USE_HAL_DRIVER)
|
||||
TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim);
|
||||
if(Handle == NULL) return;
|
||||
#endif
|
||||
|
||||
configTimeBase(timerHardware->tim, period, mhz);
|
||||
pwmOCConfig(timerHardware->tim, timerHardware->channel, value,
|
||||
inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
|
||||
configTimeBase(timerHardware->tim, period, hz);
|
||||
pwmOCConfig(timerHardware->tim,
|
||||
timerHardware->channel,
|
||||
value,
|
||||
inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output
|
||||
);
|
||||
|
||||
#if defined(USE_HAL_DRIVER)
|
||||
if(timerHardware->output & TIMER_OUTPUT_N_CHANNEL)
|
||||
|
@ -119,7 +122,7 @@ static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHard
|
|||
#endif
|
||||
|
||||
port->ccr = timerChCCR(timerHardware);
|
||||
port->period = period;
|
||||
|
||||
port->tim = timerHardware->tim;
|
||||
|
||||
*port->ccr = 0;
|
||||
|
@ -131,35 +134,43 @@ static void pwmWriteUnused(uint8_t index, float value)
|
|||
UNUSED(value);
|
||||
}
|
||||
|
||||
static void pwmWriteBrushed(uint8_t index, float value)
|
||||
{
|
||||
*motors[index].ccr = lrintf((value - 1000) * motors[index].period / 1000);
|
||||
}
|
||||
|
||||
static void pwmWriteStandard(uint8_t index, float value)
|
||||
{
|
||||
*motors[index].ccr = lrintf(value);
|
||||
/* TODO: move value to be a number between 0-1 (i.e. percent throttle from mixer) */
|
||||
*motors[index].ccr = lrintf((value * motors[index].pulseScale) + motors[index].pulseOffset);
|
||||
}
|
||||
|
||||
static void pwmWriteOneShot125(uint8_t index, float value)
|
||||
#ifdef USE_DSHOT
|
||||
static void pwmWriteDshot(uint8_t index, float value)
|
||||
{
|
||||
*motors[index].ccr = lrintf(value * ONESHOT125_TIMER_MHZ/8.0f);
|
||||
pwmWriteDshotInt(index, lrintf(value));
|
||||
}
|
||||
|
||||
static void pwmWriteOneShot42(uint8_t index, float value)
|
||||
static uint8_t loadDmaBufferDshot(motorDmaOutput_t *const motor, uint16_t packet)
|
||||
{
|
||||
*motors[index].ccr = lrintf(value * ONESHOT42_TIMER_MHZ/24.0f);
|
||||
for (int i = 0; i < 16; i++) {
|
||||
motor->dmaBuffer[i] = (packet & 0x8000) ? MOTOR_BIT_1 : MOTOR_BIT_0; // MSB first
|
||||
packet <<= 1;
|
||||
}
|
||||
|
||||
return DSHOT_DMA_BUFFER_SIZE;
|
||||
}
|
||||
|
||||
static void pwmWriteMultiShot(uint8_t index, float value)
|
||||
static uint8_t loadDmaBufferProshot(motorDmaOutput_t *const motor, uint16_t packet)
|
||||
{
|
||||
*motors[index].ccr = lrintf(((value-1000) * MULTISHOT_20US_MULT) + MULTISHOT_5US_PW);
|
||||
for (int i = 0; i < 4; i++) {
|
||||
motor->dmaBuffer[i] = PROSHOT_BASE_SYMBOL + ((packet & 0xF000) >> 12) * PROSHOT_BIT_WIDTH; // Most significant nibble first
|
||||
packet <<= 4; // Shift 4 bits
|
||||
}
|
||||
|
||||
return PROSHOT_DMA_BUFFER_SIZE;
|
||||
}
|
||||
#endif
|
||||
|
||||
void pwmWriteMotor(uint8_t index, float value)
|
||||
{
|
||||
if (pwmMotorsEnabled) {
|
||||
pwmWritePtr(index, value);
|
||||
pwmWrite(index, value);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -182,7 +193,7 @@ void pwmDisableMotors(void)
|
|||
void pwmEnableMotors(void)
|
||||
{
|
||||
/* check motors can be enabled */
|
||||
pwmMotorsEnabled = (pwmWritePtr != pwmWriteUnused);
|
||||
pwmMotorsEnabled = (pwmWrite != &pwmWriteUnused);
|
||||
}
|
||||
|
||||
bool pwmAreMotorsEnabled(void)
|
||||
|
@ -209,62 +220,64 @@ static void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
|
|||
|
||||
void pwmCompleteMotorUpdate(uint8_t motorCount)
|
||||
{
|
||||
pwmCompleteWritePtr(motorCount);
|
||||
pwmCompleteWrite(motorCount);
|
||||
}
|
||||
|
||||
void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount)
|
||||
{
|
||||
memset(motors, 0, sizeof(motors));
|
||||
|
||||
uint32_t timerMhzCounter = 0;
|
||||
bool useUnsyncedPwm = motorConfig->useUnsyncedPwm;
|
||||
bool isDigital = false;
|
||||
|
||||
float sMin = 0;
|
||||
float sLen = 0;
|
||||
switch (motorConfig->motorPwmProtocol) {
|
||||
default:
|
||||
case PWM_TYPE_ONESHOT125:
|
||||
timerMhzCounter = ONESHOT125_TIMER_MHZ;
|
||||
pwmWritePtr = pwmWriteOneShot125;
|
||||
sMin = 125e-6f;
|
||||
sLen = 125e-6f;
|
||||
break;
|
||||
case PWM_TYPE_ONESHOT42:
|
||||
timerMhzCounter = ONESHOT42_TIMER_MHZ;
|
||||
pwmWritePtr = pwmWriteOneShot42;
|
||||
sMin = 42e-6f;
|
||||
sLen = 42e-6f;
|
||||
break;
|
||||
case PWM_TYPE_MULTISHOT:
|
||||
timerMhzCounter = MULTISHOT_TIMER_MHZ;
|
||||
pwmWritePtr = pwmWriteMultiShot;
|
||||
sMin = 5e-6f;
|
||||
sLen = 20e-6f;
|
||||
break;
|
||||
case PWM_TYPE_BRUSHED:
|
||||
timerMhzCounter = PWM_BRUSHED_TIMER_MHZ;
|
||||
pwmWritePtr = pwmWriteBrushed;
|
||||
sMin = 0;
|
||||
useUnsyncedPwm = true;
|
||||
idlePulse = 0;
|
||||
break;
|
||||
case PWM_TYPE_STANDARD:
|
||||
timerMhzCounter = PWM_TIMER_MHZ;
|
||||
pwmWritePtr = pwmWriteStandard;
|
||||
sMin = 1e-3f;
|
||||
sLen = 1e-3f;
|
||||
useUnsyncedPwm = true;
|
||||
idlePulse = 0;
|
||||
break;
|
||||
#ifdef USE_DSHOT
|
||||
case PWM_TYPE_PROSHOT1000:
|
||||
pwmWritePtr = pwmWriteProShot;
|
||||
pwmCompleteWritePtr = pwmCompleteDigitalMotorUpdate;
|
||||
isDigital = true;
|
||||
pwmWrite = &pwmWriteDshot;
|
||||
loadDmaBuffer = &loadDmaBufferProshot;
|
||||
pwmCompleteWrite = &pwmCompleteDshotMotorUpdate;
|
||||
isDshot = true;
|
||||
break;
|
||||
case PWM_TYPE_DSHOT1200:
|
||||
case PWM_TYPE_DSHOT600:
|
||||
case PWM_TYPE_DSHOT300:
|
||||
case PWM_TYPE_DSHOT150:
|
||||
pwmWritePtr = pwmWriteDshot;
|
||||
pwmCompleteWritePtr = pwmCompleteDigitalMotorUpdate;
|
||||
isDigital = true;
|
||||
pwmWrite = &pwmWriteDshot;
|
||||
loadDmaBuffer = &loadDmaBufferDshot;
|
||||
pwmCompleteWrite = &pwmCompleteDshotMotorUpdate;
|
||||
isDshot = true;
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
|
||||
if (!isDigital) {
|
||||
pwmCompleteWritePtr = useUnsyncedPwm ? pwmCompleteWriteUnused : pwmCompleteOneshotMotorUpdate;
|
||||
if (!isDshot) {
|
||||
pwmWrite = &pwmWriteStandard;
|
||||
pwmCompleteWrite = useUnsyncedPwm ? &pwmCompleteWriteUnused : &pwmCompleteOneshotMotorUpdate;
|
||||
}
|
||||
|
||||
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
|
||||
|
@ -273,8 +286,8 @@ void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8
|
|||
|
||||
if (timerHardware == NULL) {
|
||||
/* not enough motors initialised for the mixer or a break in the motors */
|
||||
pwmWritePtr = pwmWriteUnused;
|
||||
pwmCompleteWritePtr = pwmCompleteWriteUnused;
|
||||
pwmWrite = &pwmWriteUnused;
|
||||
pwmCompleteWrite = &pwmCompleteWriteUnused;
|
||||
/* TODO: block arming and add reason system cannot arm */
|
||||
return;
|
||||
}
|
||||
|
@ -282,8 +295,10 @@ void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8
|
|||
motors[motorIndex].io = IOGetByTag(tag);
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
if (isDigital) {
|
||||
pwmDigitalMotorHardwareConfig(timerHardware, motorIndex, motorConfig->motorPwmProtocol,
|
||||
if (isDshot) {
|
||||
pwmDshotMotorHardwareConfig(timerHardware,
|
||||
motorIndex,
|
||||
motorConfig->motorPwmProtocol,
|
||||
motorConfig->motorPwmInversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
|
||||
motors[motorIndex].enabled = true;
|
||||
continue;
|
||||
|
@ -297,12 +312,24 @@ void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8
|
|||
IOConfigGPIO(motors[motorIndex].io, IOCFG_AF_PP);
|
||||
#endif
|
||||
|
||||
if (useUnsyncedPwm) {
|
||||
const uint32_t hz = timerMhzCounter * 1000000;
|
||||
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, hz / motorConfig->motorPwmRate, idlePulse, motorConfig->motorPwmInversion);
|
||||
} else {
|
||||
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, 0xFFFF, 0, motorConfig->motorPwmInversion);
|
||||
}
|
||||
/* standard PWM outputs */
|
||||
const unsigned pwmRateHz = useUnsyncedPwm ? motorConfig->motorPwmRate : ceilf(1 / (sMin + sLen));
|
||||
|
||||
const uint32_t clock = timerClock(timerHardware->tim);
|
||||
/* used to find the desired timer frequency for max resolution */
|
||||
const unsigned prescaler = ((clock / pwmRateHz) + 0xffff) / 0x10000; /* rounding up */
|
||||
const uint32_t hz = clock / prescaler;
|
||||
const unsigned period = hz / pwmRateHz;
|
||||
|
||||
/*
|
||||
if brushed then it is the entire length of the period.
|
||||
TODO: this can be moved back to periodMin and periodLen
|
||||
once mixer outputs a 0..1 float value.
|
||||
*/
|
||||
motors[motorIndex].pulseScale = ((motorConfig->motorPwmProtocol == PWM_TYPE_BRUSHED) ? period : (sLen * hz)) / 1000.0f;
|
||||
motors[motorIndex].pulseOffset = (sMin * hz) - (motors[motorIndex].pulseScale * 1000);
|
||||
|
||||
pwmOutConfig(&motors[motorIndex], timerHardware, hz, period, idlePulse, motorConfig->motorPwmInversion);
|
||||
|
||||
bool timerAlreadyUsed = false;
|
||||
for (int i = 0; i < motorIndex; i++) {
|
||||
|
@ -323,27 +350,32 @@ pwmOutputPort_t *pwmGetMotors(void)
|
|||
return motors;
|
||||
}
|
||||
|
||||
bool isMotorProtocolDshot(void)
|
||||
{
|
||||
return isDshot;
|
||||
}
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
uint32_t getDshotHz(motorPwmProtocolTypes_e pwmProtocolType)
|
||||
{
|
||||
switch (pwmProtocolType) {
|
||||
case(PWM_TYPE_PROSHOT1000):
|
||||
return MOTOR_PROSHOT1000_MHZ * 1000000;
|
||||
return MOTOR_PROSHOT1000_HZ;
|
||||
case(PWM_TYPE_DSHOT1200):
|
||||
return MOTOR_DSHOT1200_MHZ * 1000000;
|
||||
return MOTOR_DSHOT1200_HZ;
|
||||
case(PWM_TYPE_DSHOT600):
|
||||
return MOTOR_DSHOT600_MHZ * 1000000;
|
||||
return MOTOR_DSHOT600_HZ;
|
||||
case(PWM_TYPE_DSHOT300):
|
||||
return MOTOR_DSHOT300_MHZ * 1000000;
|
||||
return MOTOR_DSHOT300_HZ;
|
||||
default:
|
||||
case(PWM_TYPE_DSHOT150):
|
||||
return MOTOR_DSHOT150_MHZ * 1000000;
|
||||
return MOTOR_DSHOT150_HZ;
|
||||
}
|
||||
}
|
||||
|
||||
void pwmWriteDshotCommand(uint8_t index, uint8_t command)
|
||||
{
|
||||
if (command <= DSHOT_MAX_COMMAND) {
|
||||
if (isDshot && (command <= DSHOT_MAX_COMMAND)) {
|
||||
motorDmaOutput_t *const motor = getMotorDmaOutput(index);
|
||||
|
||||
unsigned repeats;
|
||||
|
@ -364,13 +396,32 @@ void pwmWriteDshotCommand(uint8_t index, uint8_t command)
|
|||
|
||||
for (; repeats; repeats--) {
|
||||
motor->requestTelemetry = true;
|
||||
pwmWritePtr(index, command);
|
||||
pwmWriteDshotInt(index, command);
|
||||
pwmCompleteMotorUpdate(0);
|
||||
|
||||
delay(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t prepareDshotPacket(motorDmaOutput_t *const motor, const uint16_t value)
|
||||
{
|
||||
uint16_t packet = (value << 1) | (motor->requestTelemetry ? 1 : 0);
|
||||
motor->requestTelemetry = false; // reset telemetry request to make sure it's triggered only once in a row
|
||||
|
||||
// compute checksum
|
||||
int csum = 0;
|
||||
int csum_data = packet;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
csum ^= csum_data; // xor data by nibbles
|
||||
csum_data >>= 4;
|
||||
}
|
||||
csum &= 0xf;
|
||||
// append checksum
|
||||
packet = (packet << 4) | csum;
|
||||
|
||||
return packet;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef USE_SERVOS
|
||||
|
@ -405,8 +456,7 @@ void servoDevInit(const servoDevConfig_t *servoConfig)
|
|||
/* flag failure and disable ability to arm */
|
||||
break;
|
||||
}
|
||||
|
||||
pwmOutConfig(&servos[servoIndex], timer, PWM_TIMER_MHZ, 1000000 / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0);
|
||||
pwmOutConfig(&servos[servoIndex], timer, PWM_TIMER_1MHZ, PWM_TIMER_1MHZ / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0);
|
||||
servos[servoIndex].enabled = true;
|
||||
}
|
||||
}
|
||||
|
@ -419,7 +469,7 @@ void pwmWriteBeeper(bool onoffBeep)
|
|||
if(!beeperPwm.io)
|
||||
return;
|
||||
if(onoffBeep == true) {
|
||||
*beeperPwm.ccr = (1000000/freqBeep)/2;
|
||||
*beeperPwm.ccr = (PWM_TIMER_1MHZ / freqBeep) / 2;
|
||||
beeperPwm.enabled = true;
|
||||
} else {
|
||||
*beeperPwm.ccr = 0;
|
||||
|
@ -445,7 +495,7 @@ void beeperPwmInit(IO_t io, uint16_t frequency)
|
|||
IOConfigGPIO(beeperPwm.io, IOCFG_AF_PP);
|
||||
#endif
|
||||
freqBeep = frequency;
|
||||
pwmOutConfig(&beeperPwm, timer, PWM_TIMER_MHZ, 1000000/freqBeep, (1000000/freqBeep)/2,0);
|
||||
pwmOutConfig(&beeperPwm, timer, PWM_TIMER_1MHZ, PWM_TIMER_1MHZ / freqBeep, (PWM_TIMER_1MHZ / freqBeep) / 2, 0);
|
||||
}
|
||||
*beeperPwm.ccr = 0;
|
||||
beeperPwm.enabled = false;
|
||||
|
|
|
@ -20,7 +20,9 @@
|
|||
#include "drivers/io_types.h"
|
||||
#include "timer.h"
|
||||
|
||||
#ifndef MAX_SUPPORTED_MOTORS
|
||||
#define MAX_SUPPORTED_MOTORS 12
|
||||
#endif
|
||||
|
||||
#if defined(USE_QUAD_MIXER_ONLY)
|
||||
#define MAX_SUPPORTED_SERVOS 1
|
||||
|
@ -28,6 +30,17 @@
|
|||
#define MAX_SUPPORTED_SERVOS 8
|
||||
#endif
|
||||
|
||||
#define DSHOT_MAX_COMMAND 47
|
||||
|
||||
/*
|
||||
DshotSettingRequest (KISS24). Spin direction, 3d and save Settings reqire 10 requests.. and the TLM Byte must always be high if 1-47 are used to send settings
|
||||
|
||||
3D Mode:
|
||||
0 = stop
|
||||
48 (low) - 1047 (high) -> negative direction
|
||||
1048 (low) - 2047 (high) -> positive direction
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
DSHOT_CMD_MOTOR_STOP = 0,
|
||||
DSHOT_CMD_BEEP1,
|
||||
|
@ -64,45 +77,29 @@ typedef enum {
|
|||
PWM_TYPE_MAX
|
||||
} motorPwmProtocolTypes_e;
|
||||
|
||||
#define PWM_TIMER_MHZ 1
|
||||
#define PWM_TIMER_1MHZ MHZ_TO_HZ(1)
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
#define MAX_DMA_TIMERS 8
|
||||
|
||||
#define MOTOR_DSHOT1200_MHZ 24
|
||||
#define MOTOR_DSHOT600_MHZ 12
|
||||
#define MOTOR_DSHOT300_MHZ 6
|
||||
#define MOTOR_DSHOT150_MHZ 3
|
||||
#define MOTOR_DSHOT1200_HZ MHZ_TO_HZ(24)
|
||||
#define MOTOR_DSHOT600_HZ MHZ_TO_HZ(12)
|
||||
#define MOTOR_DSHOT300_HZ MHZ_TO_HZ(6)
|
||||
#define MOTOR_DSHOT150_HZ MHZ_TO_HZ(3)
|
||||
|
||||
#define MOTOR_BIT_0 7
|
||||
#define MOTOR_BIT_1 14
|
||||
#define MOTOR_BITLENGTH 19
|
||||
|
||||
#define MOTOR_PROSHOT1000_MHZ 24
|
||||
#define MOTOR_PROSHOT1000_HZ MHZ_TO_HZ(24)
|
||||
#define PROSHOT_BASE_SYMBOL 24 // 1uS
|
||||
#define PROSHOT_BIT_WIDTH 3
|
||||
#define MOTOR_NIBBLE_LENGTH_PROSHOT 96 // 4uS
|
||||
#endif
|
||||
|
||||
#if defined(STM32F40_41xxx) // must be multiples of timer clock
|
||||
#define ONESHOT125_TIMER_MHZ 12
|
||||
#define ONESHOT42_TIMER_MHZ 21
|
||||
#define MULTISHOT_TIMER_MHZ 84
|
||||
#define PWM_BRUSHED_TIMER_MHZ 21
|
||||
#elif defined(STM32F7) // must be multiples of timer clock
|
||||
#define ONESHOT125_TIMER_MHZ 9
|
||||
#define ONESHOT42_TIMER_MHZ 27
|
||||
#define MULTISHOT_TIMER_MHZ 54
|
||||
#define PWM_BRUSHED_TIMER_MHZ 27
|
||||
#else
|
||||
#define ONESHOT125_TIMER_MHZ 8
|
||||
#define ONESHOT42_TIMER_MHZ 24
|
||||
#define MULTISHOT_TIMER_MHZ 72
|
||||
#define PWM_BRUSHED_TIMER_MHZ 24
|
||||
#endif
|
||||
|
||||
#define DSHOT_DMA_BUFFER_SIZE 18 /* resolution + frame reset (2us) */
|
||||
#define PROSHOT_DMA_BUFFER_SIZE 6/* resolution + frame reset (2us) */
|
||||
#define PROSHOT_DMA_BUFFER_SIZE 6 /* resolution + frame reset (2us) */
|
||||
|
||||
typedef struct {
|
||||
TIM_TypeDef *timer;
|
||||
|
@ -131,16 +128,17 @@ motorDmaOutput_t *getMotorDmaOutput(uint8_t index);
|
|||
extern bool pwmMotorsEnabled;
|
||||
|
||||
struct timerHardware_s;
|
||||
typedef void(*pwmWriteFuncPtr)(uint8_t index, float value); // function pointer used to write motors
|
||||
typedef void(*pwmCompleteWriteFuncPtr)(uint8_t motorCount); // function pointer used after motors are written
|
||||
typedef void pwmWriteFunc(uint8_t index, float value); // function pointer used to write motors
|
||||
typedef void pwmCompleteWriteFunc(uint8_t motorCount); // function pointer used after motors are written
|
||||
|
||||
typedef struct {
|
||||
volatile timCCR_t *ccr;
|
||||
TIM_TypeDef *tim;
|
||||
bool forceOverflow;
|
||||
uint16_t period;
|
||||
bool enabled;
|
||||
IO_t io;
|
||||
float pulseScale;
|
||||
float pulseOffset;
|
||||
} pwmOutputPort_t;
|
||||
|
||||
typedef struct motorDevConfig_s {
|
||||
|
@ -164,13 +162,20 @@ void servoDevInit(const servoDevConfig_t *servoDevConfig);
|
|||
|
||||
void pwmServoConfig(const struct timerHardware_s *timerHardware, uint8_t servoIndex, uint16_t servoPwmRate, uint16_t servoCenterPulse);
|
||||
|
||||
bool isMotorProtocolDshot(void);
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
typedef uint8_t loadDmaBufferFunc(motorDmaOutput_t *const motor, uint16_t packet); // function pointer used to encode a digital motor value into the DMA buffer representation
|
||||
|
||||
uint16_t prepareDshotPacket(motorDmaOutput_t *const motor, uint16_t value);
|
||||
|
||||
extern loadDmaBufferFunc *loadDmaBuffer;
|
||||
|
||||
uint32_t getDshotHz(motorPwmProtocolTypes_e pwmProtocolType);
|
||||
void pwmWriteDshotCommand(uint8_t index, uint8_t command);
|
||||
void pwmWriteProShot(uint8_t index, float value);
|
||||
void pwmWriteDshot(uint8_t index, float value);
|
||||
void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output);
|
||||
void pwmCompleteDigitalMotorUpdate(uint8_t motorCount);
|
||||
void pwmWriteDshotInt(uint8_t index, uint16_t value);
|
||||
void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output);
|
||||
void pwmCompleteDshotMotorUpdate(uint8_t motorCount);
|
||||
#endif
|
||||
|
||||
#ifdef BEEPER
|
||||
|
|
|
@ -54,74 +54,23 @@ uint8_t getTimerIndex(TIM_TypeDef *timer)
|
|||
return dmaMotorTimerCount-1;
|
||||
}
|
||||
|
||||
void pwmWriteDshot(uint8_t index, float value)
|
||||
void pwmWriteDshotInt(uint8_t index, uint16_t value)
|
||||
{
|
||||
const uint16_t digitalValue = lrintf(value);
|
||||
|
||||
motorDmaOutput_t * const motor = &dmaMotors[index];
|
||||
motorDmaOutput_t *const motor = &dmaMotors[index];
|
||||
|
||||
if (!motor->timerHardware || !motor->timerHardware->dmaRef) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint16_t packet = (digitalValue << 1) | (motor->requestTelemetry ? 1 : 0);
|
||||
motor->requestTelemetry = false; // reset telemetry request to make sure it's triggered only once in a row
|
||||
uint16_t packet = prepareDshotPacket(motor, value);
|
||||
|
||||
// compute checksum
|
||||
int csum = 0;
|
||||
int csum_data = packet;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
csum ^= csum_data; // xor data by nibbles
|
||||
csum_data >>= 4;
|
||||
}
|
||||
csum &= 0xf;
|
||||
// append checksum
|
||||
packet = (packet << 4) | csum;
|
||||
// generate pulses for whole packet
|
||||
for (int i = 0; i < 16; i++) {
|
||||
motor->dmaBuffer[i] = (packet & 0x8000) ? MOTOR_BIT_1 : MOTOR_BIT_0; // MSB first
|
||||
packet <<= 1;
|
||||
}
|
||||
uint8_t bufferSize = loadDmaBuffer(motor, packet);
|
||||
|
||||
DMA_SetCurrDataCounter(motor->timerHardware->dmaRef, DSHOT_DMA_BUFFER_SIZE);
|
||||
DMA_SetCurrDataCounter(motor->timerHardware->dmaRef, bufferSize);
|
||||
DMA_Cmd(motor->timerHardware->dmaRef, ENABLE);
|
||||
}
|
||||
|
||||
void pwmWriteProShot(uint8_t index, float value)
|
||||
{
|
||||
const uint16_t digitalValue = lrintf(value);
|
||||
|
||||
motorDmaOutput_t * const motor = &dmaMotors[index];
|
||||
|
||||
if (!motor->timerHardware || !motor->timerHardware->dmaRef) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint16_t packet = (digitalValue << 1) | (motor->requestTelemetry ? 1 : 0);
|
||||
motor->requestTelemetry = false; // reset telemetry request to make sure it's triggered only once in a row
|
||||
|
||||
// compute checksum
|
||||
int csum = 0;
|
||||
int csum_data = packet;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
csum ^= csum_data; // xor data by nibbles
|
||||
csum_data >>= 4;
|
||||
}
|
||||
csum &= 0xf;
|
||||
// append checksum
|
||||
packet = (packet << 4) | csum;
|
||||
|
||||
// generate pulses for Proshot
|
||||
for (int i = 0; i < 4; i++) {
|
||||
motor->dmaBuffer[i] = PROSHOT_BASE_SYMBOL + ((packet & 0xF000) >> 12) * PROSHOT_BIT_WIDTH; // Most significant nibble first
|
||||
packet <<= 4; // Shift 4 bits
|
||||
}
|
||||
|
||||
DMA_SetCurrDataCounter(motor->timerHardware->dmaRef, PROSHOT_DMA_BUFFER_SIZE);
|
||||
DMA_Cmd(motor->timerHardware->dmaRef, ENABLE);
|
||||
}
|
||||
|
||||
void pwmCompleteDigitalMotorUpdate(uint8_t motorCount)
|
||||
void pwmCompleteDshotMotorUpdate(uint8_t motorCount)
|
||||
{
|
||||
UNUSED(motorCount);
|
||||
|
||||
|
@ -145,7 +94,7 @@ static void motor_DMA_IRQHandler(dmaChannelDescriptor_t *descriptor)
|
|||
}
|
||||
}
|
||||
|
||||
void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
|
||||
void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
|
||||
{
|
||||
TIM_OCInitTypeDef TIM_OCInitStructure;
|
||||
DMA_InitTypeDef DMA_InitStructure;
|
||||
|
|
|
@ -49,92 +49,32 @@ uint8_t getTimerIndex(TIM_TypeDef *timer)
|
|||
return dmaMotorTimerCount - 1;
|
||||
}
|
||||
|
||||
void pwmWriteDshot(uint8_t index, float value)
|
||||
void pwmWriteDshotInt(uint8_t index, uint16_t value)
|
||||
{
|
||||
const uint16_t digitalValue = lrintf(value);
|
||||
|
||||
motorDmaOutput_t * const motor = &dmaMotors[index];
|
||||
motorDmaOutput_t *const motor = &dmaMotors[index];
|
||||
|
||||
if (!motor->timerHardware || !motor->timerHardware->dmaRef) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint16_t packet = (digitalValue << 1) | (motor->requestTelemetry ? 1 : 0);
|
||||
motor->requestTelemetry = false; // reset telemetry request to make sure it's triggered only once in a row
|
||||
uint16_t packet = prepareDshotPacket(motor, value);
|
||||
|
||||
// compute checksum
|
||||
int csum = 0;
|
||||
int csum_data = packet;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
csum ^= csum_data; // xor data by nibbles
|
||||
csum_data >>= 4;
|
||||
}
|
||||
csum &= 0xf;
|
||||
// append checksum
|
||||
packet = (packet << 4) | csum;
|
||||
// generate pulses for whole packet
|
||||
for (int i = 0; i < 16; i++) {
|
||||
motor->dmaBuffer[i] = (packet & 0x8000) ? MOTOR_BIT_1 : MOTOR_BIT_0; // MSB first
|
||||
packet <<= 1;
|
||||
}
|
||||
uint8_t bufferSize = loadDmaBuffer(motor, packet);
|
||||
|
||||
if (motor->timerHardware->output & TIMER_OUTPUT_N_CHANNEL) {
|
||||
if (HAL_TIMEx_PWMN_Start_DMA(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, DSHOT_DMA_BUFFER_SIZE) != HAL_OK) {
|
||||
if (HAL_TIMEx_PWMN_Start_DMA(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, bufferSize) != HAL_OK) {
|
||||
/* Starting PWM generation Error */
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
if (HAL_TIM_PWM_Start_DMA(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, DSHOT_DMA_BUFFER_SIZE) != HAL_OK) {
|
||||
if (HAL_TIM_PWM_Start_DMA(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, bufferSize) != HAL_OK) {
|
||||
/* Starting PWM generation Error */
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pwmWriteProShot(uint8_t index, float value)
|
||||
{
|
||||
const uint16_t digitalValue = lrintf(value);
|
||||
|
||||
motorDmaOutput_t * const motor = &dmaMotors[index];
|
||||
|
||||
if (!motor->timerHardware || !motor->timerHardware->dmaRef) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint16_t packet = (digitalValue << 1) | (motor->requestTelemetry ? 1 : 0);
|
||||
motor->requestTelemetry = false; // reset telemetry request to make sure it's triggered only once in a row
|
||||
|
||||
// compute checksum
|
||||
int csum = 0;
|
||||
int csum_data = packet;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
csum ^= csum_data; // xor data by nibbles
|
||||
csum_data >>= 4;
|
||||
}
|
||||
csum &= 0xf;
|
||||
// append checksum
|
||||
packet = (packet << 4) | csum;
|
||||
|
||||
// generate pulses for Proshot
|
||||
for (int i = 0; i < 4; i++) {
|
||||
motor->dmaBuffer[i] = PROSHOT_BASE_SYMBOL + ((packet & 0xF000) >> 12) * PROSHOT_BIT_WIDTH; // Most significant nibble first
|
||||
packet <<= 4; // Shift 4 bits
|
||||
}
|
||||
|
||||
if (motor->timerHardware->output & TIMER_OUTPUT_N_CHANNEL) {
|
||||
if (HAL_TIMEx_PWMN_Start_DMA(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, PROSHOT_DMA_BUFFER_SIZE) != HAL_OK) {
|
||||
/* Starting PWM generation Error */
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
if (HAL_TIM_PWM_Start_DMA(&motor->TimHandle, motor->timerHardware->channel, motor->dmaBuffer, PROSHOT_DMA_BUFFER_SIZE) != HAL_OK) {
|
||||
/* Starting PWM generation Error */
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pwmCompleteDigitalMotorUpdate(uint8_t motorCount)
|
||||
void pwmCompleteDshotMotorUpdate(uint8_t motorCount)
|
||||
{
|
||||
UNUSED(motorCount);
|
||||
}
|
||||
|
@ -145,7 +85,7 @@ static void motor_DMA_IRQHandler(dmaChannelDescriptor_t* descriptor)
|
|||
HAL_DMA_IRQHandler(motor->TimHandle.hdma[motor->timerDmaSource]);
|
||||
}
|
||||
|
||||
void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
|
||||
void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
|
||||
{
|
||||
motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
|
||||
motor->timerHardware = timerHardware;
|
||||
|
|
|
@ -61,6 +61,8 @@ const char * const ownerNames[OWNER_TOTAL_COUNT] = {
|
|||
"LED_STRIP",
|
||||
"TRANSPONDER",
|
||||
"VTX",
|
||||
"COMPASS_CS"
|
||||
"COMPASS_CS",
|
||||
"SPI_PREINIT",
|
||||
"RX_BIND_PLUG",
|
||||
};
|
||||
|
||||
|
|
|
@ -62,6 +62,8 @@ typedef enum {
|
|||
OWNER_TRANSPONDER,
|
||||
OWNER_VTX,
|
||||
OWNER_COMPASS_CS,
|
||||
OWNER_SPI_PREINIT,
|
||||
OWNER_RX_BIND_PLUG,
|
||||
OWNER_TOTAL_COUNT
|
||||
} resourceOwner_e;
|
||||
|
||||
|
|
|
@ -391,7 +391,7 @@ void pwmRxInit(const pwmConfig_t *pwmConfig)
|
|||
IOConfigGPIO(io, IOCFG_AF_PP);
|
||||
#endif
|
||||
|
||||
timerConfigure(timer, (uint16_t)PWM_TIMER_PERIOD, PWM_TIMER_MHZ);
|
||||
timerConfigure(timer, (uint16_t)PWM_TIMER_PERIOD, PWM_TIMER_1MHZ);
|
||||
timerChCCHandlerInit(&port->edgeCb, pwmEdgeCallback);
|
||||
timerChOvrHandlerInit(&port->overflowCb, pwmOverflowCallback);
|
||||
timerChConfigCallbacks(timer, &port->edgeCb, &port->overflowCb);
|
||||
|
@ -408,7 +408,7 @@ void pwmRxInit(const pwmConfig_t *pwmConfig)
|
|||
#define UNUSED_PPM_TIMER_REFERENCE 0
|
||||
#define FIRST_PWM_PORT 0
|
||||
|
||||
void ppmAvoidPWMTimerClash(TIM_TypeDef *pwmTimer, uint8_t pwmProtocol)
|
||||
void ppmAvoidPWMTimerClash(TIM_TypeDef *pwmTimer)
|
||||
{
|
||||
pwmOutputPort_t *motors = pwmGetMotors();
|
||||
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS; motorIndex++) {
|
||||
|
@ -416,26 +416,12 @@ void ppmAvoidPWMTimerClash(TIM_TypeDef *pwmTimer, uint8_t pwmProtocol)
|
|||
continue;
|
||||
}
|
||||
|
||||
switch (pwmProtocol)
|
||||
{
|
||||
case PWM_TYPE_ONESHOT125:
|
||||
ppmCountDivisor = ONESHOT125_TIMER_MHZ;
|
||||
break;
|
||||
case PWM_TYPE_ONESHOT42:
|
||||
ppmCountDivisor = ONESHOT42_TIMER_MHZ;
|
||||
break;
|
||||
case PWM_TYPE_MULTISHOT:
|
||||
ppmCountDivisor = MULTISHOT_TIMER_MHZ;
|
||||
break;
|
||||
case PWM_TYPE_BRUSHED:
|
||||
ppmCountDivisor = PWM_BRUSHED_TIMER_MHZ;
|
||||
break;
|
||||
}
|
||||
ppmCountDivisor = timerClock(pwmTimer) / (pwmTimer->PSC + 1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void ppmRxInit(const ppmConfig_t *ppmConfig, uint8_t pwmProtocol)
|
||||
void ppmRxInit(const ppmConfig_t *ppmConfig)
|
||||
{
|
||||
ppmResetDevice();
|
||||
|
||||
|
@ -447,7 +433,7 @@ void ppmRxInit(const ppmConfig_t *ppmConfig, uint8_t pwmProtocol)
|
|||
return;
|
||||
}
|
||||
|
||||
ppmAvoidPWMTimerClash(timer->tim, pwmProtocol);
|
||||
ppmAvoidPWMTimerClash(timer->tim);
|
||||
|
||||
port->mode = INPUT_MODE_PPM;
|
||||
port->timerHardware = timer;
|
||||
|
@ -462,7 +448,7 @@ void ppmRxInit(const ppmConfig_t *ppmConfig, uint8_t pwmProtocol)
|
|||
IOConfigGPIO(io, IOCFG_AF_PP);
|
||||
#endif
|
||||
|
||||
timerConfigure(timer, (uint16_t)PPM_TIMER_PERIOD, PWM_TIMER_MHZ);
|
||||
timerConfigure(timer, (uint16_t)PPM_TIMER_PERIOD, PWM_TIMER_1MHZ);
|
||||
timerChCCHandlerInit(&port->edgeCb, ppmEdgeCallback);
|
||||
timerChOvrHandlerInit(&port->overflowCb, ppmOverflowCallback);
|
||||
timerChConfigCallbacks(timer, &port->edgeCb, &port->overflowCb);
|
||||
|
|
|
@ -36,7 +36,7 @@ typedef struct pwmConfig_s {
|
|||
inputFilteringMode_e inputFilteringMode;
|
||||
} pwmConfig_t;
|
||||
|
||||
void ppmRxInit(const ppmConfig_t *ppmConfig, uint8_t pwmProtocol);
|
||||
void ppmRxInit(const ppmConfig_t *ppmConfig);
|
||||
void pwmRxInit(const pwmConfig_t *pwmConfig);
|
||||
|
||||
uint16_t pwmRead(uint8_t channel);
|
||||
|
|
|
@ -20,8 +20,6 @@
|
|||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "drivers/io_types.h"
|
||||
|
||||
typedef enum {
|
||||
ALIGN_DEFAULT = 0, // driver-provided alignment
|
||||
CW0_DEG = 1,
|
||||
|
@ -34,12 +32,6 @@ typedef enum {
|
|||
CW270_DEG_FLIP = 8
|
||||
} sensor_align_e;
|
||||
|
||||
typedef union busDevice_t {
|
||||
struct deviceSpi_s {
|
||||
IO_t csnPin;
|
||||
} spi;
|
||||
} busDevice_t;
|
||||
|
||||
typedef bool (*sensorInitFuncPtr)(void); // sensor init prototype
|
||||
typedef bool (*sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
|
||||
typedef bool (*sensorInterruptFuncPtr)(void);
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#pragma once
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "config/parameter_group.h"
|
||||
|
||||
typedef enum portMode_t {
|
||||
MODE_RX = 1 << 0,
|
||||
|
@ -86,6 +87,8 @@ typedef struct serialPinConfig_s {
|
|||
ioTag_t ioTagInverter[SERIAL_PORT_MAX_INDEX];
|
||||
} serialPinConfig_t;
|
||||
|
||||
PG_DECLARE(serialPinConfig_t, serialPinConfig);
|
||||
|
||||
struct serialPortVTable {
|
||||
void (*serialWrite)(serialPort_t *instance, uint8_t ch);
|
||||
|
||||
|
|
|
@ -184,8 +184,7 @@ static void serialTimerTxConfigBL(const timerHardware_t *timerHardwarePtr, uint8
|
|||
}
|
||||
} while (isTimerPeriodTooLarge(timerPeriod));
|
||||
|
||||
uint8_t mhz = clock / 1000000;
|
||||
timerConfigure(timerHardwarePtr, timerPeriod, mhz);
|
||||
timerConfigure(timerHardwarePtr, timerPeriod, clock);
|
||||
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onSerialTimerBL);
|
||||
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
|
||||
}
|
||||
|
@ -193,9 +192,8 @@ static void serialTimerTxConfigBL(const timerHardware_t *timerHardwarePtr, uint8
|
|||
static void serialTimerRxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, portOptions_t options)
|
||||
{
|
||||
// start bit is usually a FALLING signal
|
||||
uint8_t mhz = SystemCoreClock / 2000000;
|
||||
TIM_DeInit(timerHardwarePtr->tim);
|
||||
timerConfigure(timerHardwarePtr, 0xFFFF, mhz);
|
||||
timerConfigure(timerHardwarePtr, 0xFFFF, SystemCoreClock / 2);
|
||||
escSerialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, (options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
|
||||
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onSerialRxPinChangeBL);
|
||||
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
|
||||
|
@ -203,9 +201,9 @@ static void serialTimerRxConfigBL(const timerHardware_t *timerHardwarePtr, uint8
|
|||
|
||||
static void escSerialTimerTxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
|
||||
{
|
||||
uint32_t timerPeriod=34;
|
||||
uint32_t timerPeriod = 34;
|
||||
TIM_DeInit(timerHardwarePtr->tim);
|
||||
timerConfigure(timerHardwarePtr, timerPeriod, 1);
|
||||
timerConfigure(timerHardwarePtr, timerPeriod, MHZ_TO_HZ(1));
|
||||
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onSerialTimerEsc);
|
||||
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
|
||||
}
|
||||
|
@ -228,7 +226,7 @@ static void escSerialTimerRxConfig(const timerHardware_t *timerHardwarePtr, uint
|
|||
{
|
||||
// start bit is usually a FALLING signal
|
||||
TIM_DeInit(timerHardwarePtr->tim);
|
||||
timerConfigure(timerHardwarePtr, 0xFFFF, 1);
|
||||
timerConfigure(timerHardwarePtr, 0xFFFF, MHZ_TO_HZ(1));
|
||||
escSerialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPolarity_Falling);
|
||||
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onSerialRxPinChangeEsc);
|
||||
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
|
||||
|
|
|
@ -204,7 +204,7 @@ static bool isTimerPeriodTooLarge(uint32_t timerPeriod)
|
|||
|
||||
static void serialTimerConfigureTimebase(const timerHardware_t *timerHardwarePtr, uint32_t baud)
|
||||
{
|
||||
uint32_t baseClock = SystemCoreClock / timerClockDivisor(timerHardwarePtr->tim);
|
||||
uint32_t baseClock = timerClock(timerHardwarePtr->tim);
|
||||
uint32_t clock = baseClock;
|
||||
uint32_t timerPeriod;
|
||||
|
||||
|
@ -220,9 +220,7 @@ static void serialTimerConfigureTimebase(const timerHardware_t *timerHardwarePtr
|
|||
}
|
||||
} while (isTimerPeriodTooLarge(timerPeriod));
|
||||
|
||||
uint8_t mhz = baseClock / 1000000;
|
||||
|
||||
timerConfigure(timerHardwarePtr, timerPeriod, mhz);
|
||||
timerConfigure(timerHardwarePtr, timerPeriod, baseClock);
|
||||
}
|
||||
|
||||
static void resetBuffers(softSerial_t *softSerial)
|
||||
|
|
|
@ -164,9 +164,8 @@ void delay(uint32_t ms)
|
|||
#define SHORT_FLASH_DURATION 50
|
||||
#define CODE_FLASH_DURATION 250
|
||||
|
||||
void failureMode(failureMode_e mode)
|
||||
void failureLedCode(failureMode_e mode, int codeRepeatsRemaining)
|
||||
{
|
||||
int codeRepeatsRemaining = 10;
|
||||
int codeFlashesRemaining;
|
||||
int shortFlashesRemaining;
|
||||
|
||||
|
@ -201,6 +200,12 @@ void failureMode(failureMode_e mode)
|
|||
delay(1000);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void failureMode(failureMode_e mode)
|
||||
{
|
||||
failureLedCode(mode, 10);
|
||||
|
||||
#ifdef DEBUG
|
||||
systemReset();
|
||||
#else
|
||||
|
|
|
@ -33,6 +33,7 @@ typedef enum {
|
|||
} failureMode_e;
|
||||
|
||||
// failure
|
||||
void failureLedCode(failureMode_e mode, int repeatCount);
|
||||
void failureMode(failureMode_e mode);
|
||||
|
||||
// bootloader/IAP
|
||||
|
|
|
@ -229,16 +229,16 @@ void timerNVICConfigure(uint8_t irq)
|
|||
NVIC_Init(&NVIC_InitStructure);
|
||||
}
|
||||
|
||||
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
|
||||
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint32_t hz)
|
||||
{
|
||||
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
|
||||
|
||||
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
|
||||
TIM_TimeBaseStructure.TIM_Period = (period - 1) & 0xffff; // AKA TIMx_ARR
|
||||
TIM_TimeBaseStructure.TIM_Period = (period - 1) & 0xFFFF; // AKA TIMx_ARR
|
||||
|
||||
// "The counter clock frequency (CK_CNT) is equal to f CK_PSC / (PSC[15:0] + 1)." - STM32F10x Reference Manual 14.4.11
|
||||
// Thus for 1Mhz: 72000000 / 1000000 = 72, 72 - 1 = 71 = TIM_Prescaler
|
||||
TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / timerClockDivisor(tim) / ((uint32_t)mhz * 1000000)) - 1;
|
||||
TIM_TimeBaseStructure.TIM_Prescaler = (timerClock(tim) / hz) - 1;
|
||||
|
||||
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
|
||||
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
|
||||
|
@ -246,9 +246,9 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
|
|||
}
|
||||
|
||||
// old interface for PWM inputs. It should be replaced
|
||||
void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, uint8_t mhz)
|
||||
void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, uint32_t hz)
|
||||
{
|
||||
configTimeBase(timerHardwarePtr->tim, period, mhz);
|
||||
configTimeBase(timerHardwarePtr->tim, period, hz);
|
||||
TIM_Cmd(timerHardwarePtr->tim, ENABLE);
|
||||
|
||||
uint8_t irq = timerInputIrq(timerHardwarePtr->tim);
|
||||
|
@ -849,14 +849,19 @@ uint16_t timerDmaSource(uint8_t channel)
|
|||
|
||||
uint16_t timerGetPrescalerByDesiredMhz(TIM_TypeDef *tim, uint16_t mhz)
|
||||
{
|
||||
// protection here for desired MHZ > timerClock???
|
||||
if ((uint32_t)(mhz * 1000000) > timerClock(tim)) {
|
||||
return 0;
|
||||
}
|
||||
return (uint16_t)(round((timerClock(tim) / (mhz * 1000000)) - 1));
|
||||
return timerGetPrescalerByDesiredHertz(tim, MHZ_TO_HZ(mhz));
|
||||
}
|
||||
|
||||
uint16_t timerGetPeriodByPrescaler(TIM_TypeDef *tim, uint16_t prescaler, uint32_t hertz)
|
||||
uint16_t timerGetPeriodByPrescaler(TIM_TypeDef *tim, uint16_t prescaler, uint32_t hz)
|
||||
{
|
||||
return ((uint16_t)((timerClock(tim) / (prescaler + 1)) / hertz));
|
||||
return ((uint16_t)((timerClock(tim) / (prescaler + 1)) / hz));
|
||||
}
|
||||
|
||||
uint16_t timerGetPrescalerByDesiredHertz(TIM_TypeDef *tim, uint32_t hz)
|
||||
{
|
||||
// protection here for desired hertz > SystemCoreClock???
|
||||
if (hz > timerClock(tim)) {
|
||||
return 0;
|
||||
}
|
||||
return (uint16_t)((timerClock(tim) + hz / 2 ) / hz) - 1;
|
||||
}
|
||||
|
|
|
@ -134,6 +134,8 @@ typedef enum {
|
|||
#define HARDWARE_TIMER_DEFINITION_COUNT 14
|
||||
#endif
|
||||
|
||||
#define MHZ_TO_HZ(x) ((x) * 1000000)
|
||||
|
||||
extern const timerHardware_t timerHardware[];
|
||||
extern const timerDef_t timerDefinitions[];
|
||||
|
||||
|
@ -155,7 +157,7 @@ typedef enum {
|
|||
TYPE_TIMER
|
||||
} channelType_t;
|
||||
|
||||
void timerConfigure(const timerHardware_t *timHw, uint16_t period, uint8_t mhz); // This interface should be replaced.
|
||||
void timerConfigure(const timerHardware_t *timHw, uint16_t period, uint32_t hz); // This interface should be replaced.
|
||||
|
||||
void timerChConfigIC(const timerHardware_t *timHw, bool polarityRising, unsigned inputFilterSamples);
|
||||
void timerChConfigICDual(const timerHardware_t* timHw, bool polarityRising, unsigned inputFilterSamples);
|
||||
|
@ -183,7 +185,7 @@ void timerForceOverflow(TIM_TypeDef *tim);
|
|||
uint8_t timerClockDivisor(TIM_TypeDef *tim);
|
||||
uint32_t timerClock(TIM_TypeDef *tim);
|
||||
|
||||
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz); // TODO - just for migration
|
||||
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint32_t hz); // TODO - just for migration
|
||||
|
||||
rccPeriphTag_t timerRCC(TIM_TypeDef *tim);
|
||||
uint8_t timerInputIrq(TIM_TypeDef *tim);
|
||||
|
@ -200,5 +202,6 @@ void timerOCPreloadConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t preload);
|
|||
volatile timCCR_t *timerCCR(TIM_TypeDef *tim, uint8_t channel);
|
||||
uint16_t timerDmaSource(uint8_t channel);
|
||||
|
||||
uint16_t timerGetPrescalerByDesiredHertz(TIM_TypeDef *tim, uint32_t hz);
|
||||
uint16_t timerGetPrescalerByDesiredMhz(TIM_TypeDef *tim, uint16_t mhz);
|
||||
uint16_t timerGetPeriodByPrescaler(TIM_TypeDef *tim, uint16_t prescaler, uint32_t hertz);
|
||||
uint16_t timerGetPeriodByPrescaler(TIM_TypeDef *tim, uint16_t prescaler, uint32_t hz);
|
||||
|
|
|
@ -241,7 +241,7 @@ TIM_HandleTypeDef* timerFindTimerHandle(TIM_TypeDef *tim)
|
|||
return &timerHandle[timerIndex].Handle;
|
||||
}
|
||||
|
||||
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
|
||||
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint32_t hz)
|
||||
{
|
||||
uint8_t timerIndex = lookupTimerIndex(tim);
|
||||
if (timerIndex >= USED_TIMER_COUNT) {
|
||||
|
@ -256,7 +256,7 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
|
|||
timerHandle[timerIndex].Handle.Instance = tim;
|
||||
|
||||
timerHandle[timerIndex].Handle.Init.Period = (period - 1) & 0xffff; // AKA TIMx_ARR
|
||||
timerHandle[timerIndex].Handle.Init.Prescaler = (SystemCoreClock / timerClockDivisor(tim) / ((uint32_t)mhz * 1000000)) - 1;
|
||||
timerHandle[timerIndex].Handle.Init.Prescaler = (timerClock(tim) / hz) - 1;
|
||||
|
||||
timerHandle[timerIndex].Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
timerHandle[timerIndex].Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
|
@ -287,14 +287,14 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
|
|||
}
|
||||
|
||||
// old interface for PWM inputs. It should be replaced
|
||||
void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, uint8_t mhz)
|
||||
void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, uint32_t hz)
|
||||
{
|
||||
uint8_t timerIndex = lookupTimerIndex(timerHardwarePtr->tim);
|
||||
if (timerIndex >= USED_TIMER_COUNT) {
|
||||
return;
|
||||
}
|
||||
|
||||
configTimeBase(timerHardwarePtr->tim, period, mhz);
|
||||
configTimeBase(timerHardwarePtr->tim, period, hz);
|
||||
HAL_TIM_Base_Start(&timerHandle[timerIndex].Handle);
|
||||
|
||||
uint8_t irq = timerInputIrq(timerHardwarePtr->tim);
|
||||
|
@ -898,14 +898,19 @@ uint16_t timerDmaSource(uint8_t channel)
|
|||
|
||||
uint16_t timerGetPrescalerByDesiredMhz(TIM_TypeDef *tim, uint16_t mhz)
|
||||
{
|
||||
// protection here for desired MHZ > SystemCoreClock???
|
||||
if (mhz * 1000000 > (SystemCoreClock / timerClockDivisor(tim))) {
|
||||
return 0;
|
||||
}
|
||||
return (uint16_t)(round((SystemCoreClock / timerClockDivisor(tim) / (mhz * 1000000)) - 1));
|
||||
return timerGetPrescalerByDesiredHertz(tim, MHZ_TO_HZ(mhz));
|
||||
}
|
||||
|
||||
uint16_t timerGetPeriodByPrescaler(TIM_TypeDef *tim, uint16_t prescaler, uint32_t hertz)
|
||||
uint16_t timerGetPeriodByPrescaler(TIM_TypeDef *tim, uint16_t prescaler, uint32_t hz)
|
||||
{
|
||||
return ((uint16_t)((SystemCoreClock / timerClockDivisor(tim) / (prescaler + 1)) / hertz));
|
||||
return ((uint16_t)((timerClock(tim) / (prescaler + 1)) / hz));
|
||||
}
|
||||
|
||||
uint16_t timerGetPrescalerByDesiredHertz(TIM_TypeDef *tim, uint32_t hz)
|
||||
{
|
||||
// protection here for desired hertz > SystemCoreClock???
|
||||
if (hz > timerClock(tim)) {
|
||||
return 0;
|
||||
}
|
||||
return (uint16_t)((timerClock(tim) + hz / 2 ) / hz) - 1;
|
||||
}
|
|
@ -35,7 +35,7 @@ typedef struct vtxDeviceCapability_s {
|
|||
} vtxDeviceCapability_t;
|
||||
|
||||
typedef struct vtxDevice_s {
|
||||
const struct vtxVTable_s const *vTable;
|
||||
const struct vtxVTable_s * const vTable;
|
||||
|
||||
vtxDeviceCapability_t capability;
|
||||
|
||||
|
|
|
@ -130,17 +130,16 @@ static serialPort_t *cliPort;
|
|||
|
||||
#ifdef STM32F1
|
||||
#define CLI_IN_BUFFER_SIZE 128
|
||||
#define CLI_OUT_BUFFER_SIZE 64
|
||||
#else
|
||||
// Space required to set array parameters
|
||||
#define CLI_IN_BUFFER_SIZE 256
|
||||
#define CLI_OUT_BUFFER_SIZE 256
|
||||
#endif
|
||||
#define CLI_OUT_BUFFER_SIZE 64
|
||||
|
||||
static bufWriter_t *cliWriter;
|
||||
static uint8_t cliWriteBuffer[sizeof(*cliWriter) + CLI_IN_BUFFER_SIZE];
|
||||
static uint8_t cliWriteBuffer[sizeof(*cliWriter) + CLI_OUT_BUFFER_SIZE];
|
||||
|
||||
static char cliBuffer[CLI_OUT_BUFFER_SIZE];
|
||||
static char cliBuffer[CLI_IN_BUFFER_SIZE];
|
||||
static uint32_t bufferIndex = 0;
|
||||
|
||||
static bool configIsInCopy = false;
|
||||
|
@ -2714,7 +2713,11 @@ static void cliStatus(char *cmdline)
|
|||
const int systemRate = getTaskDeltaTime(TASK_SYSTEM) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_SYSTEM)));
|
||||
cliPrintLinef("CPU:%d%%, cycle time: %d, GYRO rate: %d, RX rate: %d, System rate: %d",
|
||||
constrain(averageSystemLoadPercent, 0, 100), getTaskDeltaTime(TASK_GYROPID), gyroRate, rxRate, systemRate);
|
||||
|
||||
#ifdef MINIMAL_CLI
|
||||
cliPrintLinef("0x%x", getArmingDisableFlags() & ~ARMING_DISABLED_CLI);
|
||||
#else
|
||||
cliPrintLinef("Arming disable flags: 0x%x", getArmingDisableFlags() & ~ARMING_DISABLED_CLI);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef SKIP_TASK_STATISTICS
|
||||
|
@ -2831,9 +2834,14 @@ const cliResourceValue_t resourceTable[] = {
|
|||
{ OWNER_I2C_SDA, PG_I2C_CONFIG, offsetof(i2cConfig_t, ioTagSda[0]), I2CDEV_COUNT },
|
||||
#endif
|
||||
{ OWNER_LED, PG_STATUS_LED_CONFIG, offsetof(statusLedConfig_t, ioTags[0]), STATUS_LED_NUMBER },
|
||||
#ifdef USE_SPEKTRUM_BIND
|
||||
{ OWNER_RX_BIND, PG_RX_CONFIG, offsetof(rxConfig_t, spektrum_bind_pin_override_ioTag), 0 },
|
||||
{ OWNER_RX_BIND_PLUG, PG_RX_CONFIG, offsetof(rxConfig_t, spektrum_bind_plug_ioTag), 0 },
|
||||
#endif
|
||||
#ifdef TRANSPONDER
|
||||
{ OWNER_TRANSPONDER, PG_TRANSPONDER_CONFIG, offsetof(transponderConfig_t, ioTag), 0 },
|
||||
#endif
|
||||
=======
|
||||
};
|
||||
|
||||
static ioTag_t *getIoTag(const cliResourceValue_t value, uint8_t index)
|
||||
|
@ -3496,7 +3504,7 @@ void cliEnter(serialPort_t *serialPort)
|
|||
#endif
|
||||
cliPrompt();
|
||||
|
||||
ENABLE_ARMING_FLAG(PREVENT_ARMING);
|
||||
setArmingDisabled(ARMING_DISABLED_CLI);
|
||||
}
|
||||
|
||||
void cliInit(const serialConfig_t *serialConfig)
|
||||
|
|
|
@ -91,7 +91,6 @@ PG_DECLARE(ppmConfig_t, ppmConfig);
|
|||
PG_DECLARE(pwmConfig_t, pwmConfig);
|
||||
PG_DECLARE(vcdProfile_t, vcdProfile);
|
||||
PG_DECLARE(sdcardConfig_t, sdcardConfig);
|
||||
PG_DECLARE(serialPinConfig_t, serialPinConfig);
|
||||
|
||||
struct pidProfile_s;
|
||||
extern struct pidProfile_s *currentPidProfile;
|
||||
|
|
|
@ -107,7 +107,7 @@ int16_t magHold;
|
|||
int16_t headFreeModeHold;
|
||||
|
||||
uint8_t motorControlEnable = false;
|
||||
static bool reverseMotors;
|
||||
static bool reverseMotors = false;
|
||||
static uint32_t disarmAt; // Time of automatic disarm when "Don't spin the motors when armed" is enabled and auto_disarm_delay is nonzero
|
||||
|
||||
bool isRXDataNew;
|
||||
|
@ -128,7 +128,7 @@ void applyAndSaveAccelerometerTrimsDelta(rollAndPitchTrims_t *rollAndPitchTrimsD
|
|||
saveConfigAndNotify();
|
||||
}
|
||||
|
||||
bool isCalibrating()
|
||||
static bool isCalibrating()
|
||||
{
|
||||
#ifdef BARO
|
||||
if (sensors(SENSOR_BARO) && !isBaroCalibrationComplete()) {
|
||||
|
@ -141,35 +141,52 @@ bool isCalibrating()
|
|||
return (!isAccelerationCalibrationComplete() && sensors(SENSOR_ACC)) || (!isGyroCalibrationComplete());
|
||||
}
|
||||
|
||||
void updateLEDs(void)
|
||||
void updateArmingStatus(void)
|
||||
{
|
||||
if (ARMING_FLAG(ARMED)) {
|
||||
LED0_ON;
|
||||
} else {
|
||||
if (IS_RC_MODE_ACTIVE(BOXARM) == 0 || armingCalibrationWasInitialised) {
|
||||
ENABLE_ARMING_FLAG(OK_TO_ARM);
|
||||
if (IS_RC_MODE_ACTIVE(BOXFAILSAFE)) {
|
||||
setArmingDisabled(ARMING_DISABLED_BOXFAILSAFE);
|
||||
} else {
|
||||
unsetArmingDisabled(ARMING_DISABLED_BOXFAILSAFE);
|
||||
}
|
||||
|
||||
if (calculateThrottleStatus() != THROTTLE_LOW) {
|
||||
setArmingDisabled(ARMING_DISABLED_THROTTLE);
|
||||
} else {
|
||||
unsetArmingDisabled(ARMING_DISABLED_THROTTLE);
|
||||
}
|
||||
|
||||
if (!STATE(SMALL_ANGLE)) {
|
||||
DISABLE_ARMING_FLAG(OK_TO_ARM);
|
||||
setArmingDisabled(ARMING_DISABLED_ANGLE);
|
||||
} else {
|
||||
unsetArmingDisabled(ARMING_DISABLED_ANGLE);
|
||||
}
|
||||
|
||||
if (isCalibrating() || (averageSystemLoadPercent > 100)) {
|
||||
warningLedFlash();
|
||||
DISABLE_ARMING_FLAG(OK_TO_ARM);
|
||||
if (averageSystemLoadPercent > 100) {
|
||||
setArmingDisabled(ARMING_DISABLED_LOAD);
|
||||
} else {
|
||||
if (ARMING_FLAG(OK_TO_ARM)) {
|
||||
warningLedDisable();
|
||||
} else {
|
||||
warningLedFlash();
|
||||
}
|
||||
unsetArmingDisabled(ARMING_DISABLED_LOAD);
|
||||
}
|
||||
|
||||
if (isCalibrating()) {
|
||||
setArmingDisabled(ARMING_DISABLED_CALIBRATING);
|
||||
} else {
|
||||
unsetArmingDisabled(ARMING_DISABLED_CALIBRATING);
|
||||
}
|
||||
|
||||
if (isArmingDisabled()) {
|
||||
warningLedFlash();
|
||||
} else {
|
||||
warningLedDisable();
|
||||
}
|
||||
|
||||
warningLedUpdate();
|
||||
}
|
||||
}
|
||||
|
||||
void mwDisarm(void)
|
||||
void disarm(void)
|
||||
{
|
||||
armingCalibrationWasInitialised = false;
|
||||
|
||||
|
@ -186,7 +203,7 @@ void mwDisarm(void)
|
|||
}
|
||||
}
|
||||
|
||||
void mwArm(void)
|
||||
void tryArm(void)
|
||||
{
|
||||
static bool firstArmingCalibrationWasCompleted;
|
||||
|
||||
|
@ -196,49 +213,47 @@ void mwArm(void)
|
|||
firstArmingCalibrationWasCompleted = true;
|
||||
}
|
||||
|
||||
if (!isGyroCalibrationComplete()) return; // prevent arming before gyro is calibrated
|
||||
updateArmingStatus();
|
||||
|
||||
if (ARMING_FLAG(OK_TO_ARM)) {
|
||||
if (!isArmingDisabled()) {
|
||||
if (ARMING_FLAG(ARMED)) {
|
||||
return;
|
||||
}
|
||||
if (IS_RC_MODE_ACTIVE(BOXFAILSAFE)) {
|
||||
return;
|
||||
}
|
||||
if (!ARMING_FLAG(PREVENT_ARMING)) {
|
||||
#ifdef USE_DSHOT
|
||||
#ifdef USE_DSHOT
|
||||
if (!feature(FEATURE_3D)) {
|
||||
//TODO: Use BOXDSHOTREVERSE here
|
||||
if (!feature(FEATURE_3D) && !IS_RC_MODE_ACTIVE(BOX3DDISABLESWITCH)) {
|
||||
if (!IS_RC_MODE_ACTIVE(BOX3DDISABLESWITCH)) {
|
||||
reverseMotors = false;
|
||||
for (unsigned index = 0; index < getMotorCount(); index++) {
|
||||
pwmWriteDshotCommand(index, DSHOT_CMD_SPIN_DIRECTION_NORMAL);
|
||||
}
|
||||
}
|
||||
if (!feature(FEATURE_3D) && IS_RC_MODE_ACTIVE(BOX3DDISABLESWITCH)) {
|
||||
} else {
|
||||
reverseMotors = true;
|
||||
for (unsigned index = 0; index < getMotorCount(); index++) {
|
||||
pwmWriteDshotCommand(index, DSHOT_CMD_SPIN_DIRECTION_REVERSED);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
ENABLE_ARMING_FLAG(ARMED);
|
||||
ENABLE_ARMING_FLAG(WAS_EVER_ARMED);
|
||||
headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
|
||||
|
||||
disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000; // start disarm timeout, will be extended when throttle is nonzero
|
||||
|
||||
//beep to indicate arming
|
||||
#ifdef GPS
|
||||
if (feature(FEATURE_GPS) && STATE(GPS_FIX) && GPS_numSat >= 5)
|
||||
beeper(BEEPER_ARMING_GPS_FIX);
|
||||
else
|
||||
beeper(BEEPER_ARMING);
|
||||
#else
|
||||
beeper(BEEPER_ARMING);
|
||||
}
|
||||
#endif
|
||||
|
||||
return;
|
||||
ENABLE_ARMING_FLAG(ARMED);
|
||||
ENABLE_ARMING_FLAG(WAS_EVER_ARMED);
|
||||
headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
|
||||
|
||||
disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000; // start disarm timeout, will be extended when throttle is nonzero
|
||||
|
||||
//beep to indicate arming
|
||||
#ifdef GPS
|
||||
if (feature(FEATURE_GPS) && STATE(GPS_FIX) && gpsSol.numSat >= 5) {
|
||||
beeper(BEEPER_ARMING_GPS_FIX);
|
||||
} else {
|
||||
beeper(BEEPER_ARMING);
|
||||
}
|
||||
#else
|
||||
beeper(BEEPER_ARMING);
|
||||
#endif
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (!ARMING_FLAG(ARMED)) {
|
||||
|
@ -313,7 +328,7 @@ void processRx(timeUs_t currentTimeUs)
|
|||
// in 3D mode, we need to be able to disarm by switch at any time
|
||||
if (feature(FEATURE_3D)) {
|
||||
if (!IS_RC_MODE_ACTIVE(BOXARM))
|
||||
mwDisarm();
|
||||
disarm();
|
||||
}
|
||||
|
||||
updateRSSI(currentTimeUs);
|
||||
|
@ -362,7 +377,7 @@ void processRx(timeUs_t currentTimeUs)
|
|||
&& (int32_t)(disarmAt - millis()) < 0
|
||||
) {
|
||||
// auto-disarm configured and delay is over
|
||||
mwDisarm();
|
||||
disarm();
|
||||
armedBeeperOn = false;
|
||||
} else {
|
||||
// still armed; do warning beeps while armed
|
||||
|
|
|
@ -40,11 +40,11 @@ union rollAndPitchTrims_u;
|
|||
void applyAndSaveAccelerometerTrimsDelta(union rollAndPitchTrims_u *rollAndPitchTrimsDelta);
|
||||
void handleInflightCalibrationStickPosition();
|
||||
|
||||
void mwDisarm(void);
|
||||
void mwArm(void);
|
||||
void disarm(void);
|
||||
void tryArm(void);
|
||||
|
||||
void processRx(timeUs_t currentTimeUs);
|
||||
void updateLEDs(void);
|
||||
void updateArmingStatus(void);
|
||||
void updateRcCommands(void);
|
||||
|
||||
void taskMainPidLoop(timeUs_t currentTimeUs);
|
||||
|
|
|
@ -124,6 +124,7 @@
|
|||
#include "flight/pid.h"
|
||||
#include "flight/servos.h"
|
||||
|
||||
#include "io/rcsplit.h"
|
||||
|
||||
#ifdef USE_HARDWARE_REVISION_DETECTION
|
||||
#include "hardware_revision.h"
|
||||
|
@ -184,6 +185,61 @@ static IO_t busSwitchResetPin = IO_NONE;
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef USE_SPI
|
||||
// Pre-initialize all CS pins to input with pull-up.
|
||||
// It's sad that we can't do this with an initialized array,
|
||||
// since we will be taking care of configurable CS pins shortly.
|
||||
|
||||
void spiPreInit(void)
|
||||
{
|
||||
#ifdef USE_ACC_SPI_MPU6000
|
||||
spiPreInitCs(IO_TAG(MPU6000_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_ACC_SPI_MPU6500
|
||||
spiPreInitCs(IO_TAG(MPU6500_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_GYRO_SPI_MPU9250
|
||||
spiPreInitCs(IO_TAG(MPU9250_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_GYRO_SPI_ICM20689
|
||||
spiPreInitCs(IO_TAG(ICM20689_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_ACCGYRO_BMI160
|
||||
spiPreInitCs(IO_TAG(BMI160_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_GYRO_L3GD20
|
||||
spiPreInitCs(IO_TAG(L3GD20_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_MAX7456
|
||||
spiPreInitCs(IO_TAG(MAX7456_SPI_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_SDCARD
|
||||
spiPreInitCs(IO_TAG(SDCARD_SPI_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_BARO_SPI_BMP280
|
||||
spiPreInitCs(IO_TAG(BMP280_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_BARO_SPI_MS5611
|
||||
spiPreInitCs(IO_TAG(MS5611_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_MAG_SPI_HMC5883
|
||||
spiPreInitCs(IO_TAG(HMC5883_CS_PIN));
|
||||
#endif
|
||||
#ifdef USE_MAG_SPI_AK8963
|
||||
spiPreInitCs(IO_TAG(AK8963_CS_PIN));
|
||||
#endif
|
||||
#ifdef RTC6705_CS_PIN // XXX VTX_RTC6705? Should use USE_ format.
|
||||
spiPreInitCs(IO_TAG(RTC6705_CS_PIN));
|
||||
#endif
|
||||
#ifdef M25P16_CS_PIN // XXX Should use USE_ format.
|
||||
spiPreInitCs(IO_TAG(M25P16_CS_PIN));
|
||||
#endif
|
||||
#if defined(USE_RX_SPI) && !defined(USE_RX_SOFTSPI)
|
||||
spiPreInitCs(IO_TAG(RX_NSS_PIN));
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
void init(void)
|
||||
{
|
||||
#ifdef USE_HAL_DRIVER
|
||||
|
@ -259,11 +315,12 @@ void init(void)
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef SPEKTRUM_BIND_PIN
|
||||
#if defined(USE_SPEKTRUM_BIND) && !defined(SITL)
|
||||
if (feature(FEATURE_RX_SERIAL)) {
|
||||
switch (rxConfig()->serialrx_provider) {
|
||||
case SERIALRX_SPEKTRUM1024:
|
||||
case SERIALRX_SPEKTRUM2048:
|
||||
case SERIALRX_SRXL:
|
||||
// Spektrum satellite binding if enabled on startup.
|
||||
// Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
|
||||
// The rest of Spektrum initialization will happen later - via spektrumInit()
|
||||
|
@ -327,7 +384,7 @@ void init(void)
|
|||
if (0) {}
|
||||
#if defined(USE_PPM)
|
||||
else if (feature(FEATURE_RX_PPM)) {
|
||||
ppmRxInit(ppmConfig(), motorConfig()->dev.motorPwmProtocol);
|
||||
ppmRxInit(ppmConfig());
|
||||
}
|
||||
#endif
|
||||
#if defined(USE_PWM)
|
||||
|
@ -351,6 +408,9 @@ void init(void)
|
|||
#else
|
||||
|
||||
#ifdef USE_SPI
|
||||
// Initialize CS lines and keep them high
|
||||
spiPreInit();
|
||||
|
||||
#ifdef USE_SPI_DEVICE_1
|
||||
spiInit(SPIDEV_1);
|
||||
#endif
|
||||
|
@ -418,8 +478,9 @@ void init(void)
|
|||
initBoardAlignment(boardAlignment());
|
||||
|
||||
if (!sensorsAutodetect()) {
|
||||
// if gyro was not detected due to whatever reason, we give up now.
|
||||
failureMode(FAILURE_MISSING_ACC);
|
||||
// if gyro was not detected due to whatever reason, notify and don't arm.
|
||||
failureLedCode(FAILURE_MISSING_ACC, 2);
|
||||
setArmingDisabled(ARMING_DISABLED_NO_GYRO);
|
||||
}
|
||||
|
||||
systemState |= SYSTEM_STATE_SENSORS_READY;
|
||||
|
@ -442,6 +503,10 @@ void init(void)
|
|||
// gyro.targetLooptime set in sensorsAutodetect(), so we are ready to call pidInit()
|
||||
pidInit(currentPidProfile);
|
||||
|
||||
#ifdef USE_SERVOS
|
||||
servosFilterInit();
|
||||
#endif
|
||||
|
||||
imuInit();
|
||||
|
||||
mspFcInit();
|
||||
|
@ -599,7 +664,6 @@ void init(void)
|
|||
timerStart();
|
||||
|
||||
ENABLE_STATE(SMALL_ANGLE);
|
||||
DISABLE_ARMING_FLAG(PREVENT_ARMING);
|
||||
|
||||
#ifdef SOFTSERIAL_LOOPBACK
|
||||
// FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
|
||||
|
@ -636,5 +700,10 @@ void init(void)
|
|||
#else
|
||||
fcTasksInit();
|
||||
#endif
|
||||
|
||||
#ifdef USE_RCSPLIT
|
||||
rcSplitInit();
|
||||
#endif // USE_RCSPLIT
|
||||
|
||||
systemState |= SYSTEM_STATE_READY;
|
||||
}
|
||||
|
|
|
@ -153,6 +153,9 @@ static const box_t boxes[CHECKBOX_ITEM_COUNT] = {
|
|||
{ BOX3DDISABLESWITCH, "DISABLE 3D SWITCH", 29},
|
||||
{ BOXFPVANGLEMIX, "FPV ANGLE MIX", 30},
|
||||
{ BOXBLACKBOXERASE, "BLACKBOX ERASE (>30s)", 31 },
|
||||
{ BOXCAMERA1, "CAMERA CONTROL 1", 32},
|
||||
{ BOXCAMERA2, "CAMERA CONTROL 2", 33},
|
||||
{ BOXCAMERA3, "CAMERA CONTROL 3", 34 },
|
||||
};
|
||||
|
||||
// mask of enabled IDs, calculated on startup based on enabled features. boxId_e is used as bit index
|
||||
|
@ -420,6 +423,12 @@ void initActiveBoxIds(void)
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef USE_RCSPLIT
|
||||
BME(BOXCAMERA1);
|
||||
BME(BOXCAMERA2);
|
||||
BME(BOXCAMERA3);
|
||||
#endif
|
||||
|
||||
#undef BME
|
||||
// check that all enabled IDs are in boxes array (check may be skipped when using findBoxById() functions)
|
||||
for (boxId_e boxId = 0; boxId < CHECKBOX_ITEM_COUNT; boxId++)
|
||||
|
@ -1104,12 +1113,12 @@ static bool mspFcProcessOutCommand(uint8_t cmdMSP, sbuf_t *dst, mspPostProcessFn
|
|||
|
||||
case MSP_RAW_GPS:
|
||||
sbufWriteU8(dst, STATE(GPS_FIX));
|
||||
sbufWriteU8(dst, GPS_numSat);
|
||||
sbufWriteU32(dst, GPS_coord[LAT]);
|
||||
sbufWriteU32(dst, GPS_coord[LON]);
|
||||
sbufWriteU16(dst, GPS_altitude);
|
||||
sbufWriteU16(dst, GPS_speed);
|
||||
sbufWriteU16(dst, GPS_ground_course);
|
||||
sbufWriteU8(dst, gpsSol.numSat);
|
||||
sbufWriteU32(dst, gpsSol.llh.lat);
|
||||
sbufWriteU32(dst, gpsSol.llh.lon);
|
||||
sbufWriteU16(dst, gpsSol.llh.alt);
|
||||
sbufWriteU16(dst, gpsSol.groundSpeed);
|
||||
sbufWriteU16(dst, gpsSol.groundCourse);
|
||||
break;
|
||||
|
||||
case MSP_COMP_GPS:
|
||||
|
@ -1120,12 +1129,12 @@ static bool mspFcProcessOutCommand(uint8_t cmdMSP, sbuf_t *dst, mspPostProcessFn
|
|||
|
||||
case MSP_GPSSVINFO:
|
||||
sbufWriteU8(dst, GPS_numCh);
|
||||
for (int i = 0; i < GPS_numCh; i++) {
|
||||
sbufWriteU8(dst, GPS_svinfo_chn[i]);
|
||||
sbufWriteU8(dst, GPS_svinfo_svid[i]);
|
||||
sbufWriteU8(dst, GPS_svinfo_quality[i]);
|
||||
sbufWriteU8(dst, GPS_svinfo_cno[i]);
|
||||
}
|
||||
for (int i = 0; i < GPS_numCh; i++) {
|
||||
sbufWriteU8(dst, GPS_svinfo_chn[i]);
|
||||
sbufWriteU8(dst, GPS_svinfo_svid[i]);
|
||||
sbufWriteU8(dst, GPS_svinfo_quality[i]);
|
||||
sbufWriteU8(dst, GPS_svinfo_cno[i]);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
|
@ -1829,11 +1838,11 @@ static mspResult_e mspFcProcessInCommand(uint8_t cmdMSP, sbuf_t *src)
|
|||
} else {
|
||||
DISABLE_STATE(GPS_FIX);
|
||||
}
|
||||
GPS_numSat = sbufReadU8(src);
|
||||
GPS_coord[LAT] = sbufReadU32(src);
|
||||
GPS_coord[LON] = sbufReadU32(src);
|
||||
GPS_altitude = sbufReadU16(src);
|
||||
GPS_speed = sbufReadU16(src);
|
||||
gpsSol.numSat = sbufReadU8(src);
|
||||
gpsSol.llh.lat = sbufReadU32(src);
|
||||
gpsSol.llh.lon = sbufReadU32(src);
|
||||
gpsSol.llh.alt = sbufReadU16(src);
|
||||
gpsSol.groundSpeed = sbufReadU16(src);
|
||||
GPS_update |= 2; // New data signalisation to GPS functions // FIXME Magic Numbers
|
||||
break;
|
||||
|
||||
|
|
|
@ -84,6 +84,7 @@
|
|||
#include "telemetry/telemetry.h"
|
||||
|
||||
#include "io/osd_slave.h"
|
||||
#include "io/rcsplit.h"
|
||||
|
||||
#ifdef USE_BST
|
||||
void taskBstMasterProcess(timeUs_t currentTimeUs);
|
||||
|
@ -150,7 +151,7 @@ static void taskUpdateRxMain(timeUs_t currentTimeUs)
|
|||
// updateRcCommands sets rcCommand, which is needed by updateAltHoldState and updateSonarAltHoldState
|
||||
updateRcCommands();
|
||||
#endif
|
||||
updateLEDs();
|
||||
updateArmingStatus();
|
||||
|
||||
#ifdef BARO
|
||||
if (sensors(SENSOR_BARO)) {
|
||||
|
@ -258,8 +259,11 @@ void osdSlaveTasksInit(void)
|
|||
void fcTasksInit(void)
|
||||
{
|
||||
schedulerInit();
|
||||
rescheduleTask(TASK_GYROPID, gyro.targetLooptime);
|
||||
setTaskEnabled(TASK_GYROPID, true);
|
||||
|
||||
if (sensors(SENSOR_GYRO)) {
|
||||
rescheduleTask(TASK_GYROPID, gyro.targetLooptime);
|
||||
setTaskEnabled(TASK_GYROPID, true);
|
||||
}
|
||||
|
||||
if (sensors(SENSOR_ACC)) {
|
||||
setTaskEnabled(TASK_ACCEL, true);
|
||||
|
@ -594,5 +598,14 @@ cfTask_t cfTasks[TASK_COUNT] = {
|
|||
.staticPriority = TASK_PRIORITY_IDLE,
|
||||
},
|
||||
#endif
|
||||
|
||||
#ifdef USE_RCSPLIT
|
||||
[TASK_RCSPLIT] = {
|
||||
.taskName = "RCSPLIT",
|
||||
.taskFunc = rcSplitProcess,
|
||||
.desiredPeriod = TASK_PERIOD_HZ(10), // 10 Hz, 100ms
|
||||
.staticPriority = TASK_PRIORITY_MEDIUM,
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
|
|
@ -144,11 +144,7 @@ void processRcStickPositions(throttleStatus_e throttleStatus)
|
|||
if (IS_RC_MODE_ACTIVE(BOXARM)) {
|
||||
rcDisarmTicks = 0;
|
||||
// Arming via ARM BOX
|
||||
if (throttleStatus == THROTTLE_LOW) {
|
||||
if (ARMING_FLAG(OK_TO_ARM)) {
|
||||
mwArm();
|
||||
}
|
||||
}
|
||||
tryArm();
|
||||
} else {
|
||||
// Disarming via ARM BOX
|
||||
|
||||
|
@ -156,9 +152,9 @@ void processRcStickPositions(throttleStatus_e throttleStatus)
|
|||
rcDisarmTicks++;
|
||||
if (rcDisarmTicks > 3) {
|
||||
if (armingConfig()->disarm_kill_switch) {
|
||||
mwDisarm();
|
||||
disarm();
|
||||
} else if (throttleStatus == THROTTLE_LOW) {
|
||||
mwDisarm();
|
||||
disarm();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -173,7 +169,7 @@ void processRcStickPositions(throttleStatus_e throttleStatus)
|
|||
// Disarm on throttle down + yaw
|
||||
if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE) {
|
||||
if (ARMING_FLAG(ARMED))
|
||||
mwDisarm();
|
||||
disarm();
|
||||
else {
|
||||
beeper(BEEPER_DISARM_REPEAT); // sound tone while stick held
|
||||
rcDelayCommand = 0; // reset so disarm tone will repeat
|
||||
|
@ -233,7 +229,8 @@ void processRcStickPositions(throttleStatus_e throttleStatus)
|
|||
|
||||
if (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE) {
|
||||
// Arm via YAW
|
||||
mwArm();
|
||||
tryArm();
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -54,6 +54,9 @@ typedef enum {
|
|||
BOX3DDISABLESWITCH,
|
||||
BOXFPVANGLEMIX,
|
||||
BOXBLACKBOXERASE,
|
||||
BOXCAMERA1,
|
||||
BOXCAMERA2,
|
||||
BOXCAMERA3,
|
||||
CHECKBOX_ITEM_COUNT
|
||||
} boxId_e;
|
||||
|
||||
|
|
|
@ -29,6 +29,28 @@ uint16_t flightModeFlags = 0;
|
|||
|
||||
static uint32_t enabledSensors = 0;
|
||||
|
||||
static armingDisableFlags_e armingDisableFlags = 0;
|
||||
|
||||
void setArmingDisabled(armingDisableFlags_e flag)
|
||||
{
|
||||
armingDisableFlags = armingDisableFlags | flag;
|
||||
}
|
||||
|
||||
void unsetArmingDisabled(armingDisableFlags_e flag)
|
||||
{
|
||||
armingDisableFlags = armingDisableFlags & ~flag;
|
||||
}
|
||||
|
||||
bool isArmingDisabled()
|
||||
{
|
||||
return armingDisableFlags;
|
||||
}
|
||||
|
||||
armingDisableFlags_e getArmingDisableFlags(void)
|
||||
{
|
||||
return armingDisableFlags;
|
||||
}
|
||||
|
||||
/**
|
||||
* Enables the given flight mode. A beep is sounded if the flight mode
|
||||
* has changed. Returns the new 'flightModeFlags' value.
|
||||
|
|
|
@ -19,10 +19,8 @@
|
|||
|
||||
// FIXME some of these are flight modes, some of these are general status indicators
|
||||
typedef enum {
|
||||
OK_TO_ARM = (1 << 0),
|
||||
PREVENT_ARMING = (1 << 1),
|
||||
ARMED = (1 << 2),
|
||||
WAS_EVER_ARMED = (1 << 3)
|
||||
ARMED = (1 << 0),
|
||||
WAS_EVER_ARMED = (1 << 1)
|
||||
} armingFlag_e;
|
||||
|
||||
extern uint8_t armingFlags;
|
||||
|
@ -31,6 +29,29 @@ extern uint8_t armingFlags;
|
|||
#define ENABLE_ARMING_FLAG(mask) (armingFlags |= (mask))
|
||||
#define ARMING_FLAG(mask) (armingFlags & (mask))
|
||||
|
||||
/*
|
||||
* Arming disable flags are listed in the order of criticalness.
|
||||
* (Beeper code can notify the most critical reason.)
|
||||
*/
|
||||
typedef enum {
|
||||
ARMING_DISABLED_NO_GYRO = (1 << 0),
|
||||
ARMING_DISABLED_FAILSAFE = (1 << 1),
|
||||
ARMING_DISABLED_BOXFAILSAFE = (1 << 2),
|
||||
ARMING_DISABLED_THROTTLE = (1 << 3),
|
||||
ARMING_DISABLED_ANGLE = (1 << 4),
|
||||
ARMING_DISABLED_LOAD = (1 << 5),
|
||||
ARMING_DISABLED_CALIBRATING = (1 << 6),
|
||||
ARMING_DISABLED_CLI = (1 << 7),
|
||||
ARMING_DISABLED_CMS_MENU = (1 << 8),
|
||||
ARMING_DISABLED_OSD_MENU = (1 << 9),
|
||||
ARMING_DISABLED_BST = (1 << 10),
|
||||
} armingDisableFlags_e;
|
||||
|
||||
void setArmingDisabled(armingDisableFlags_e flag);
|
||||
void unsetArmingDisabled(armingDisableFlags_e flag);
|
||||
bool isArmingDisabled(void);
|
||||
armingDisableFlags_e getArmingDisableFlags(void);
|
||||
|
||||
typedef enum {
|
||||
ANGLE_MODE = (1 << 0),
|
||||
HORIZON_MODE = (1 << 1),
|
||||
|
|
|
@ -53,6 +53,7 @@
|
|||
#include "flight/pid.h"
|
||||
#include "flight/servos.h"
|
||||
|
||||
#include "io/dashboard.h"
|
||||
#include "io/gimbal.h"
|
||||
#include "io/gps.h"
|
||||
#include "io/ledstrip.h"
|
||||
|
@ -357,7 +358,7 @@ const clivalue_t valueTable[] = {
|
|||
{ "serialrx_provider", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_SERIAL_RX }, PG_RX_CONFIG, offsetof(rxConfig_t, serialrx_provider) },
|
||||
{ "sbus_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_OFF_ON }, PG_RX_CONFIG, offsetof(rxConfig_t, sbus_inversion) },
|
||||
#endif
|
||||
#ifdef SPEKTRUM_BIND_PIN
|
||||
#ifdef USE_SPEKTRUM_BIND
|
||||
{ "spektrum_sat_bind", VAR_UINT8 | MASTER_VALUE, .config.minmax = { SPEKTRUM_SAT_BIND_DISABLED, SPEKTRUM_SAT_BIND_MAX}, PG_RX_CONFIG, offsetof(rxConfig_t, spektrum_sat_bind) },
|
||||
{ "spektrum_sat_bind_autoreset",VAR_UINT8 | MASTER_VALUE, .config.minmax = { 0, 1 }, PG_RX_CONFIG, offsetof(rxConfig_t, spektrum_sat_bind_autoreset) },
|
||||
#endif
|
||||
|
@ -678,6 +679,7 @@ const clivalue_t valueTable[] = {
|
|||
{ "osd_stat_endbatt", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_OFF_ON }, PG_OSD_CONFIG, offsetof(osdConfig_t, enabled_stats[OSD_STAT_END_BATTERY])},
|
||||
{ "osd_stat_flytime", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_OFF_ON }, PG_OSD_CONFIG, offsetof(osdConfig_t, enabled_stats[OSD_STAT_FLYTIME])},
|
||||
{ "osd_stat_armtime", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_OFF_ON }, PG_OSD_CONFIG, offsetof(osdConfig_t, enabled_stats[OSD_STAT_ARMEDTIME])},
|
||||
{ "osd_stat_bb_no", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_OFF_ON }, PG_OSD_CONFIG, offsetof(osdConfig_t, enabled_stats[OSD_STAT_BLACKBOX_NUMBER])},
|
||||
#endif
|
||||
|
||||
// PG_SYSTEM_CONFIG
|
||||
|
@ -719,6 +721,10 @@ const clivalue_t valueTable[] = {
|
|||
{ "esc_sensor_halfduplex", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_OFF_ON }, PG_ESC_SENSOR_CONFIG, offsetof(escSensorConfig_t, halfDuplex) },
|
||||
#endif
|
||||
{ "led_inversion", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 0, ((1 << STATUS_LED_NUMBER) - 1) }, PG_STATUS_LED_CONFIG, offsetof(statusLedConfig_t, inversion) },
|
||||
#ifdef USE_DASHBOARD
|
||||
{ "dashboard_i2c_bus", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 0, I2CDEV_COUNT }, PG_DASHBOARD_CONFIG, offsetof(dashboardConfig_t, device) },
|
||||
{ "dashboard_i2c_addr", VAR_UINT8 | MASTER_VALUE, .config.minmax = { I2C_ADDR8_MIN, I2C_ADDR8_MAX }, PG_DASHBOARD_CONFIG, offsetof(dashboardConfig_t, address) },
|
||||
#endif
|
||||
};
|
||||
|
||||
const uint16_t valueTableEntryCount = ARRAYLEN(valueTable);
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include "drivers/time.h"
|
||||
|
||||
#include "fc/config.h"
|
||||
#include "fc/fc_core.h"
|
||||
#include "fc/rc_controls.h"
|
||||
#include "fc/rc_modes.h"
|
||||
#include "fc/runtime_config.h"
|
||||
|
@ -261,8 +262,8 @@ void failsafeUpdateState(void)
|
|||
break;
|
||||
|
||||
case FAILSAFE_LANDED:
|
||||
ENABLE_ARMING_FLAG(PREVENT_ARMING); // To prevent accidently rearming by an intermittent rx link
|
||||
mwDisarm();
|
||||
setArmingDisabled(ARMING_DISABLED_FAILSAFE); // To prevent accidently rearming by an intermittent rx link
|
||||
disarm();
|
||||
failsafeState.receivingRxDataPeriod = millis() + failsafeState.receivingRxDataPeriodPreset; // set required period of valid rxData
|
||||
failsafeState.phase = FAILSAFE_RX_LOSS_MONITORING;
|
||||
reprocessState = true;
|
||||
|
@ -274,7 +275,7 @@ void failsafeUpdateState(void)
|
|||
if (millis() > failsafeState.receivingRxDataPeriod) {
|
||||
// rx link is good now, when arming via ARM switch, it must be OFF first
|
||||
if (!(!isUsingSticksForArming() && IS_RC_MODE_ACTIVE(BOXARM))) {
|
||||
DISABLE_ARMING_FLAG(PREVENT_ARMING);
|
||||
unsetArmingDisabled(ARMING_DISABLED_FAILSAFE);
|
||||
failsafeState.phase = FAILSAFE_RX_LOSS_RECOVERED;
|
||||
reprocessState = true;
|
||||
}
|
||||
|
|
|
@ -419,9 +419,9 @@ static void imuCalculateEstimatedAttitude(timeUs_t currentTimeUs)
|
|||
useMag = true;
|
||||
}
|
||||
#if defined(GPS)
|
||||
else if (STATE(FIXED_WING) && sensors(SENSOR_GPS) && STATE(GPS_FIX) && GPS_numSat >= 5 && GPS_speed >= 300) {
|
||||
else if (STATE(FIXED_WING) && sensors(SENSOR_GPS) && STATE(GPS_FIX) && gpsSol.numSat >= 5 && gpsSol.groundSpeed >= 300) {
|
||||
// In case of a fixed-wing aircraft we can use GPS course over ground to correct heading
|
||||
rawYawError = DECIDEGREES_TO_RADIANS(attitude.values.yaw - GPS_ground_course);
|
||||
rawYawError = DECIDEGREES_TO_RADIANS(attitude.values.yaw - gpsSol.groundCourse);
|
||||
useYaw = true;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -336,27 +336,16 @@ bool mixerIsOutputSaturated(int axis, float errorRate)
|
|||
return false;
|
||||
}
|
||||
|
||||
bool isMotorProtocolDshot(void) {
|
||||
#ifdef USE_DSHOT
|
||||
// All PWM motor scaling is done to standard PWM range of 1000-2000 for easier tick conversion with legacy code / configurator
|
||||
// DSHOT scaling is done to the actual dshot range
|
||||
void initEscEndpoints(void) {
|
||||
switch(motorConfig()->dev.motorPwmProtocol) {
|
||||
#ifdef USE_DSHOT
|
||||
case PWM_TYPE_PROSHOT1000:
|
||||
case PWM_TYPE_DSHOT1200:
|
||||
case PWM_TYPE_DSHOT600:
|
||||
case PWM_TYPE_DSHOT300:
|
||||
case PWM_TYPE_DSHOT150:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
// All PWM motor scaling is done to standard PWM range of 1000-2000 for easier tick conversion with legacy code / configurator
|
||||
// DSHOT scaling is done to the actual dshot range
|
||||
void initEscEndpoints(void) {
|
||||
#ifdef USE_DSHOT
|
||||
if (isMotorProtocolDshot()) {
|
||||
disarmMotorOutput = DSHOT_DISARM_COMMAND;
|
||||
if (feature(FEATURE_3D))
|
||||
motorOutputLow = DSHOT_MIN_THROTTLE + ((DSHOT_3D_DEADBAND_LOW - DSHOT_MIN_THROTTLE) / 100.0f) * CONVERT_PARAMETER_TO_PERCENT(motorConfig()->digitalIdleOffsetValue);
|
||||
|
@ -365,14 +354,17 @@ void initEscEndpoints(void) {
|
|||
motorOutputHigh = DSHOT_MAX_THROTTLE;
|
||||
deadbandMotor3dHigh = DSHOT_3D_DEADBAND_HIGH + ((DSHOT_MAX_THROTTLE - DSHOT_3D_DEADBAND_HIGH) / 100.0f) * CONVERT_PARAMETER_TO_PERCENT(motorConfig()->digitalIdleOffsetValue); // TODO - Not working yet !! Mixer requires some throttle rescaling changes
|
||||
deadbandMotor3dLow = DSHOT_3D_DEADBAND_LOW;
|
||||
} else
|
||||
|
||||
break;
|
||||
#endif
|
||||
{
|
||||
default:
|
||||
disarmMotorOutput = (feature(FEATURE_3D)) ? flight3DConfig()->neutral3d : motorConfig()->mincommand;
|
||||
motorOutputLow = motorConfig()->minthrottle;
|
||||
motorOutputHigh = motorConfig()->maxthrottle;
|
||||
deadbandMotor3dHigh = flight3DConfig()->deadband3d_high;
|
||||
deadbandMotor3dLow = flight3DConfig()->deadband3d_low;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
rcCommandThrottleRange = (PWM_RANGE_MAX - rxConfig()->mincheck);
|
||||
|
|
|
@ -25,24 +25,6 @@
|
|||
#define BRUSHED_MOTORS_PWM_RATE 16000
|
||||
#define BRUSHLESS_MOTORS_PWM_RATE 480
|
||||
|
||||
/*
|
||||
DshotSettingRequest (KISS24). Spin direction, 3d and save Settings reqire 10 requests.. and the TLM Byte must always be high if 1-47 are used to send settings
|
||||
0 = stop
|
||||
1-5: beep
|
||||
6: ESC info request (FW Version and SN sent over the tlm wire)
|
||||
7: spin direction 1
|
||||
8: spin direction 2
|
||||
9: 3d mode off
|
||||
10: 3d mode on
|
||||
11: ESC settings request (saved settings over the TLM wire)
|
||||
12: save Settings
|
||||
|
||||
3D Mode:
|
||||
0 = stop
|
||||
48 (low) - 1047 (high) -> negative direction
|
||||
1048 (low) - 2047 (high) -> positive direction
|
||||
*/
|
||||
|
||||
// Digital protocol has fixed values
|
||||
#define DSHOT_DISARM_COMMAND 0
|
||||
#define DSHOT_MIN_THROTTLE 48
|
||||
|
@ -140,6 +122,5 @@ void writeMotors(void);
|
|||
void stopMotors(void);
|
||||
void stopPwmAllMotors(void);
|
||||
|
||||
bool isMotorProtocolDshot(void);
|
||||
float convertExternalToMotor(uint16_t externalValue);
|
||||
uint16_t convertMotorToExternal(float motorValue);
|
||||
|
|
|
@ -107,19 +107,22 @@ void navigationInit(void)
|
|||
#define GPS_FILTERING 1 // add a 5 element moving average filter to GPS coordinates, helps eliminate gps noise but adds latency
|
||||
#define GPS_LOW_SPEED_D_FILTER 1 // below .5m/s speed ignore D term for POSHOLD_RATE, theoretically this also removed D term induced noise
|
||||
|
||||
static bool check_missed_wp(void);
|
||||
static void GPS_distance_cm_bearing(int32_t * lat1, int32_t * lon1, int32_t * lat2, int32_t * lon2, uint32_t * dist, int32_t * bearing);
|
||||
//static void GPS_distance(int32_t lat1, int32_t lon1, int32_t lat2, int32_t lon2, uint16_t* dist, int16_t* bearing);
|
||||
static void GPS_calc_longitude_scaling(int32_t lat);
|
||||
static void GPS_calc_velocity(void);
|
||||
static void GPS_calc_location_error(int32_t * target_lat, int32_t * target_lng, int32_t * gps_lat, int32_t * gps_lng);
|
||||
|
||||
#ifdef USE_NAV
|
||||
static bool check_missed_wp(void);
|
||||
static void GPS_calc_poshold(void);
|
||||
static void GPS_calc_nav_rate(uint16_t max_speed);
|
||||
static void GPS_update_crosstrack(void);
|
||||
static uint16_t GPS_calc_desired_speed(uint16_t max_speed, bool _slow);
|
||||
static int32_t wrap_36000(int32_t angle);
|
||||
#endif
|
||||
|
||||
static int32_t wrap_18000(int32_t error);
|
||||
static int32_t wrap_36000(int32_t angle);
|
||||
|
||||
typedef struct {
|
||||
int16_t last_velocity;
|
||||
|
@ -134,7 +137,6 @@ typedef struct {
|
|||
|
||||
static PID_PARAM posholdPID_PARAM;
|
||||
static PID_PARAM poshold_ratePID_PARAM;
|
||||
static PID_PARAM navPID_PARAM;
|
||||
|
||||
typedef struct {
|
||||
float integrator; // integrator value
|
||||
|
@ -146,6 +148,9 @@ typedef struct {
|
|||
|
||||
static PID posholdPID[2];
|
||||
static PID poshold_ratePID[2];
|
||||
|
||||
#ifdef USE_NAV
|
||||
static PID_PARAM navPID_PARAM;
|
||||
static PID navPID[2];
|
||||
|
||||
static int32_t get_P(int32_t error, PID_PARAM *pid)
|
||||
|
@ -176,6 +181,7 @@ static int32_t get_D(int32_t input, float *dt, PID *pid, PID_PARAM *pid_param)
|
|||
// add in derivative component
|
||||
return pid_param->kD * pid->derivative;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void reset_PID(PID *pid)
|
||||
{
|
||||
|
@ -197,11 +203,15 @@ static void reset_PID(PID *pid)
|
|||
static float dTnav; // Delta Time in milliseconds for navigation computations, updated with every good GPS read
|
||||
static int16_t actual_speed[2] = { 0, 0 };
|
||||
static float GPS_scaleLonDown = 1.0f; // this is used to offset the shrinking longitude as we go towards the poles
|
||||
static int32_t error[2];
|
||||
|
||||
#ifdef USE_NAV
|
||||
// The difference between the desired rate of travel and the actual rate of travel
|
||||
// updated after GPS read - 5-10hz
|
||||
static int16_t rate_error[2];
|
||||
static int32_t error[2];
|
||||
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path
|
||||
static int16_t crosstrack_error;
|
||||
#endif
|
||||
|
||||
// Currently used WP
|
||||
static int32_t GPS_WP[2];
|
||||
|
@ -217,8 +227,6 @@ static int32_t target_bearing;
|
|||
// deg * 100, The original angle to the next_WP when the next_WP was set
|
||||
// Also used to check when we pass a WP
|
||||
static int32_t original_target_bearing;
|
||||
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path
|
||||
static int16_t crosstrack_error;
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// The location of the copter in relation to home, updated every GPS read (1deg - 100)
|
||||
//static int32_t home_to_copter_bearing;
|
||||
|
@ -254,7 +262,7 @@ void GPS_calculateDistanceAndDirectionToHome(void)
|
|||
if (STATE(GPS_FIX_HOME)) { // If we don't have home set, do not display anything
|
||||
uint32_t dist;
|
||||
int32_t dir;
|
||||
GPS_distance_cm_bearing(&GPS_coord[LAT], &GPS_coord[LON], &GPS_home[LAT], &GPS_home[LON], &dist, &dir);
|
||||
GPS_distance_cm_bearing(&gpsSol.llh.lat, &gpsSol.llh.lon, &GPS_home[LAT], &GPS_home[LON], &dist, &dir);
|
||||
GPS_distanceToHome = dist / 100;
|
||||
GPS_directionToHome = dir / 100;
|
||||
} else {
|
||||
|
@ -265,12 +273,9 @@ void GPS_calculateDistanceAndDirectionToHome(void)
|
|||
|
||||
void onGpsNewData(void)
|
||||
{
|
||||
int axis;
|
||||
static uint32_t nav_loopTimer;
|
||||
uint16_t speed;
|
||||
|
||||
|
||||
if (!(STATE(GPS_FIX) && GPS_numSat >= 5)) {
|
||||
if (!(STATE(GPS_FIX) && gpsSol.numSat >= 5)) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -283,8 +288,8 @@ void onGpsNewData(void)
|
|||
// Apply moving average filter to GPS data
|
||||
#if defined(GPS_FILTERING)
|
||||
GPS_filter_index = (GPS_filter_index + 1) % GPS_FILTER_VECTOR_LENGTH;
|
||||
for (axis = 0; axis < 2; axis++) {
|
||||
GPS_read[axis] = GPS_coord[axis]; // latest unfiltered data is in GPS_latitude and GPS_longitude
|
||||
for (int axis = 0; axis < 2; axis++) {
|
||||
GPS_read[axis] = axis == LAT ? gpsSol.llh.lat : gpsSol.llh.lon; // latest unfiltered data is in GPS_latitude and GPS_longitude
|
||||
GPS_degree[axis] = GPS_read[axis] / 10000000; // get the degree to assure the sum fits to the int32_t
|
||||
|
||||
// How close we are to a degree line ? its the first three digits from the fractions of degree
|
||||
|
@ -296,8 +301,13 @@ void onGpsNewData(void)
|
|||
GPS_filter_sum[axis] += GPS_filter[axis][GPS_filter_index];
|
||||
GPS_filtered[axis] = GPS_filter_sum[axis] / GPS_FILTER_VECTOR_LENGTH + (GPS_degree[axis] * 10000000);
|
||||
if (nav_mode == NAV_MODE_POSHOLD) { // we use gps averaging only in poshold mode...
|
||||
if (fraction3[axis] > 1 && fraction3[axis] < 999)
|
||||
GPS_coord[axis] = GPS_filtered[axis];
|
||||
if (fraction3[axis] > 1 && fraction3[axis] < 999) {
|
||||
if (axis == LAT) {
|
||||
gpsSol.llh.lat = GPS_filtered[LAT];
|
||||
} else {
|
||||
gpsSol.llh.lon = GPS_filtered[LON];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -316,13 +326,15 @@ void onGpsNewData(void)
|
|||
// calculate the current velocity based on gps coordinates continously to get a valid speed at the moment when we start navigating
|
||||
GPS_calc_velocity();
|
||||
|
||||
#ifdef USE_NAV
|
||||
if (FLIGHT_MODE(GPS_HOLD_MODE) || FLIGHT_MODE(GPS_HOME_MODE)) {
|
||||
// we are navigating
|
||||
|
||||
// gps nav calculations, these are common for nav and poshold
|
||||
GPS_distance_cm_bearing(&GPS_coord[LAT], &GPS_coord[LON], &GPS_WP[LAT], &GPS_WP[LON], &wp_distance, &target_bearing);
|
||||
GPS_calc_location_error(&GPS_WP[LAT], &GPS_WP[LON], &GPS_coord[LAT], &GPS_coord[LON]);
|
||||
GPS_distance_cm_bearing(&gpsSol.llh.lat, &gpsSol.llh.lon, &GPS_WP[LAT], &GPS_WP[LON], &wp_distance, &target_bearing);
|
||||
GPS_calc_location_error(&GPS_WP[LAT], &GPS_WP[LON], &gpsSol.llh.lat, &gpsSol.llh.lon);
|
||||
|
||||
uint16_t speed;
|
||||
switch (nav_mode) {
|
||||
case NAV_MODE_POSHOLD:
|
||||
// Desired output is in nav_lat and nav_lon where 1deg inclination is 100
|
||||
|
@ -355,14 +367,15 @@ void onGpsNewData(void)
|
|||
break;
|
||||
}
|
||||
} //end of gps calcs
|
||||
#endif
|
||||
}
|
||||
|
||||
void GPS_reset_home_position(void)
|
||||
{
|
||||
if (STATE(GPS_FIX) && GPS_numSat >= 5) {
|
||||
GPS_home[LAT] = GPS_coord[LAT];
|
||||
GPS_home[LON] = GPS_coord[LON];
|
||||
GPS_calc_longitude_scaling(GPS_coord[LAT]); // need an initial value for distance and bearing calc
|
||||
if (STATE(GPS_FIX) && gpsSol.numSat >= 5) {
|
||||
GPS_home[LAT] = gpsSol.llh.lat;
|
||||
GPS_home[LON] = gpsSol.llh.lon;
|
||||
GPS_calc_longitude_scaling(gpsSol.llh.lat); // need an initial value for distance and bearing calc
|
||||
nav_takeoff_bearing = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // save takeoff heading
|
||||
// Set ground altitude
|
||||
ENABLE_STATE(GPS_FIX_HOME);
|
||||
|
@ -380,7 +393,9 @@ void GPS_reset_nav(void)
|
|||
nav[i] = 0;
|
||||
reset_PID(&posholdPID[i]);
|
||||
reset_PID(&poshold_ratePID[i]);
|
||||
#ifdef USE_NAV
|
||||
reset_PID(&navPID[i]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -396,10 +411,12 @@ void gpsUsePIDs(pidProfile_t *pidProfile)
|
|||
poshold_ratePID_PARAM.kD = (float)pidProfile->pid[PID_POSR].D / 1000.0f;
|
||||
poshold_ratePID_PARAM.Imax = POSHOLD_RATE_IMAX * 100;
|
||||
|
||||
#ifdef USE_NAV
|
||||
navPID_PARAM.kP = (float)pidProfile->pid[PID_NAVR].P / 10.0f;
|
||||
navPID_PARAM.kI = (float)pidProfile->pid[PID_NAVR].I / 100.0f;
|
||||
navPID_PARAM.kD = (float)pidProfile->pid[PID_NAVR].D / 1000.0f;
|
||||
navPID_PARAM.Imax = POSHOLD_RATE_IMAX * 100;
|
||||
#endif
|
||||
}
|
||||
|
||||
// OK here is the onboard GPS code
|
||||
|
@ -429,14 +446,15 @@ void GPS_set_next_wp(int32_t *lat, int32_t *lon)
|
|||
GPS_WP[LON] = *lon;
|
||||
|
||||
GPS_calc_longitude_scaling(*lat);
|
||||
GPS_distance_cm_bearing(&GPS_coord[LAT], &GPS_coord[LON], &GPS_WP[LAT], &GPS_WP[LON], &wp_distance, &target_bearing);
|
||||
GPS_distance_cm_bearing(&gpsSol.llh.lat, &gpsSol.llh.lon, &GPS_WP[LAT], &GPS_WP[LON], &wp_distance, &target_bearing);
|
||||
|
||||
nav_bearing = target_bearing;
|
||||
GPS_calc_location_error(&GPS_WP[LAT], &GPS_WP[LON], &GPS_coord[LAT], &GPS_coord[LON]);
|
||||
GPS_calc_location_error(&GPS_WP[LAT], &GPS_WP[LON], &gpsSol.llh.lat, &gpsSol.llh.lon);
|
||||
original_target_bearing = target_bearing;
|
||||
waypoint_speed_gov = navigationConfig()->nav_speed_min;
|
||||
}
|
||||
|
||||
#ifdef USE_NAV
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Check if we missed the destination somehow
|
||||
//
|
||||
|
@ -447,6 +465,7 @@ static bool check_missed_wp(void)
|
|||
temp = wrap_18000(temp);
|
||||
return (ABS(temp) > 10000); // we passed the waypoint by 100 degrees
|
||||
}
|
||||
#endif
|
||||
|
||||
#define DISTANCE_BETWEEN_TWO_LONGITUDE_POINTS_AT_EQUATOR_IN_HUNDREDS_OF_KILOMETERS 1.113195f
|
||||
#define TAN_89_99_DEGREES 5729.57795f
|
||||
|
@ -484,13 +503,11 @@ static void GPS_calc_velocity(void)
|
|||
static int16_t speed_old[2] = { 0, 0 };
|
||||
static int32_t last_coord[2] = { 0, 0 };
|
||||
static uint8_t init = 0;
|
||||
// y_GPS_speed positive = Up
|
||||
// x_GPS_speed positive = Right
|
||||
|
||||
if (init) {
|
||||
float tmp = 1.0f / dTnav;
|
||||
actual_speed[GPS_X] = (float)(GPS_coord[LON] - last_coord[LON]) * GPS_scaleLonDown * tmp;
|
||||
actual_speed[GPS_Y] = (float)(GPS_coord[LAT] - last_coord[LAT]) * tmp;
|
||||
actual_speed[GPS_X] = (float)(gpsSol.llh.lon - last_coord[LON]) * GPS_scaleLonDown * tmp;
|
||||
actual_speed[GPS_Y] = (float)(gpsSol.llh.lat - last_coord[LAT]) * tmp;
|
||||
|
||||
actual_speed[GPS_X] = (actual_speed[GPS_X] + speed_old[GPS_X]) / 2;
|
||||
actual_speed[GPS_Y] = (actual_speed[GPS_Y] + speed_old[GPS_Y]) / 2;
|
||||
|
@ -500,8 +517,8 @@ static void GPS_calc_velocity(void)
|
|||
}
|
||||
init = 1;
|
||||
|
||||
last_coord[LON] = GPS_coord[LON];
|
||||
last_coord[LAT] = GPS_coord[LAT];
|
||||
last_coord[LON] = gpsSol.llh.lon;
|
||||
last_coord[LAT] = gpsSol.llh.lat;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -519,6 +536,7 @@ static void GPS_calc_location_error(int32_t *target_lat, int32_t *target_lng, in
|
|||
error[LAT] = *target_lat - *gps_lat; // Y Error
|
||||
}
|
||||
|
||||
#ifdef USE_NAV
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Calculate nav_lat and nav_lon from the x and y error and the speed
|
||||
//
|
||||
|
@ -624,6 +642,7 @@ static uint16_t GPS_calc_desired_speed(uint16_t max_speed, bool _slow)
|
|||
}
|
||||
return max_speed;
|
||||
}
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Utilities
|
||||
|
@ -637,6 +656,7 @@ static int32_t wrap_18000(int32_t error)
|
|||
return error;
|
||||
}
|
||||
|
||||
#ifdef USE_NAV
|
||||
static int32_t wrap_36000(int32_t angle)
|
||||
{
|
||||
if (angle > 36000)
|
||||
|
@ -645,6 +665,7 @@ static int32_t wrap_36000(int32_t angle)
|
|||
angle += 36000;
|
||||
return angle;
|
||||
}
|
||||
#endif
|
||||
|
||||
void updateGpsStateForHomeAndHoldMode(void)
|
||||
{
|
||||
|
@ -666,7 +687,7 @@ void updateGpsWaypointsAndMode(void)
|
|||
bool resetNavNow = false;
|
||||
static bool gpsReadyBeepDone = false;
|
||||
|
||||
if (STATE(GPS_FIX) && GPS_numSat >= 5) {
|
||||
if (STATE(GPS_FIX) && gpsSol.numSat >= 5) {
|
||||
|
||||
//
|
||||
// process HOME mode
|
||||
|
@ -701,8 +722,8 @@ void updateGpsWaypointsAndMode(void)
|
|||
|
||||
// Transition to HOLD mode
|
||||
ENABLE_FLIGHT_MODE(GPS_HOLD_MODE);
|
||||
GPS_hold[LAT] = GPS_coord[LAT];
|
||||
GPS_hold[LON] = GPS_coord[LON];
|
||||
GPS_hold[LAT] = gpsSol.llh.lat;
|
||||
GPS_hold[LON] = gpsSol.llh.lon;
|
||||
GPS_set_next_wp(&GPS_hold[LAT], &GPS_hold[LON]);
|
||||
nav_mode = NAV_MODE_POSHOLD;
|
||||
resetNavNow = true;
|
||||
|
|
|
@ -499,23 +499,25 @@ bool isMixerUsingServos(void)
|
|||
return useServo;
|
||||
}
|
||||
|
||||
static biquadFilter_t servoFilter[MAX_SUPPORTED_SERVOS];
|
||||
|
||||
void servosFilterInit(void)
|
||||
{
|
||||
if (servoConfig()->servo_lowpass_freq) {
|
||||
for (int servoIdx = 0; servoIdx < MAX_SUPPORTED_SERVOS; servoIdx++) {
|
||||
biquadFilterInitLPF(&servoFilter[servoIdx], servoConfig()->servo_lowpass_freq, targetPidLooptime);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
static void filterServos(void)
|
||||
{
|
||||
static int16_t servoIdx;
|
||||
static bool servoFilterIsSet;
|
||||
static biquadFilter_t servoFilter[MAX_SUPPORTED_SERVOS];
|
||||
|
||||
#if defined(MIXER_DEBUG)
|
||||
uint32_t startTime = micros();
|
||||
#endif
|
||||
|
||||
if (servoConfig()->servo_lowpass_freq) {
|
||||
for (servoIdx = 0; servoIdx < MAX_SUPPORTED_SERVOS; servoIdx++) {
|
||||
if (!servoFilterIsSet) {
|
||||
biquadFilterInitLPF(&servoFilter[servoIdx], servoConfig()->servo_lowpass_freq, targetPidLooptime);
|
||||
servoFilterIsSet = true;
|
||||
}
|
||||
|
||||
for (int servoIdx = 0; servoIdx < MAX_SUPPORTED_SERVOS; servoIdx++) {
|
||||
servo[servoIdx] = lrintf(biquadFilterApply(&servoFilter[servoIdx], (float)servo[servoIdx]));
|
||||
// Sanity check
|
||||
servo[servoIdx] = constrain(servo[servoIdx], servoParams(servoIdx)->min, servoParams(servoIdx)->max);
|
||||
|
|
|
@ -132,3 +132,4 @@ void loadCustomServoMixer(void);
|
|||
int servoDirection(int servoIndex, int fromChannel);
|
||||
void servoConfigureOutput(void);
|
||||
void servosInit(void);
|
||||
void servosFilterInit(void);
|
||||
|
|
|
@ -295,12 +295,12 @@ void beeperConfirmationBeeps(uint8_t beepCount)
|
|||
void beeperGpsStatus(void)
|
||||
{
|
||||
// if GPS fix then beep out number of satellites
|
||||
if (STATE(GPS_FIX) && GPS_numSat >= 5) {
|
||||
if (STATE(GPS_FIX) && gpsSol.numSat >= 5) {
|
||||
uint8_t i = 0;
|
||||
do {
|
||||
beep_multiBeeps[i++] = 5;
|
||||
beep_multiBeeps[i++] = 10;
|
||||
} while (i < MAX_MULTI_BEEPS && GPS_numSat > i / 2);
|
||||
} while (i < MAX_MULTI_BEEPS && gpsSol.numSat > i / 2);
|
||||
|
||||
beep_multiBeeps[i-1] = 50; // extend last pause
|
||||
beep_multiBeeps[i] = BEEPER_COMMAND_STOP;
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#include "drivers/bus.h"
|
||||
#include "drivers/display.h"
|
||||
#include "drivers/display_ug2864hsweg01.h"
|
||||
#include "drivers/time.h"
|
||||
|
@ -71,11 +72,20 @@
|
|||
#include "sensors/sensors.h"
|
||||
|
||||
|
||||
PG_REGISTER_WITH_RESET_TEMPLATE(dashboardConfig_t, dashboardConfig, PG_DASHBOARD_CONFIG, 0);
|
||||
|
||||
PG_RESET_TEMPLATE(dashboardConfig_t, dashboardConfig,
|
||||
.device = I2C_DEV_TO_CFG(DASHBOARD_I2C_INSTANCE),
|
||||
.address = DASHBOARD_I2C_ADDRESS,
|
||||
);
|
||||
|
||||
#define MICROSECONDS_IN_A_SECOND (1000 * 1000)
|
||||
|
||||
#define DISPLAY_UPDATE_FREQUENCY (MICROSECONDS_IN_A_SECOND / 5)
|
||||
#define PAGE_CYCLE_FREQUENCY (MICROSECONDS_IN_A_SECOND * 5)
|
||||
|
||||
static busDevice_t *bus;
|
||||
|
||||
static uint32_t nextDisplayUpdateAt = 0;
|
||||
static bool dashboardPresent = false;
|
||||
|
||||
|
@ -119,15 +129,17 @@ typedef struct pageState_s {
|
|||
|
||||
static pageState_t pageState;
|
||||
|
||||
void resetDisplay(void) {
|
||||
dashboardPresent = ug2864hsweg01InitI2C();
|
||||
static void resetDisplay(void)
|
||||
{
|
||||
dashboardPresent = ug2864hsweg01InitI2C(bus);
|
||||
}
|
||||
|
||||
void LCDprint(uint8_t i) {
|
||||
i2c_OLED_send_char(i);
|
||||
void LCDprint(uint8_t i)
|
||||
{
|
||||
i2c_OLED_send_char(bus, i);
|
||||
}
|
||||
|
||||
void padLineBuffer(void)
|
||||
static void padLineBuffer(void)
|
||||
{
|
||||
uint8_t length = strlen(lineBuffer);
|
||||
while (length < sizeof(lineBuffer) - 1) {
|
||||
|
@ -136,7 +148,8 @@ void padLineBuffer(void)
|
|||
lineBuffer[length] = 0;
|
||||
}
|
||||
|
||||
void padHalfLineBuffer(void)
|
||||
#ifdef GPS
|
||||
static void padHalfLineBuffer(void)
|
||||
{
|
||||
uint8_t halfLineIndex = sizeof(lineBuffer) / 2;
|
||||
uint8_t length = strlen(lineBuffer);
|
||||
|
@ -145,9 +158,11 @@ void padHalfLineBuffer(void)
|
|||
}
|
||||
lineBuffer[length] = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
// LCDbar(n,v) : draw a bar graph - n number of chars for width, v value in % to display
|
||||
void drawHorizonalPercentageBar(uint8_t width,uint8_t percent) {
|
||||
static void drawHorizonalPercentageBar(uint8_t width,uint8_t percent)
|
||||
{
|
||||
uint8_t i, j;
|
||||
|
||||
if (percent > 100)
|
||||
|
@ -166,94 +181,91 @@ void drawHorizonalPercentageBar(uint8_t width,uint8_t percent) {
|
|||
}
|
||||
|
||||
#if 0
|
||||
void fillScreenWithCharacters()
|
||||
static void fillScreenWithCharacters()
|
||||
{
|
||||
for (uint8_t row = 0; row < SCREEN_CHARACTER_ROW_COUNT; row++) {
|
||||
for (uint8_t column = 0; column < SCREEN_CHARACTER_COLUMN_COUNT; column++) {
|
||||
i2c_OLED_set_xy(column, row);
|
||||
i2c_OLED_send_char('A' + column);
|
||||
i2c_OLED_set_xy(bus, column, row);
|
||||
i2c_OLED_send_char(bus, 'A' + column);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
void updateTicker(void)
|
||||
static void updateTicker(void)
|
||||
{
|
||||
static uint8_t tickerIndex = 0;
|
||||
i2c_OLED_set_xy(SCREEN_CHARACTER_COLUMN_COUNT - 1, 0);
|
||||
i2c_OLED_send_char(tickerCharacters[tickerIndex]);
|
||||
i2c_OLED_set_xy(bus, SCREEN_CHARACTER_COLUMN_COUNT - 1, 0);
|
||||
i2c_OLED_send_char(bus, tickerCharacters[tickerIndex]);
|
||||
tickerIndex++;
|
||||
tickerIndex = tickerIndex % TICKER_CHARACTER_COUNT;
|
||||
}
|
||||
|
||||
void updateRxStatus(void)
|
||||
static void updateRxStatus(void)
|
||||
{
|
||||
i2c_OLED_set_xy(SCREEN_CHARACTER_COLUMN_COUNT - 2, 0);
|
||||
i2c_OLED_set_xy(bus, SCREEN_CHARACTER_COLUMN_COUNT - 2, 0);
|
||||
char rxStatus = '!';
|
||||
if (rxIsReceivingSignal()) {
|
||||
rxStatus = 'r';
|
||||
} if (rxAreFlightChannelsValid()) {
|
||||
rxStatus = 'R';
|
||||
}
|
||||
i2c_OLED_send_char(rxStatus);
|
||||
i2c_OLED_send_char(bus, rxStatus);
|
||||
}
|
||||
|
||||
void updateFailsafeStatus(void)
|
||||
static void updateFailsafeStatus(void)
|
||||
{
|
||||
char failsafeIndicator = '?';
|
||||
switch (failsafePhase()) {
|
||||
case FAILSAFE_IDLE:
|
||||
failsafeIndicator = '-';
|
||||
break;
|
||||
case FAILSAFE_RX_LOSS_DETECTED:
|
||||
failsafeIndicator = 'R';
|
||||
break;
|
||||
case FAILSAFE_LANDING:
|
||||
failsafeIndicator = 'l';
|
||||
break;
|
||||
case FAILSAFE_LANDED:
|
||||
failsafeIndicator = 'L';
|
||||
break;
|
||||
case FAILSAFE_RX_LOSS_MONITORING:
|
||||
failsafeIndicator = 'M';
|
||||
break;
|
||||
case FAILSAFE_RX_LOSS_RECOVERED:
|
||||
failsafeIndicator = 'r';
|
||||
break;
|
||||
case FAILSAFE_IDLE:
|
||||
failsafeIndicator = '-';
|
||||
break;
|
||||
case FAILSAFE_RX_LOSS_DETECTED:
|
||||
failsafeIndicator = 'R';
|
||||
break;
|
||||
case FAILSAFE_LANDING:
|
||||
failsafeIndicator = 'l';
|
||||
break;
|
||||
case FAILSAFE_LANDED:
|
||||
failsafeIndicator = 'L';
|
||||
break;
|
||||
case FAILSAFE_RX_LOSS_MONITORING:
|
||||
failsafeIndicator = 'M';
|
||||
break;
|
||||
case FAILSAFE_RX_LOSS_RECOVERED:
|
||||
failsafeIndicator = 'r';
|
||||
break;
|
||||
}
|
||||
i2c_OLED_set_xy(SCREEN_CHARACTER_COLUMN_COUNT - 3, 0);
|
||||
i2c_OLED_send_char(failsafeIndicator);
|
||||
i2c_OLED_set_xy(bus, SCREEN_CHARACTER_COLUMN_COUNT - 3, 0);
|
||||
i2c_OLED_send_char(bus, failsafeIndicator);
|
||||
}
|
||||
|
||||
void showTitle()
|
||||
static void showTitle()
|
||||
{
|
||||
i2c_OLED_set_line(0);
|
||||
i2c_OLED_send_string(pageState.page->title);
|
||||
i2c_OLED_set_line(bus, 0);
|
||||
i2c_OLED_send_string(bus, pageState.page->title);
|
||||
}
|
||||
|
||||
void handlePageChange(void)
|
||||
static void handlePageChange(void)
|
||||
{
|
||||
i2c_OLED_clear_display_quick();
|
||||
i2c_OLED_clear_display_quick(bus);
|
||||
showTitle();
|
||||
}
|
||||
|
||||
void drawRxChannel(uint8_t channelIndex, uint8_t width)
|
||||
static void drawRxChannel(uint8_t channelIndex, uint8_t width)
|
||||
{
|
||||
uint32_t percentage;
|
||||
|
||||
LCDprint(rcChannelLetters[channelIndex]);
|
||||
|
||||
percentage = (constrain(rcData[channelIndex], PWM_RANGE_MIN, PWM_RANGE_MAX) - PWM_RANGE_MIN) * 100 / (PWM_RANGE_MAX - PWM_RANGE_MIN);
|
||||
const uint32_t percentage = (constrain(rcData[channelIndex], PWM_RANGE_MIN, PWM_RANGE_MAX) - PWM_RANGE_MIN) * 100 / (PWM_RANGE_MAX - PWM_RANGE_MIN);
|
||||
drawHorizonalPercentageBar(width - 1, percentage);
|
||||
}
|
||||
|
||||
#define RX_CHANNELS_PER_PAGE_COUNT 14
|
||||
void showRxPage(void)
|
||||
static void showRxPage(void)
|
||||
{
|
||||
|
||||
for (uint8_t channelIndex = 0; channelIndex < rxRuntimeConfig.channelCount && channelIndex < RX_CHANNELS_PER_PAGE_COUNT; channelIndex += 2) {
|
||||
i2c_OLED_set_line((channelIndex / 2) + PAGE_TITLE_LINE_COUNT);
|
||||
for (int channelIndex = 0; channelIndex < rxRuntimeConfig.channelCount && channelIndex < RX_CHANNELS_PER_PAGE_COUNT; channelIndex += 2) {
|
||||
i2c_OLED_set_line(bus, (channelIndex / 2) + PAGE_TITLE_LINE_COUNT);
|
||||
|
||||
drawRxChannel(channelIndex, HALF_SCREEN_CHARACTER_COLUMN_COUNT);
|
||||
|
||||
|
@ -269,29 +281,29 @@ void showRxPage(void)
|
|||
}
|
||||
}
|
||||
|
||||
void showWelcomePage(void)
|
||||
static void showWelcomePage(void)
|
||||
{
|
||||
uint8_t rowIndex = PAGE_TITLE_LINE_COUNT;
|
||||
|
||||
tfp_sprintf(lineBuffer, "v%s (%s)", FC_VERSION_STRING, shortGitRevision);
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(targetName);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, targetName);
|
||||
}
|
||||
|
||||
void showArmedPage(void)
|
||||
static void showArmedPage(void)
|
||||
{
|
||||
}
|
||||
|
||||
void showProfilePage(void)
|
||||
static void showProfilePage(void)
|
||||
{
|
||||
uint8_t rowIndex = PAGE_TITLE_LINE_COUNT;
|
||||
|
||||
tfp_sprintf(lineBuffer, "Profile: %d", getCurrentPidProfileIndex());
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
static const char* const axisTitles[3] = {"ROL", "PIT", "YAW"};
|
||||
const pidProfile_t *pidProfile = currentPidProfile;
|
||||
|
@ -303,14 +315,14 @@ void showProfilePage(void)
|
|||
pidProfile->pid[axis].D
|
||||
);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
}
|
||||
|
||||
const uint8_t currentRateProfileIndex = getCurrentControlRateProfileIndex();
|
||||
tfp_sprintf(lineBuffer, "Rate profile: %d", currentRateProfileIndex);
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
const controlRateConfig_t *controlRateConfig = controlRateProfiles(currentRateProfileIndex);
|
||||
tfp_sprintf(lineBuffer, "RCE: %d, RCR: %d",
|
||||
|
@ -318,8 +330,8 @@ void showProfilePage(void)
|
|||
controlRateConfig->rcRate8
|
||||
);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "RR:%d PR:%d YR:%d",
|
||||
controlRateConfig->rates[FD_ROLL],
|
||||
|
@ -327,15 +339,15 @@ void showProfilePage(void)
|
|||
controlRateConfig->rates[FD_YAW]
|
||||
);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
}
|
||||
#define SATELLITE_COUNT (sizeof(GPS_svinfo_cno) / sizeof(GPS_svinfo_cno[0]))
|
||||
#define SATELLITE_GRAPH_LEFT_OFFSET ((SCREEN_CHARACTER_COLUMN_COUNT - SATELLITE_COUNT) / 2)
|
||||
|
||||
#ifdef GPS
|
||||
void showGpsPage() {
|
||||
|
||||
static void showGpsPage()
|
||||
{
|
||||
if (!feature(FEATURE_GPS)) {
|
||||
pageState.pageFlags |= PAGE_STATE_FLAG_FORCE_PAGE_CHANGE;
|
||||
return;
|
||||
|
@ -351,93 +363,93 @@ void showGpsPage() {
|
|||
gpsTicker = gpsTicker % TICKER_CHARACTER_COUNT;
|
||||
}
|
||||
|
||||
i2c_OLED_set_xy(0, rowIndex);
|
||||
i2c_OLED_send_char(tickerCharacters[gpsTicker]);
|
||||
i2c_OLED_set_xy(bus, 0, rowIndex);
|
||||
i2c_OLED_send_char(bus, tickerCharacters[gpsTicker]);
|
||||
|
||||
i2c_OLED_set_xy(MAX(0, SATELLITE_GRAPH_LEFT_OFFSET), rowIndex++);
|
||||
i2c_OLED_set_xy(bus, MAX(0, SATELLITE_GRAPH_LEFT_OFFSET), rowIndex++);
|
||||
|
||||
uint32_t index;
|
||||
for (index = 0; index < SATELLITE_COUNT && index < SCREEN_CHARACTER_COLUMN_COUNT; index++) {
|
||||
uint8_t bargraphOffset = ((uint16_t) GPS_svinfo_cno[index] * VERTICAL_BARGRAPH_CHARACTER_COUNT) / (GPS_DBHZ_MAX - 1);
|
||||
bargraphOffset = MIN(bargraphOffset, VERTICAL_BARGRAPH_CHARACTER_COUNT - 1);
|
||||
i2c_OLED_send_char(VERTICAL_BARGRAPH_ZERO_CHARACTER + bargraphOffset);
|
||||
i2c_OLED_send_char(bus, VERTICAL_BARGRAPH_ZERO_CHARACTER + bargraphOffset);
|
||||
}
|
||||
|
||||
|
||||
char fixChar = STATE(GPS_FIX) ? 'Y' : 'N';
|
||||
tfp_sprintf(lineBuffer, "Sats: %d Fix: %c", GPS_numSat, fixChar);
|
||||
tfp_sprintf(lineBuffer, "Sats: %d Fix: %c", gpsSol.numSat, fixChar);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "La/Lo: %d/%d", GPS_coord[LAT] / GPS_DEGREES_DIVIDER, GPS_coord[LON] / GPS_DEGREES_DIVIDER);
|
||||
tfp_sprintf(lineBuffer, "La/Lo: %d/%d", gpsSol.llh.lat / GPS_DEGREES_DIVIDER, gpsSol.llh.lon / GPS_DEGREES_DIVIDER);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "Spd: %d", GPS_speed);
|
||||
tfp_sprintf(lineBuffer, "Spd: %d", gpsSol.groundSpeed);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "GC: %d", GPS_ground_course);
|
||||
tfp_sprintf(lineBuffer, "GC: %d", gpsSol.groundCourse);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_xy(HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_xy(bus, HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "RX: %d", GPS_packetCount);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "ERRs: %d", gpsData.errors, gpsData.timeouts);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_xy(HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_xy(bus, HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "Dt: %d", gpsData.lastMessage - gpsData.lastLastMessage);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
tfp_sprintf(lineBuffer, "TOs: %d", gpsData.timeouts);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_xy(HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_xy(bus, HALF_SCREEN_CHARACTER_COLUMN_COUNT, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
strncpy(lineBuffer, gpsPacketLog, GPS_PACKET_LOG_ENTRY_COUNT);
|
||||
padHalfLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
#ifdef GPS_PH_DEBUG
|
||||
tfp_sprintf(lineBuffer, "Angles: P:%d R:%d", GPS_angle[PITCH], GPS_angle[ROLL]);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
tfp_sprintf(lineBuffer, "%d %d %d %d", debug[0], debug[1], debug[2], debug[3]);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
void showBatteryPage(void)
|
||||
static void showBatteryPage(void)
|
||||
{
|
||||
uint8_t rowIndex = PAGE_TITLE_LINE_COUNT;
|
||||
|
||||
if (batteryConfig()->voltageMeterSource != VOLTAGE_METER_NONE) {
|
||||
tfp_sprintf(lineBuffer, "Volts: %d.%1d Cells: %d", getBatteryVoltage() / 10, getBatteryVoltage() % 10, getBatteryCellCount());
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
uint8_t batteryPercentage = calculateBatteryPercentageRemaining();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
drawHorizonalPercentageBar(SCREEN_CHARACTER_COLUMN_COUNT, batteryPercentage);
|
||||
}
|
||||
|
||||
|
@ -446,50 +458,50 @@ void showBatteryPage(void)
|
|||
int32_t amperage = getAmperage();
|
||||
tfp_sprintf(lineBuffer, "Amps: %d.%2d mAh: %d", amperage / 100, amperage % 100, getMAhDrawn());
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
uint8_t capacityPercentage = calculateBatteryPercentageRemaining();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
drawHorizonalPercentageBar(SCREEN_CHARACTER_COLUMN_COUNT, capacityPercentage);
|
||||
}
|
||||
}
|
||||
|
||||
void showSensorsPage(void)
|
||||
static void showSensorsPage(void)
|
||||
{
|
||||
uint8_t rowIndex = PAGE_TITLE_LINE_COUNT;
|
||||
static const char *format = "%s %5d %5d %5d";
|
||||
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(" X Y Z");
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, " X Y Z");
|
||||
|
||||
if (sensors(SENSOR_ACC)) {
|
||||
tfp_sprintf(lineBuffer, format, "ACC", acc.accSmooth[X], acc.accSmooth[Y], acc.accSmooth[Z]);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
}
|
||||
|
||||
if (sensors(SENSOR_GYRO)) {
|
||||
tfp_sprintf(lineBuffer, format, "GYR", lrintf(gyro.gyroADCf[X]), lrintf(gyro.gyroADCf[Y]), lrintf(gyro.gyroADCf[Z]));
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
}
|
||||
|
||||
#ifdef MAG
|
||||
if (sensors(SENSOR_MAG)) {
|
||||
tfp_sprintf(lineBuffer, format, "MAG", mag.magADC[X], mag.magADC[Y], mag.magADC[Z]);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
}
|
||||
#endif
|
||||
|
||||
tfp_sprintf(lineBuffer, format, "I&H", attitude.values.roll, attitude.values.pitch, DECIDEGREES_TO_DEGREES(attitude.values.yaw));
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
/*
|
||||
uint8_t length;
|
||||
|
@ -502,8 +514,8 @@ void showSensorsPage(void)
|
|||
}
|
||||
ftoa(EstG.A[Y], lineBuffer + length);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
|
||||
ftoa(EstG.A[Z], lineBuffer);
|
||||
length = strlen(lineBuffer);
|
||||
|
@ -513,20 +525,20 @@ void showSensorsPage(void)
|
|||
}
|
||||
ftoa(smallAngle, lineBuffer + length);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
#ifndef SKIP_TASK_STATISTICS
|
||||
void showTasksPage(void)
|
||||
static void showTasksPage(void)
|
||||
{
|
||||
uint8_t rowIndex = PAGE_TITLE_LINE_COUNT;
|
||||
static const char *format = "%2d%6d%5d%4d%4d";
|
||||
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string("Task max avg mx% av%");
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, "Task max avg mx% av%");
|
||||
cfTaskInfo_t taskInfo;
|
||||
for (cfTaskId_e taskId = 0; taskId < TASK_COUNT; ++taskId) {
|
||||
getTaskInfo(taskId, &taskInfo);
|
||||
|
@ -536,8 +548,8 @@ void showTasksPage(void)
|
|||
const int averageLoad = (taskInfo.averageExecutionTime * taskFrequency + 5000) / 10000;
|
||||
tfp_sprintf(lineBuffer, format, taskId, taskInfo.maxExecutionTime, taskInfo.averageExecutionTime, maxLoad, averageLoad);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex++);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex++);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
if (rowIndex > SCREEN_CHARACTER_ROW_COUNT) {
|
||||
break;
|
||||
}
|
||||
|
@ -548,13 +560,13 @@ void showTasksPage(void)
|
|||
|
||||
#ifdef ENABLE_DEBUG_DASHBOARD_PAGE
|
||||
|
||||
void showDebugPage(void)
|
||||
static void showDebugPage(void)
|
||||
{
|
||||
for (int rowIndex = 0; rowIndex < 4; rowIndex++) {
|
||||
tfp_sprintf(lineBuffer, "%d = %5d", rowIndex, debug[rowIndex]);
|
||||
padLineBuffer();
|
||||
i2c_OLED_set_line(rowIndex + PAGE_TITLE_LINE_COUNT);
|
||||
i2c_OLED_send_string(lineBuffer);
|
||||
i2c_OLED_set_line(bus, rowIndex + PAGE_TITLE_LINE_COUNT);
|
||||
i2c_OLED_send_string(bus, lineBuffer);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -664,11 +676,16 @@ void dashboardUpdate(timeUs_t currentTimeUs)
|
|||
|
||||
void dashboardInit(void)
|
||||
{
|
||||
static busDevice_t dashBoardBus;
|
||||
dashBoardBus.i2c.device = I2C_CFG_TO_DEV(dashboardConfig()->device);
|
||||
dashBoardBus.i2c.address = dashboardConfig()->address;
|
||||
bus = &dashBoardBus;
|
||||
|
||||
delay(200);
|
||||
resetDisplay();
|
||||
delay(200);
|
||||
|
||||
displayPort = displayPortOledInit();
|
||||
displayPort = displayPortOledInit(bus);
|
||||
#if defined(CMS)
|
||||
if (dashboardPresent) {
|
||||
cmsDisplayPortRegister(displayPort);
|
||||
|
|
|
@ -16,9 +16,26 @@
|
|||
*/
|
||||
|
||||
#include "common/time.h"
|
||||
#include "config/parameter_group.h"
|
||||
#include "drivers/bus_i2c.h"
|
||||
|
||||
#define ENABLE_DEBUG_DASHBOARD_PAGE
|
||||
|
||||
#ifdef OLED_I2C_INSTANCE
|
||||
#define DASHBOARD_I2C_INSTANCE OLED_I2C_INSTANCE
|
||||
#else
|
||||
#define DASHBOARD_I2C_INSTANCE I2CDEV_1
|
||||
#endif
|
||||
|
||||
#define DASHBOARD_I2C_ADDRESS 0x3C // OLED at address 0x3C in 7bit
|
||||
|
||||
typedef struct dashboardConfig_s {
|
||||
I2CDevice device;
|
||||
uint8_t address;
|
||||
} dashboardConfig_t;
|
||||
|
||||
PG_DECLARE(dashboardConfig_t, dashboardConfig);
|
||||
|
||||
typedef enum {
|
||||
PAGE_WELCOME,
|
||||
PAGE_ARMED,
|
||||
|
|
|
@ -95,7 +95,7 @@ static int screenSize(const displayPort_t *displayPort)
|
|||
return maxScreenSize;
|
||||
}
|
||||
|
||||
static int write(displayPort_t *displayPort, uint8_t x, uint8_t y, const char *s)
|
||||
static int writeString(displayPort_t *displayPort, uint8_t x, uint8_t y, const char *s)
|
||||
{
|
||||
UNUSED(displayPort);
|
||||
max7456Write(x, y, s);
|
||||
|
@ -143,7 +143,7 @@ static const displayPortVTable_t max7456VTable = {
|
|||
.clearScreen = clearScreen,
|
||||
.drawScreen = drawScreen,
|
||||
.screenSize = screenSize,
|
||||
.write = write,
|
||||
.writeString = writeString,
|
||||
.writeChar = writeChar,
|
||||
.isTransferInProgress = isTransferInProgress,
|
||||
.heartbeat = heartbeat,
|
||||
|
|
|
@ -100,7 +100,7 @@ static int screenSize(const displayPort_t *displayPort)
|
|||
return displayPort->rows * displayPort->cols;
|
||||
}
|
||||
|
||||
static int write(displayPort_t *displayPort, uint8_t col, uint8_t row, const char *string)
|
||||
static int writeString(displayPort_t *displayPort, uint8_t col, uint8_t row, const char *string)
|
||||
{
|
||||
#define MSP_OSD_MAX_STRING_LENGTH 30 // FIXME move this
|
||||
uint8_t buf[MSP_OSD_MAX_STRING_LENGTH + 4];
|
||||
|
@ -125,7 +125,7 @@ static int writeChar(displayPort_t *displayPort, uint8_t col, uint8_t row, uint8
|
|||
|
||||
buf[0] = c;
|
||||
buf[1] = 0;
|
||||
return write(displayPort, col, row, buf); //!!TODO - check if there is a direct MSP command to do this
|
||||
return writeString(displayPort, col, row, buf); //!!TODO - check if there is a direct MSP command to do this
|
||||
}
|
||||
|
||||
static bool isTransferInProgress(const displayPort_t *displayPort)
|
||||
|
@ -152,7 +152,7 @@ static const displayPortVTable_t mspDisplayPortVTable = {
|
|||
.clearScreen = clearScreen,
|
||||
.drawScreen = drawScreen,
|
||||
.screenSize = screenSize,
|
||||
.write = write,
|
||||
.writeString = writeString,
|
||||
.writeChar = writeChar,
|
||||
.isTransferInProgress = isTransferInProgress,
|
||||
.heartbeat = heartbeat,
|
||||
|
|
|
@ -41,8 +41,7 @@ static int oledRelease(displayPort_t *displayPort)
|
|||
|
||||
static int oledClearScreen(displayPort_t *displayPort)
|
||||
{
|
||||
UNUSED(displayPort);
|
||||
i2c_OLED_clear_display_quick();
|
||||
i2c_OLED_clear_display_quick(displayPort->device);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -57,19 +56,17 @@ static int oledScreenSize(const displayPort_t *displayPort)
|
|||
return displayPort->rows * displayPort->cols;
|
||||
}
|
||||
|
||||
static int oledWrite(displayPort_t *displayPort, uint8_t x, uint8_t y, const char *s)
|
||||
static int oledWriteString(displayPort_t *displayPort, uint8_t x, uint8_t y, const char *s)
|
||||
{
|
||||
UNUSED(displayPort);
|
||||
i2c_OLED_set_xy(x, y);
|
||||
i2c_OLED_send_string(s);
|
||||
i2c_OLED_set_xy(displayPort->device, x, y);
|
||||
i2c_OLED_send_string(displayPort->device, s);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int oledWriteChar(displayPort_t *displayPort, uint8_t x, uint8_t y, uint8_t c)
|
||||
{
|
||||
UNUSED(displayPort);
|
||||
i2c_OLED_set_xy(x, y);
|
||||
i2c_OLED_send_char(c);
|
||||
i2c_OLED_set_xy(displayPort->device, x, y);
|
||||
i2c_OLED_send_char(displayPort->device, c);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -102,7 +99,7 @@ static const displayPortVTable_t oledVTable = {
|
|||
.clearScreen = oledClearScreen,
|
||||
.drawScreen = oledDrawScreen,
|
||||
.screenSize = oledScreenSize,
|
||||
.write = oledWrite,
|
||||
.writeString = oledWriteString,
|
||||
.writeChar = oledWriteChar,
|
||||
.isTransferInProgress = oledIsTransferInProgress,
|
||||
.heartbeat = oledHeartbeat,
|
||||
|
@ -110,8 +107,9 @@ static const displayPortVTable_t oledVTable = {
|
|||
.txBytesFree = oledTxBytesFree
|
||||
};
|
||||
|
||||
displayPort_t *displayPortOledInit(void)
|
||||
displayPort_t *displayPortOledInit(void *device)
|
||||
{
|
||||
oledDisplayPort.device = device;
|
||||
displayInit(&oledDisplayPort, &oledVTable);
|
||||
oledDisplayPort.rows = SCREEN_CHARACTER_ROW_COUNT;
|
||||
oledDisplayPort.cols = SCREEN_CHARACTER_COLUMN_COUNT;
|
||||
|
|
|
@ -17,4 +17,4 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
displayPort_t *displayPortOledInit(void);
|
||||
displayPort_t *displayPortOledInit(void *device);
|
||||
|
|
|
@ -71,18 +71,11 @@ static char *gpsPacketLogChar = gpsPacketLog;
|
|||
// **********************
|
||||
// GPS
|
||||
// **********************
|
||||
int32_t GPS_coord[2]; // LAT/LON
|
||||
|
||||
uint8_t GPS_numSat;
|
||||
uint16_t GPS_hdop = 9999; // Compute GPS quality signal
|
||||
gpsSolutionData_t gpsSol;
|
||||
uint32_t GPS_packetCount = 0;
|
||||
uint32_t GPS_svInfoReceivedCount = 0; // SV = Space Vehicle, counter increments each time SV info is received.
|
||||
uint8_t GPS_update = 0; // it's a binary toggle to distinct a GPS position update
|
||||
|
||||
uint16_t GPS_altitude; // altitude in 0.1m
|
||||
uint16_t GPS_speed; // speed in 0.1m/s
|
||||
uint16_t GPS_ground_course = 0; // degrees * 10
|
||||
|
||||
uint8_t GPS_numCh; // Number of channels
|
||||
uint8_t GPS_svinfo_chn[GPS_SV_MAXSATS]; // Channel number
|
||||
uint8_t GPS_svinfo_svid[GPS_SV_MAXSATS]; // Satellite ID
|
||||
|
@ -424,7 +417,7 @@ void gpsInitHardware(void)
|
|||
static void updateGpsIndicator(timeUs_t currentTimeUs)
|
||||
{
|
||||
static uint32_t GPSLEDTime;
|
||||
if ((int32_t)(currentTimeUs - GPSLEDTime) >= 0 && (GPS_numSat >= 5)) {
|
||||
if ((int32_t)(currentTimeUs - GPSLEDTime) >= 0 && (gpsSol.numSat >= 5)) {
|
||||
GPSLEDTime = currentTimeUs + 150000;
|
||||
LED1_TOGGLE;
|
||||
}
|
||||
|
@ -456,8 +449,7 @@ void gpsUpdate(timeUs_t currentTimeUs)
|
|||
gpsData.baudrateIndex %= GPS_INIT_ENTRIES;
|
||||
}
|
||||
gpsData.lastMessage = millis();
|
||||
// TODO - move some / all of these into gpsData
|
||||
GPS_numSat = 0;
|
||||
gpsSol.numSat = 0;
|
||||
DISABLE_STATE(GPS_FIX);
|
||||
gpsSetState(GPS_INITIALIZING);
|
||||
break;
|
||||
|
@ -746,16 +738,16 @@ static bool gpsNewFrameNMEA(char c)
|
|||
*gpsPacketLogChar = LOG_NMEA_GGA;
|
||||
frameOK = 1;
|
||||
if (STATE(GPS_FIX)) {
|
||||
GPS_coord[LAT] = gps_Msg.latitude;
|
||||
GPS_coord[LON] = gps_Msg.longitude;
|
||||
GPS_numSat = gps_Msg.numSat;
|
||||
GPS_altitude = gps_Msg.altitude;
|
||||
gpsSol.llh.lat = gps_Msg.latitude;
|
||||
gpsSol.llh.lon = gps_Msg.longitude;
|
||||
gpsSol.numSat = gps_Msg.numSat;
|
||||
gpsSol.llh.alt = gps_Msg.altitude;
|
||||
}
|
||||
break;
|
||||
case FRAME_RMC:
|
||||
*gpsPacketLogChar = LOG_NMEA_RMC;
|
||||
GPS_speed = gps_Msg.speed;
|
||||
GPS_ground_course = gps_Msg.ground_course;
|
||||
gpsSol.groundSpeed = gps_Msg.speed;
|
||||
gpsSol.groundCourse = gps_Msg.ground_course;
|
||||
break;
|
||||
} // end switch
|
||||
} else {
|
||||
|
@ -952,9 +944,9 @@ static bool UBLOX_parse_gps(void)
|
|||
case MSG_POSLLH:
|
||||
*gpsPacketLogChar = LOG_UBLOX_POSLLH;
|
||||
//i2c_dataset.time = _buffer.posllh.time;
|
||||
GPS_coord[LON] = _buffer.posllh.longitude;
|
||||
GPS_coord[LAT] = _buffer.posllh.latitude;
|
||||
GPS_altitude = _buffer.posllh.altitude_msl / 10 / 100; //alt in m
|
||||
gpsSol.llh.lon = _buffer.posllh.longitude;
|
||||
gpsSol.llh.lat = _buffer.posllh.latitude;
|
||||
gpsSol.llh.alt = _buffer.posllh.altitude_msl / 10 / 100; //alt in m
|
||||
if (next_fix) {
|
||||
ENABLE_STATE(GPS_FIX);
|
||||
} else {
|
||||
|
@ -973,14 +965,14 @@ static bool UBLOX_parse_gps(void)
|
|||
next_fix = (_buffer.solution.fix_status & NAV_STATUS_FIX_VALID) && (_buffer.solution.fix_type == FIX_3D);
|
||||
if (!next_fix)
|
||||
DISABLE_STATE(GPS_FIX);
|
||||
GPS_numSat = _buffer.solution.satellites;
|
||||
GPS_hdop = _buffer.solution.position_DOP;
|
||||
gpsSol.numSat = _buffer.solution.satellites;
|
||||
gpsSol.hdop = _buffer.solution.position_DOP;
|
||||
break;
|
||||
case MSG_VELNED:
|
||||
*gpsPacketLogChar = LOG_UBLOX_VELNED;
|
||||
// speed_3d = _buffer.velned.speed_3d; // cm/s
|
||||
GPS_speed = _buffer.velned.speed_2d; // cm/s
|
||||
GPS_ground_course = (uint16_t) (_buffer.velned.heading_2d / 10000); // Heading 2D deg * 100000 rescaled to deg * 10
|
||||
gpsSol.groundSpeed = _buffer.velned.speed_2d; // cm/s
|
||||
gpsSol.groundCourse = (uint16_t) (_buffer.velned.heading_2d / 10000); // Heading 2D deg * 100000 rescaled to deg * 10
|
||||
_new_speed = true;
|
||||
break;
|
||||
case MSG_SVINFO:
|
||||
|
|
|
@ -31,8 +31,6 @@ typedef enum {
|
|||
GPS_UBLOX
|
||||
} gpsProvider_e;
|
||||
|
||||
#define GPS_PROVIDER_MAX GPS_UBLOX
|
||||
|
||||
typedef enum {
|
||||
SBAS_AUTO = 0,
|
||||
SBAS_EGNOS,
|
||||
|
@ -77,6 +75,21 @@ typedef struct gpsCoordinateDDDMMmmmm_s {
|
|||
int16_t mmmm;
|
||||
} gpsCoordinateDDDMMmmmm_t;
|
||||
|
||||
/* LLH Location in NEU axis system */
|
||||
typedef struct gpsLocation_s {
|
||||
int32_t lat; // latitude * 1e+7
|
||||
int32_t lon; // longitude * 1e+7
|
||||
uint16_t alt; // altitude in 0.1m
|
||||
} gpsLocation_t;
|
||||
|
||||
typedef struct gpsSolutionData_s {
|
||||
uint8_t numSat;
|
||||
gpsLocation_t llh;
|
||||
uint16_t GPS_altitude; // altitude in 0.1m
|
||||
uint16_t groundSpeed; // speed in 0.1m/s
|
||||
uint16_t groundCourse; // degrees * 10
|
||||
uint16_t hdop; // generic HDOP value (*100)
|
||||
} gpsSolutionData_t;
|
||||
|
||||
typedef enum {
|
||||
GPS_MESSAGE_STATE_IDLE = 0,
|
||||
|
@ -102,16 +115,11 @@ typedef struct gpsData_s {
|
|||
extern char gpsPacketLog[GPS_PACKET_LOG_ENTRY_COUNT];
|
||||
|
||||
extern gpsData_t gpsData;
|
||||
extern int32_t GPS_coord[2]; // LAT/LON
|
||||
extern gpsSolutionData_t gpsSol;
|
||||
|
||||
extern uint8_t GPS_numSat;
|
||||
extern uint16_t GPS_hdop; // GPS signal quality
|
||||
extern uint8_t GPS_update; // it's a binary toogle to distinct a GPS position update
|
||||
extern uint32_t GPS_packetCount;
|
||||
extern uint32_t GPS_svInfoReceivedCount;
|
||||
extern uint16_t GPS_altitude; // altitude in 0.1m
|
||||
extern uint16_t GPS_speed; // speed in 0.1m/s
|
||||
extern uint16_t GPS_ground_course; // degrees * 10
|
||||
extern uint8_t GPS_numCh; // Number of channels
|
||||
extern uint8_t GPS_svinfo_chn[16]; // Channel number
|
||||
extern uint8_t GPS_svinfo_svid[16]; // Satellite ID
|
||||
|
|
|
@ -541,7 +541,7 @@ static void applyLedWarningLayer(bool updateNow, timeUs_t *timer)
|
|||
warningFlags |= 1 << WARNING_LOW_BATTERY;
|
||||
if (feature(FEATURE_FAILSAFE) && failsafeIsActive())
|
||||
warningFlags |= 1 << WARNING_FAILSAFE;
|
||||
if (!ARMING_FLAG(ARMED) && !ARMING_FLAG(OK_TO_ARM))
|
||||
if (!ARMING_FLAG(ARMED) && isArmingDisabled())
|
||||
warningFlags |= 1 << WARNING_ARMING_DISABLED;
|
||||
}
|
||||
*timer += HZ_TO_US(10);
|
||||
|
@ -731,7 +731,7 @@ static void applyLedGpsLayer(bool updateNow, timeUs_t *timer)
|
|||
static uint8_t gpsFlashCounter = 0;
|
||||
if (gpsPauseCounter > 0) {
|
||||
gpsPauseCounter--;
|
||||
} else if (gpsFlashCounter >= GPS_numSat) {
|
||||
} else if (gpsFlashCounter >= gpsSol.numSat) {
|
||||
gpsFlashCounter = 0;
|
||||
gpsPauseCounter = blinkPauseLength;
|
||||
} else {
|
||||
|
@ -743,7 +743,7 @@ static void applyLedGpsLayer(bool updateNow, timeUs_t *timer)
|
|||
|
||||
const hsvColor_t *gpsColor;
|
||||
|
||||
if (GPS_numSat == 0 || !sensors(SENSOR_GPS)) {
|
||||
if (gpsSol.numSat == 0 || !sensors(SENSOR_GPS)) {
|
||||
gpsColor = getSC(LED_SCOLOR_GPSNOSATS);
|
||||
} else {
|
||||
bool colorOn = gpsPauseCounter == 0; // each interval starts with pause
|
||||
|
|
|
@ -36,6 +36,7 @@
|
|||
#include "blackbox/blackbox.h"
|
||||
#include "blackbox/blackbox_io.h"
|
||||
|
||||
#include "build/build_config.h"
|
||||
#include "build/debug.h"
|
||||
#include "build/version.h"
|
||||
|
||||
|
@ -88,13 +89,6 @@
|
|||
|
||||
#define VIDEO_BUFFER_CHARS_PAL 480
|
||||
|
||||
// Character coordinate
|
||||
|
||||
#define OSD_POSITION_BITS 5 // 5 bits gives a range 0-31
|
||||
#define OSD_POS(x,y) ((x & 0x001F) | ((y & 0x001F) << OSD_POSITION_BITS))
|
||||
#define OSD_X(x) (x & 0x001F)
|
||||
#define OSD_Y(x) ((x >> OSD_POSITION_BITS) & 0x001F)
|
||||
|
||||
// Blink control
|
||||
|
||||
static bool blinkState = true;
|
||||
|
@ -168,9 +162,9 @@ static char osdGetMetersToSelectedUnitSymbol()
|
|||
{
|
||||
switch (osdConfig()->units) {
|
||||
case OSD_UNIT_IMPERIAL:
|
||||
return 0xF;
|
||||
return SYM_FT;
|
||||
default:
|
||||
return 0xC;
|
||||
return SYM_M;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -277,12 +271,12 @@ static void osdDrawSingleElement(uint8_t item)
|
|||
#ifdef GPS
|
||||
case OSD_GPS_SATS:
|
||||
buff[0] = 0x1f;
|
||||
tfp_sprintf(buff + 1, "%d", GPS_numSat);
|
||||
tfp_sprintf(buff + 1, "%d", gpsSol.numSat);
|
||||
break;
|
||||
|
||||
case OSD_GPS_SPEED:
|
||||
// FIXME ideally we want to use SYM_KMH symbol but it's not in the font any more, so we use K.
|
||||
tfp_sprintf(buff, "%3dK", CM_S_TO_KM_H(GPS_speed));
|
||||
tfp_sprintf(buff, "%3dK", CM_S_TO_KM_H(gpsSol.groundSpeed));
|
||||
break;
|
||||
|
||||
case OSD_GPS_LAT:
|
||||
|
@ -291,10 +285,10 @@ static void osdDrawSingleElement(uint8_t item)
|
|||
int32_t val;
|
||||
if (item == OSD_GPS_LAT) {
|
||||
buff[0] = SYM_ARROW_EAST;
|
||||
val = GPS_coord[LAT];
|
||||
val = gpsSol.llh.lat;
|
||||
} else {
|
||||
buff[0] = SYM_ARROW_SOUTH;
|
||||
val = GPS_coord[LON];
|
||||
val = gpsSol.llh.lon;
|
||||
}
|
||||
|
||||
char wholeDegreeString[5];
|
||||
|
@ -644,12 +638,7 @@ static void osdDrawElements(void)
|
|||
if (IS_RC_MODE_ACTIVE(BOXOSD))
|
||||
return;
|
||||
|
||||
#ifdef CMS
|
||||
else if (sensors(SENSOR_ACC) || displayIsGrabbed(osdDisplayPort))
|
||||
#else
|
||||
else if (sensors(SENSOR_ACC))
|
||||
#endif
|
||||
{
|
||||
if (sensors(SENSOR_ACC)) {
|
||||
osdDrawSingleElement(OSD_ARTIFICIAL_HORIZON);
|
||||
}
|
||||
|
||||
|
@ -683,12 +672,7 @@ static void osdDrawElements(void)
|
|||
osdDrawSingleElement(OSD_COMPASS_BAR);
|
||||
|
||||
#ifdef GPS
|
||||
#ifdef CMS
|
||||
if (sensors(SENSOR_GPS) || displayIsGrabbed(osdDisplayPort))
|
||||
#else
|
||||
if (sensors(SENSOR_GPS))
|
||||
#endif
|
||||
{
|
||||
if (sensors(SENSOR_GPS)) {
|
||||
osdDrawSingleElement(OSD_GPS_SATS);
|
||||
osdDrawSingleElement(OSD_GPS_SPEED);
|
||||
osdDrawSingleElement(OSD_GPS_LAT);
|
||||
|
@ -747,17 +731,18 @@ void pgResetFn_osdConfig(osdConfig_t *osdConfig)
|
|||
osdConfig->item_pos[OSD_ESC_TMP] = OSD_POS(18, 2) | VISIBLE_FLAG;
|
||||
osdConfig->item_pos[OSD_ESC_RPM] = OSD_POS(19, 2) | VISIBLE_FLAG;
|
||||
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_SPEED] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MIN_BATTERY] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MIN_RSSI] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_CURRENT] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_USED_MAH] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_ALTITUDE] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_BLACKBOX] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_END_BATTERY] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_FLYTIME] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_ARMEDTIME] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_DISTANCE] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_SPEED] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MIN_BATTERY] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MIN_RSSI] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_CURRENT] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_USED_MAH] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_ALTITUDE] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_BLACKBOX] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_END_BATTERY] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_FLYTIME] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_ARMEDTIME] = true;
|
||||
osdConfig->enabled_stats[OSD_STAT_MAX_DISTANCE] = false;
|
||||
osdConfig->enabled_stats[OSD_STAT_BLACKBOX_NUMBER] = true;
|
||||
|
||||
osdConfig->units = OSD_UNIT_METRIC;
|
||||
|
||||
|
@ -770,10 +755,10 @@ void pgResetFn_osdConfig(osdConfig_t *osdConfig)
|
|||
static void osdDrawLogo(int x, int y)
|
||||
{
|
||||
// display logo and help
|
||||
char fontOffset = 160;
|
||||
int fontOffset = 160;
|
||||
for (int row = 0; row < 4; row++) {
|
||||
for (int column = 0; column < 24; column++) {
|
||||
if (fontOffset != 255) // FIXME magic number
|
||||
if (fontOffset <= SYM_END_OF_FONT)
|
||||
displayWriteChar(osdDisplayPort, x + column, y + row, fontOffset++);
|
||||
}
|
||||
}
|
||||
|
@ -816,10 +801,8 @@ void osdInit(displayPort_t *osdDisplayPortToUse)
|
|||
void osdUpdateAlarms(void)
|
||||
{
|
||||
// This is overdone?
|
||||
// uint16_t *itemPos = osdConfig()->item_pos;
|
||||
|
||||
int32_t alt = osdGetMetersToSelectedUnit(getEstimatedAltitude()) / 100;
|
||||
statRssi = rssi * 100 / 1024;
|
||||
|
||||
if (statRssi < osdConfig()->rssi_alarm)
|
||||
SET_BLINK(OSD_RSSI_VALUE);
|
||||
|
@ -889,7 +872,7 @@ static void osdUpdateStats(void)
|
|||
{
|
||||
int16_t value = 0;
|
||||
#ifdef GPS
|
||||
value = CM_S_TO_KM_H(GPS_speed);
|
||||
value = CM_S_TO_KM_H(gpsSol.groundSpeed);
|
||||
#endif
|
||||
if (stats.max_speed < value)
|
||||
stats.max_speed = value;
|
||||
|
@ -1031,6 +1014,11 @@ static void osdShowStats(void)
|
|||
osdGetBlackboxStatusString(buff);
|
||||
osdDisplayStatisticLabel(top++, "BLACKBOX", buff);
|
||||
}
|
||||
|
||||
if (osdConfig()->enabled_stats[OSD_STAT_BLACKBOX_NUMBER] && blackboxConfig()->device && blackboxConfig()->device != BLACKBOX_DEVICE_SERIAL) {
|
||||
itoa(blackboxGetLogNumber(), buff, 10);
|
||||
osdDisplayStatisticLabel(top++, "BB LOG NUM", buff);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Reset time since last armed here to ensure this timer is at zero when back at "main" OSD screen */
|
||||
|
@ -1043,7 +1031,7 @@ static void osdShowArmed(void)
|
|||
displayWrite(osdDisplayPort, 12, 7, "ARMED");
|
||||
}
|
||||
|
||||
static void osdRefresh(timeUs_t currentTimeUs)
|
||||
STATIC_UNIT_TESTED void osdRefresh(timeUs_t currentTimeUs)
|
||||
{
|
||||
static uint8_t lastSec = 0;
|
||||
uint8_t sec;
|
||||
|
@ -1062,6 +1050,8 @@ static void osdRefresh(timeUs_t currentTimeUs)
|
|||
armState = ARMING_FLAG(ARMED);
|
||||
}
|
||||
|
||||
statRssi = scaleRange(rssi, 0, 1024, 0, 100);
|
||||
|
||||
osdUpdateStats();
|
||||
|
||||
sec = currentTimeUs / 1000000;
|
||||
|
@ -1153,7 +1143,9 @@ void osdUpdate(timeUs_t currentTimeUs)
|
|||
#ifdef CMS
|
||||
// do not allow ARM if we are in menu
|
||||
if (displayIsGrabbed(osdDisplayPort)) {
|
||||
DISABLE_ARMING_FLAG(OK_TO_ARM);
|
||||
setArmingDisabled(ARMING_DISABLED_OSD_MENU);
|
||||
} else {
|
||||
unsetArmingDisabled(ARMING_DISABLED_OSD_MENU);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -26,6 +26,14 @@
|
|||
#define OSD_POS_MAX 0x3FF
|
||||
#define OSD_POSCFG_MAX (VISIBLE_FLAG|0x3FF) // For CLI values
|
||||
|
||||
// Character coordinate
|
||||
|
||||
#define OSD_POSITION_BITS 5 // 5 bits gives a range 0-31
|
||||
#define OSD_POSITION_XY_MASK ((1 << OSD_POSITION_BITS) - 1)
|
||||
#define OSD_POS(x,y) ((x & OSD_POSITION_XY_MASK) | ((y & OSD_POSITION_XY_MASK) << OSD_POSITION_BITS))
|
||||
#define OSD_X(x) (x & OSD_POSITION_XY_MASK)
|
||||
#define OSD_Y(x) ((x >> OSD_POSITION_BITS) & OSD_POSITION_XY_MASK)
|
||||
|
||||
typedef enum {
|
||||
OSD_RSSI_VALUE,
|
||||
OSD_MAIN_BATT_VOLTAGE,
|
||||
|
@ -80,6 +88,7 @@ typedef enum {
|
|||
OSD_STAT_FLYTIME,
|
||||
OSD_STAT_ARMEDTIME,
|
||||
OSD_STAT_MAX_DISTANCE,
|
||||
OSD_STAT_BLACKBOX_NUMBER,
|
||||
OSD_STAT_COUNT // MUST BE LAST
|
||||
} osd_stats_e;
|
||||
|
||||
|
|
162
src/main/io/rcsplit.c
Normal file
162
src/main/io/rcsplit.c
Normal file
|
@ -0,0 +1,162 @@
|
|||
/*
|
||||
* This file is part of Cleanflight.
|
||||
*
|
||||
* Cleanflight is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Cleanflight is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include <platform.h>
|
||||
|
||||
#include "common/utils.h"
|
||||
|
||||
#include "config/parameter_group.h"
|
||||
#include "config/parameter_group_ids.h"
|
||||
|
||||
#include "fc/rc_controls.h"
|
||||
|
||||
#include "io/beeper.h"
|
||||
#include "io/serial.h"
|
||||
|
||||
#include "scheduler/scheduler.h"
|
||||
|
||||
#include "drivers/serial.h"
|
||||
|
||||
#include "io/rcsplit.h"
|
||||
|
||||
// communicate with camera device variables
|
||||
serialPort_t *rcSplitSerialPort = NULL;
|
||||
rcsplitSwitchState_t switchStates[BOXCAMERA3 - BOXCAMERA1 + 1];
|
||||
rcsplitState_e cameraState = RCSPLIT_STATE_UNKNOWN;
|
||||
|
||||
static uint8_t crc_high_first(uint8_t *ptr, uint8_t len)
|
||||
{
|
||||
uint8_t i;
|
||||
uint8_t crc=0x00;
|
||||
while (len--) {
|
||||
crc ^= *ptr++;
|
||||
for (i=8; i>0; --i) {
|
||||
if (crc & 0x80)
|
||||
crc = (crc << 1) ^ 0x31;
|
||||
else
|
||||
crc = (crc << 1);
|
||||
}
|
||||
}
|
||||
return (crc);
|
||||
}
|
||||
|
||||
static void sendCtrlCommand(rcsplit_ctrl_argument_e argument)
|
||||
{
|
||||
if (!rcSplitSerialPort)
|
||||
return ;
|
||||
|
||||
uint8_t uart_buffer[5] = {0};
|
||||
uint8_t crc = 0;
|
||||
|
||||
uart_buffer[0] = RCSPLIT_PACKET_HEADER;
|
||||
uart_buffer[1] = RCSPLIT_PACKET_CMD_CTRL;
|
||||
uart_buffer[2] = argument;
|
||||
uart_buffer[3] = RCSPLIT_PACKET_TAIL;
|
||||
crc = crc_high_first(uart_buffer, 4);
|
||||
|
||||
// build up a full request [header]+[command]+[argument]+[crc]+[tail]
|
||||
uart_buffer[3] = crc;
|
||||
uart_buffer[4] = RCSPLIT_PACKET_TAIL;
|
||||
|
||||
// write to device
|
||||
serialWriteBuf(rcSplitSerialPort, uart_buffer, 5);
|
||||
}
|
||||
|
||||
static void rcSplitProcessMode()
|
||||
{
|
||||
// if the device not ready, do not handle any mode change event
|
||||
if (RCSPLIT_STATE_IS_READY != cameraState)
|
||||
return ;
|
||||
|
||||
for (boxId_e i = BOXCAMERA1; i <= BOXCAMERA3; i++) {
|
||||
uint8_t switchIndex = i - BOXCAMERA1;
|
||||
if (IS_RC_MODE_ACTIVE(i)) {
|
||||
// check last state of this mode, if it's true, then ignore it.
|
||||
// Here is a logic to make a toggle control for this mode
|
||||
if (switchStates[switchIndex].isActivated) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint8_t argument = RCSPLIT_CTRL_ARGU_INVALID;
|
||||
switch (i) {
|
||||
case BOXCAMERA1:
|
||||
argument = RCSPLIT_CTRL_ARGU_WIFI_BTN;
|
||||
break;
|
||||
case BOXCAMERA2:
|
||||
argument = RCSPLIT_CTRL_ARGU_POWER_BTN;
|
||||
break;
|
||||
case BOXCAMERA3:
|
||||
argument = RCSPLIT_CTRL_ARGU_CHANGE_MODE;
|
||||
break;
|
||||
default:
|
||||
argument = RCSPLIT_CTRL_ARGU_INVALID;
|
||||
break;
|
||||
}
|
||||
|
||||
if (argument != RCSPLIT_CTRL_ARGU_INVALID) {
|
||||
sendCtrlCommand(argument);
|
||||
switchStates[switchIndex].isActivated = true;
|
||||
}
|
||||
} else {
|
||||
switchStates[switchIndex].isActivated = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool rcSplitInit(void)
|
||||
{
|
||||
// found the port config with FUNCTION_RUNCAM_SPLIT_CONTROL
|
||||
// User must set some UART inteface with RunCam Split at peripherals column in Ports tab
|
||||
serialPortConfig_t *portConfig = findSerialPortConfig(FUNCTION_RCSPLIT);
|
||||
if (portConfig) {
|
||||
rcSplitSerialPort = openSerialPort(portConfig->identifier, FUNCTION_RCSPLIT, NULL, 115200, MODE_RXTX, 0);
|
||||
}
|
||||
|
||||
if (!rcSplitSerialPort) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// set init value to true, to avoid the action auto run when the flight board start and the switch is on.
|
||||
for (boxId_e i = BOXCAMERA1; i <= BOXCAMERA3; i++) {
|
||||
uint8_t switchIndex = i - BOXCAMERA1;
|
||||
switchStates[switchIndex].isActivated = true;
|
||||
}
|
||||
|
||||
cameraState = RCSPLIT_STATE_IS_READY;
|
||||
|
||||
#ifdef USE_RCSPLIT
|
||||
setTaskEnabled(TASK_RCSPLIT, true);
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void rcSplitProcess(timeUs_t currentTimeUs)
|
||||
{
|
||||
UNUSED(currentTimeUs);
|
||||
|
||||
if (rcSplitSerialPort == NULL)
|
||||
return ;
|
||||
|
||||
// process rcsplit custom mode if has any changed
|
||||
rcSplitProcessMode();
|
||||
}
|
55
src/main/io/rcsplit.h
Normal file
55
src/main/io/rcsplit.h
Normal file
|
@ -0,0 +1,55 @@
|
|||
/*
|
||||
* This file is part of Cleanflight.
|
||||
*
|
||||
* Cleanflight is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Cleanflight is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "common/time.h"
|
||||
#include "fc/fc_msp.h"
|
||||
|
||||
typedef struct {
|
||||
bool isActivated;
|
||||
} rcsplitSwitchState_t;
|
||||
|
||||
typedef enum {
|
||||
RCSPLIT_STATE_UNKNOWN = 0,
|
||||
RCSPLIT_STATE_INITIALIZING,
|
||||
RCSPLIT_STATE_IS_READY,
|
||||
} rcsplitState_e;
|
||||
|
||||
// packet header and tail
|
||||
#define RCSPLIT_PACKET_HEADER 0x55
|
||||
#define RCSPLIT_PACKET_CMD_CTRL 0x01
|
||||
#define RCSPLIT_PACKET_TAIL 0xaa
|
||||
|
||||
|
||||
// the commands of RunCam Split serial protocol
|
||||
typedef enum {
|
||||
RCSPLIT_CTRL_ARGU_INVALID = 0x0,
|
||||
RCSPLIT_CTRL_ARGU_WIFI_BTN = 0x1,
|
||||
RCSPLIT_CTRL_ARGU_POWER_BTN = 0x2,
|
||||
RCSPLIT_CTRL_ARGU_CHANGE_MODE = 0x3,
|
||||
RCSPLIT_CTRL_ARGU_WHO_ARE_YOU = 0xFF,
|
||||
} rcsplit_ctrl_argument_e;
|
||||
|
||||
bool rcSplitInit(void);
|
||||
void rcSplitProcess(timeUs_t currentTimeUs);
|
||||
|
||||
// only for unit test
|
||||
extern rcsplitState_e cameraState;
|
||||
extern serialPort_t *rcSplitSerialPort;
|
||||
extern rcsplitSwitchState_t switchStates[BOXCAMERA3 - BOXCAMERA1 + 1];
|
|
@ -38,8 +38,6 @@
|
|||
#include "drivers/serial_softserial.h"
|
||||
#endif
|
||||
|
||||
#define USE_SERIAL (defined(USE_UART) || defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2))
|
||||
|
||||
#ifdef SITL
|
||||
#include "drivers/serial_tcp.h"
|
||||
#endif
|
||||
|
@ -332,7 +330,7 @@ serialPort_t *openSerialPort(
|
|||
portMode_t mode,
|
||||
portOptions_t options)
|
||||
{
|
||||
#if !(USE_SERIAL)
|
||||
#if !(defined(USE_UART) || defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2))
|
||||
UNUSED(rxCallback);
|
||||
UNUSED(baudRate);
|
||||
UNUSED(mode);
|
||||
|
|
|
@ -44,6 +44,7 @@ typedef enum {
|
|||
FUNCTION_VTX_SMARTAUDIO = (1 << 11), // 2048
|
||||
FUNCTION_TELEMETRY_IBUS = (1 << 12), // 4096
|
||||
FUNCTION_VTX_TRAMP = (1 << 13), // 8192
|
||||
FUNCTION_RCSPLIT = (1 << 14), // 16384
|
||||
} serialPortFunction_e;
|
||||
|
||||
typedef enum {
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
|
||||
#include "common/utils.h"
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "rx/rx.h"
|
||||
#include "rx/msp.h"
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "drivers/rx_nrf24l01.h"
|
||||
#include "drivers/rx_xn297.h"
|
||||
#include "drivers/time.h"
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
|
||||
#include "common/utils.h"
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "drivers/rx_nrf24l01.h"
|
||||
#include "drivers/rx_xn297.h"
|
||||
#include "drivers/time.h"
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
|
||||
#include "common/utils.h"
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "drivers/rx_nrf24l01.h"
|
||||
#include "drivers/time.h"
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "drivers/rx_nrf24l01.h"
|
||||
#include "drivers/time.h"
|
||||
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
|
||||
#include "common/utils.h"
|
||||
|
||||
#include "drivers/io.h"
|
||||
#include "drivers/rx_nrf24l01.h"
|
||||
#include "drivers/time.h"
|
||||
|
||||
|
|
|
@ -108,6 +108,14 @@ static uint8_t rcSampleIndex = 0;
|
|||
#define RX_MAX_USEC 2115
|
||||
#define RX_MID_USEC 1500
|
||||
|
||||
#ifndef SPEKTRUM_BIND_PIN
|
||||
#define SPEKTRUM_BIND_PIN NONE
|
||||
#endif
|
||||
|
||||
#ifndef BINDPLUG_PIN
|
||||
#define BINDPLUG_PIN NONE
|
||||
#endif
|
||||
|
||||
PG_REGISTER_WITH_RESET_FN(rxConfig_t, rxConfig, PG_RX_CONFIG, 0);
|
||||
void pgResetFn_rxConfig(rxConfig_t *rxConfig)
|
||||
{
|
||||
|
@ -116,6 +124,8 @@ void pgResetFn_rxConfig(rxConfig_t *rxConfig)
|
|||
.serialrx_provider = SERIALRX_PROVIDER,
|
||||
.rx_spi_protocol = RX_SPI_DEFAULT_PROTOCOL,
|
||||
.sbus_inversion = 1,
|
||||
.spektrum_bind_pin_override_ioTag = IO_TAG(SPEKTRUM_BIND_PIN),
|
||||
.spektrum_bind_plug_ioTag = IO_TAG(BINDPLUG_PIN),
|
||||
.spektrum_sat_bind = 0,
|
||||
.spektrum_sat_bind_autoreset = 1,
|
||||
.midrc = RX_MID_USEC,
|
||||
|
|
|
@ -122,6 +122,8 @@ typedef struct rxConfig_s {
|
|||
uint8_t rx_spi_protocol; // type of nrf24 protocol (0 = v202 250kbps). Must be enabled by FEATURE_RX_NRF24 first.
|
||||
uint32_t rx_spi_id;
|
||||
uint8_t rx_spi_rf_channel_count;
|
||||
ioTag_t spektrum_bind_pin_override_ioTag;
|
||||
ioTag_t spektrum_bind_plug_ioTag;
|
||||
uint8_t spektrum_sat_bind; // number of bind pulses for Spektrum satellite receivers
|
||||
uint8_t spektrum_sat_bind_autoreset; // whenever we will reset (exit) binding mode after hard reboot
|
||||
uint8_t rssi_channel;
|
||||
|
|
|
@ -77,13 +77,6 @@ static volatile uint8_t spekFrame[SPEK_FRAME_SIZE];
|
|||
static rxRuntimeConfig_t *rxRuntimeConfigPtr;
|
||||
static serialPort_t *serialPort;
|
||||
|
||||
#ifdef SPEKTRUM_BIND_PIN
|
||||
static IO_t BindPin = DEFIO_IO(NONE);
|
||||
#ifdef BINDPLUG_PIN
|
||||
static IO_t BindPlug = DEFIO_IO(NONE);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static uint8_t telemetryBuf[SRXL_FRAME_SIZE_MAX];
|
||||
static uint8_t telemetryBufLen = 0;
|
||||
|
||||
|
@ -180,19 +173,22 @@ static uint16_t spektrumReadRawRC(const rxRuntimeConfig_t *rxRuntimeConfig, uint
|
|||
return data;
|
||||
}
|
||||
|
||||
#ifdef SPEKTRUM_BIND_PIN
|
||||
#ifdef USE_SPEKTRUM_BIND
|
||||
|
||||
bool spekShouldBind(uint8_t spektrum_sat_bind)
|
||||
{
|
||||
#ifdef BINDPLUG_PIN
|
||||
BindPlug = IOGetByTag(IO_TAG(BINDPLUG_PIN));
|
||||
IOInit(BindPlug, OWNER_RX_BIND, 0);
|
||||
IOConfigGPIO(BindPlug, IOCFG_IPU);
|
||||
#ifdef USE_SPEKTRUM_BIND_PLUG
|
||||
IO_t BindPlug = IOGetByTag(rxConfig()->spektrum_bind_plug_ioTag);
|
||||
|
||||
// Check status of bind plug and exit if not active
|
||||
delayMicroseconds(10); // allow configuration to settle
|
||||
if (IORead(BindPlug)) {
|
||||
return false;
|
||||
if (BindPlug) {
|
||||
IOInit(BindPlug, OWNER_RX_BIND, 0);
|
||||
IOConfigGPIO(BindPlug, IOCFG_IPU);
|
||||
|
||||
// Check status of bind plug and exit if not active
|
||||
delayMicroseconds(10); // allow configuration to settle
|
||||
if (IORead(BindPlug)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -202,6 +198,7 @@ bool spekShouldBind(uint8_t spektrum_sat_bind)
|
|||
spektrum_sat_bind > SPEKTRUM_SAT_BIND_MAX
|
||||
);
|
||||
}
|
||||
|
||||
/* spektrumBind function ported from Baseflight. It's used to bind satellite receiver to TX.
|
||||
* Function must be called immediately after startup so that we don't miss satellite bind window.
|
||||
* Known parameters. Tested with DSMX satellite and DX8 radio. Framerate (11ms or 22ms) must be selected from TX.
|
||||
|
@ -210,52 +207,92 @@ bool spekShouldBind(uint8_t spektrum_sat_bind)
|
|||
*/
|
||||
void spektrumBind(rxConfig_t *rxConfig)
|
||||
{
|
||||
int i;
|
||||
if (!spekShouldBind(rxConfig->spektrum_sat_bind)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Determine a pin to use
|
||||
ioTag_t bindPin;
|
||||
|
||||
if (rxConfig->spektrum_bind_pin_override_ioTag) {
|
||||
bindPin = rxConfig->spektrum_bind_pin_override_ioTag;
|
||||
} else {
|
||||
const serialPortConfig_t *portConfig = findSerialPortConfig(FUNCTION_RX_SERIAL);
|
||||
if (!portConfig) {
|
||||
return;
|
||||
}
|
||||
|
||||
int index = SERIAL_PORT_IDENTIFIER_TO_INDEX(portConfig->identifier);
|
||||
ioTag_t txPin = serialPinConfig()->ioTagTx[index];
|
||||
ioTag_t rxPin = serialPinConfig()->ioTagRx[index];
|
||||
|
||||
// Take care half-duplex case
|
||||
switch (rxConfig->serialrx_provider) {
|
||||
case SERIALRX_SRXL:
|
||||
#ifdef TELEMETRY
|
||||
if (feature(FEATURE_TELEMETRY) && !telemetryCheckRxPortShared(portConfig)) {
|
||||
bindPin = txPin;
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
bindPin = rxPin;
|
||||
}
|
||||
|
||||
if (!bindPin) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
IO_t bindIO = IOGetByTag(bindPin);
|
||||
|
||||
IOInit(bindIO, OWNER_RX_BIND, 0);
|
||||
IOConfigGPIO(bindIO, IOCFG_OUT_PP);
|
||||
|
||||
LED1_ON;
|
||||
|
||||
BindPin = IOGetByTag(IO_TAG(SPEKTRUM_BIND_PIN));
|
||||
IOInit(BindPin, OWNER_RX_BIND, 0);
|
||||
IOConfigGPIO(BindPin, IOCFG_OUT_PP);
|
||||
|
||||
// RX line, set high
|
||||
IOWrite(BindPin, true);
|
||||
IOWrite(bindIO, true);
|
||||
|
||||
// Bind window is around 20-140ms after powerup
|
||||
delay(60);
|
||||
LED1_OFF;
|
||||
|
||||
for (i = 0; i < rxConfig->spektrum_sat_bind; i++) {
|
||||
|
||||
for (int i = 0; i < rxConfig->spektrum_sat_bind; i++) {
|
||||
LED0_OFF;
|
||||
LED2_OFF;
|
||||
// RX line, drive low for 120us
|
||||
IOWrite(BindPin, false);
|
||||
IOWrite(bindIO, false);
|
||||
delayMicroseconds(120);
|
||||
|
||||
LED0_ON;
|
||||
LED2_ON;
|
||||
// RX line, drive high for 120us
|
||||
IOWrite(BindPin, true);
|
||||
IOWrite(bindIO, true);
|
||||
delayMicroseconds(120);
|
||||
|
||||
}
|
||||
|
||||
#ifndef BINDPLUG_PIN
|
||||
|
||||
// Release the bind pin to avoid interference with an actual rx pin,
|
||||
// when rxConfig->spektrum_bind_pin_override_ioTag is used.
|
||||
// This happens when the bind pin is connected in parallel to the rx pin.
|
||||
|
||||
if (rxConfig->spektrum_bind_pin_override_ioTag) {
|
||||
delay(50); // Keep it high for 50msec
|
||||
IOConfigGPIO(bindIO, IOCFG_IN_FLOATING);
|
||||
}
|
||||
|
||||
// If we came here as a result of hard reset (power up, with spektrum_sat_bind set), then reset it back to zero and write config
|
||||
// Don't reset if hardware bind plug is present
|
||||
// Reset only when autoreset is enabled
|
||||
if (rxConfig->spektrum_sat_bind_autoreset == 1 && !isMPUSoftReset()) {
|
||||
|
||||
if (!rxConfig->spektrum_bind_plug_ioTag && rxConfig->spektrum_sat_bind_autoreset == 1 && !isMPUSoftReset()) {
|
||||
rxConfig->spektrum_sat_bind = 0;
|
||||
saveConfigAndNotify();
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
#endif // SPEKTRUM_BIND_PIN
|
||||
#endif // USE_SPEKTRUM_BIND
|
||||
|
||||
bool spektrumInit(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig)
|
||||
{
|
||||
|
@ -276,7 +313,7 @@ bool spektrumInit(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig
|
|||
switch (rxConfig->serialrx_provider) {
|
||||
case SERIALRX_SRXL:
|
||||
#ifdef TELEMETRY
|
||||
srxlEnabled = (feature(FEATURE_TELEMETRY) && !portShared && rxConfig->serialrx_provider == SERIALRX_SRXL);
|
||||
srxlEnabled = (feature(FEATURE_TELEMETRY) && !portShared);
|
||||
#endif
|
||||
case SERIALRX_SPEKTRUM2048:
|
||||
// 11 bit frames
|
||||
|
|
|
@ -111,6 +111,10 @@ typedef enum {
|
|||
TASK_VTXCTRL,
|
||||
#endif
|
||||
|
||||
#ifdef USE_RCSPLIT
|
||||
TASK_RCSPLIT,
|
||||
#endif
|
||||
|
||||
/* Count of real tasks */
|
||||
TASK_COUNT,
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
|
||||
#include "common/axis.h"
|
||||
#include "config/parameter_group.h"
|
||||
#include "drivers/bus.h"
|
||||
#include "drivers/sensor.h"
|
||||
|
||||
typedef enum {
|
||||
|
|
|
@ -96,8 +96,6 @@
|
|||
//#define CURRENT_METER_ADC_PIN PA5
|
||||
#define RSSI_ADC_PIN PB2
|
||||
|
||||
#define SPEKTRUM_BIND_PIN UART2_RX_PIN
|
||||
|
||||
#define USE_SERIAL_4WAY_BLHELI_INTERFACE
|
||||
|
||||
// IO - stm32f303cc in 48pin package
|
||||
|
|
|
@ -88,8 +88,6 @@
|
|||
#define SERIALRX_UART SERIAL_PORT_USART2
|
||||
#define RX_CHANNELS_TAER
|
||||
|
||||
#define SPEKTRUM_BIND_PIN UART3_RX_PIN
|
||||
|
||||
#define USE_SERIAL_4WAY_BLHELI_INTERFACE
|
||||
|
||||
#define TARGET_IO_PORTA 0xffff
|
||||
|
|
|
@ -62,8 +62,8 @@
|
|||
#define RSSI_ADC_PIN PA1
|
||||
#define EXTERNAL1_ADC_PIN PA5
|
||||
|
||||
#define SPEKTRUM_BIND_PIN PA3
|
||||
|
||||
#define USE_SPEKTRUM_BIND
|
||||
#define USE_SPEKTRUM_BIND_PLUG
|
||||
#define BINDPLUG_PIN PB5
|
||||
|
||||
#define DEFAULT_FEATURES FEATURE_MOTOR_STOP
|
||||
|
|
|
@ -114,8 +114,6 @@
|
|||
// LED strip configuration.
|
||||
#define LED_STRIP
|
||||
|
||||
#define SPEKTRUM_BIND_PIN UART2_RX_PIN
|
||||
|
||||
#define BINDPLUG_PIN PB12
|
||||
|
||||
#define DEFAULT_FEATURES FEATURE_MOTOR_STOP
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue