mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-25 01:05:27 +03:00
Re-organize files by topic
Keil project not updated, I have no way to verify it. Note, mw.c, drv_pwm.c and drv_system.c contain code for too many topics. Later commits will relocate the code as appropriate. Not even looked at utils yet. 'Utils' is a bad naming practice and is a synonym for 'too lazy to find the right file/name'.
This commit is contained in:
parent
a8f383077c
commit
9fa99cf9f5
61 changed files with 76 additions and 6363 deletions
410
src/flight/imu.c
Normal file
410
src/flight/imu.c
Normal file
|
@ -0,0 +1,410 @@
|
|||
#include "board.h"
|
||||
#include "mw.h"
|
||||
|
||||
int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
|
||||
int32_t accSum[3];
|
||||
uint32_t accTimeSum = 0; // keep track for integration of acc
|
||||
int accSumCount = 0;
|
||||
int16_t accZ_25deg = 0;
|
||||
int32_t baroPressure = 0;
|
||||
int32_t baroTemperature = 0;
|
||||
uint32_t baroPressureSum = 0;
|
||||
int32_t BaroAlt = 0;
|
||||
int32_t sonarAlt; // to think about the unit
|
||||
int32_t EstAlt; // in cm
|
||||
int32_t BaroPID = 0;
|
||||
int32_t AltHold;
|
||||
int32_t errorAltitudeI = 0;
|
||||
int32_t vario = 0; // variometer in cm/s
|
||||
int16_t throttleAngleCorrection = 0; // correction of throttle in lateral wind,
|
||||
float magneticDeclination = 0.0f; // calculated at startup from config
|
||||
float accVelScale;
|
||||
|
||||
// **************
|
||||
// gyro+acc IMU
|
||||
// **************
|
||||
int16_t gyroData[3] = { 0, 0, 0 };
|
||||
int16_t gyroZero[3] = { 0, 0, 0 };
|
||||
int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
|
||||
float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians
|
||||
|
||||
static void getEstimatedAttitude(void);
|
||||
|
||||
void imuInit(void)
|
||||
{
|
||||
accZ_25deg = acc_1G * cosf(RAD * 25.0f);
|
||||
accVelScale = 9.80665f / acc_1G / 10000.0f;
|
||||
|
||||
#ifdef MAG
|
||||
// if mag sensor is enabled, use it
|
||||
if (sensors(SENSOR_MAG))
|
||||
Mag_init();
|
||||
#endif
|
||||
}
|
||||
|
||||
void computeIMU(void)
|
||||
{
|
||||
uint32_t axis;
|
||||
static int16_t gyroYawSmooth = 0;
|
||||
|
||||
Gyro_getADC();
|
||||
if (sensors(SENSOR_ACC)) {
|
||||
ACC_getADC();
|
||||
getEstimatedAttitude();
|
||||
} else {
|
||||
accADC[X] = 0;
|
||||
accADC[Y] = 0;
|
||||
accADC[Z] = 0;
|
||||
}
|
||||
|
||||
if (mcfg.mixerConfiguration == MULTITYPE_TRI) {
|
||||
gyroData[YAW] = (gyroYawSmooth * 2 + gyroADC[YAW]) / 3;
|
||||
gyroYawSmooth = gyroData[YAW];
|
||||
gyroData[ROLL] = gyroADC[ROLL];
|
||||
gyroData[PITCH] = gyroADC[PITCH];
|
||||
} else {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
gyroData[axis] = gyroADC[axis];
|
||||
}
|
||||
}
|
||||
|
||||
// **************************************************
|
||||
// Simplified IMU based on "Complementary Filter"
|
||||
// Inspired by http://starlino.com/imu_guide.html
|
||||
//
|
||||
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
|
||||
//
|
||||
// The following ideas was used in this project:
|
||||
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
|
||||
//
|
||||
// Currently Magnetometer uses separate CF which is used only
|
||||
// for heading approximation.
|
||||
//
|
||||
// **************************************************
|
||||
|
||||
#define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f))
|
||||
#define INV_GYR_CMPFM_FACTOR (1.0f / ((float)mcfg.gyro_cmpfm_factor + 1.0f))
|
||||
|
||||
typedef struct fp_vector {
|
||||
float X;
|
||||
float Y;
|
||||
float Z;
|
||||
} t_fp_vector_def;
|
||||
|
||||
typedef union {
|
||||
float A[3];
|
||||
t_fp_vector_def V;
|
||||
} t_fp_vector;
|
||||
|
||||
t_fp_vector EstG;
|
||||
|
||||
// Normalize a vector
|
||||
void normalizeV(struct fp_vector *src, struct fp_vector *dest)
|
||||
{
|
||||
float length;
|
||||
|
||||
length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z);
|
||||
if (length != 0) {
|
||||
dest->X = src->X / length;
|
||||
dest->Y = src->Y / length;
|
||||
dest->Z = src->Z / length;
|
||||
}
|
||||
}
|
||||
|
||||
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
|
||||
void rotateV(struct fp_vector *v, float *delta)
|
||||
{
|
||||
struct fp_vector v_tmp = *v;
|
||||
|
||||
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation
|
||||
float mat[3][3];
|
||||
float cosx, sinx, cosy, siny, cosz, sinz;
|
||||
float coszcosx, coszcosy, sinzcosx, coszsinx, sinzsinx;
|
||||
|
||||
cosx = cosf(delta[ROLL]);
|
||||
sinx = sinf(delta[ROLL]);
|
||||
cosy = cosf(delta[PITCH]);
|
||||
siny = sinf(delta[PITCH]);
|
||||
cosz = cosf(delta[YAW]);
|
||||
sinz = sinf(delta[YAW]);
|
||||
|
||||
coszcosx = cosz * cosx;
|
||||
coszcosy = cosz * cosy;
|
||||
sinzcosx = sinz * cosx;
|
||||
coszsinx = sinx * cosz;
|
||||
sinzsinx = sinx * sinz;
|
||||
|
||||
mat[0][0] = coszcosy;
|
||||
mat[0][1] = -cosy * sinz;
|
||||
mat[0][2] = siny;
|
||||
mat[1][0] = sinzcosx + (coszsinx * siny);
|
||||
mat[1][1] = coszcosx - (sinzsinx * siny);
|
||||
mat[1][2] = -sinx * cosy;
|
||||
mat[2][0] = (sinzsinx) - (coszcosx * siny);
|
||||
mat[2][1] = (coszsinx) + (sinzcosx * siny);
|
||||
mat[2][2] = cosy * cosx;
|
||||
|
||||
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0];
|
||||
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1];
|
||||
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
|
||||
}
|
||||
|
||||
int32_t applyDeadband(int32_t value, int32_t deadband)
|
||||
{
|
||||
if (abs(value) < deadband) {
|
||||
value = 0;
|
||||
} else if (value > 0) {
|
||||
value -= deadband;
|
||||
} else if (value < 0) {
|
||||
value += deadband;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
#define F_CUT_ACCZ 10.0f // 10Hz should still be fast enough
|
||||
static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ);
|
||||
|
||||
// rotate acc into Earth frame and calculate acceleration in it
|
||||
void acc_calc(uint32_t deltaT)
|
||||
{
|
||||
static int32_t accZoffset = 0;
|
||||
static float accz_smooth;
|
||||
float rpy[3];
|
||||
t_fp_vector accel_ned;
|
||||
|
||||
// the accel values have to be rotated into the earth frame
|
||||
rpy[0] = -(float)anglerad[ROLL];
|
||||
rpy[1] = -(float)anglerad[PITCH];
|
||||
rpy[2] = -(float)heading * RAD;
|
||||
|
||||
accel_ned.V.X = accSmooth[0];
|
||||
accel_ned.V.Y = accSmooth[1];
|
||||
accel_ned.V.Z = accSmooth[2];
|
||||
|
||||
rotateV(&accel_ned.V, rpy);
|
||||
|
||||
if (cfg.acc_unarmedcal == 1) {
|
||||
if (!f.ARMED) {
|
||||
accZoffset -= accZoffset / 64;
|
||||
accZoffset += accel_ned.V.Z;
|
||||
}
|
||||
accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis
|
||||
} else
|
||||
accel_ned.V.Z -= acc_1G;
|
||||
|
||||
accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter
|
||||
|
||||
// apply Deadband to reduce integration drift and vibration influence
|
||||
accel_ned.V.Z = applyDeadband(lrintf(accz_smooth), cfg.accz_deadband);
|
||||
accel_ned.V.X = applyDeadband(lrintf(accel_ned.V.X), cfg.accxy_deadband);
|
||||
accel_ned.V.Y = applyDeadband(lrintf(accel_ned.V.Y), cfg.accxy_deadband);
|
||||
|
||||
// sum up Values for later integration to get velocity and distance
|
||||
accTimeSum += deltaT;
|
||||
accSumCount++;
|
||||
|
||||
accSum[X] += lrintf(accel_ned.V.X);
|
||||
accSum[Y] += lrintf(accel_ned.V.Y);
|
||||
accSum[Z] += lrintf(accel_ned.V.Z);
|
||||
}
|
||||
|
||||
void accSum_reset(void)
|
||||
{
|
||||
accSum[0] = 0;
|
||||
accSum[1] = 0;
|
||||
accSum[2] = 0;
|
||||
accSumCount = 0;
|
||||
accTimeSum = 0;
|
||||
}
|
||||
|
||||
// baseflight calculation by Luggi09 originates from arducopter
|
||||
static int16_t calculateHeading(t_fp_vector *vec)
|
||||
{
|
||||
int16_t head;
|
||||
|
||||
float cosineRoll = cosf(anglerad[ROLL]);
|
||||
float sineRoll = sinf(anglerad[ROLL]);
|
||||
float cosinePitch = cosf(anglerad[PITCH]);
|
||||
float sinePitch = sinf(anglerad[PITCH]);
|
||||
float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll;
|
||||
float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
|
||||
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
|
||||
head = lrintf(hd);
|
||||
if (head < 0)
|
||||
head += 360;
|
||||
|
||||
return head;
|
||||
}
|
||||
|
||||
static void getEstimatedAttitude(void)
|
||||
{
|
||||
uint32_t axis;
|
||||
int32_t accMag = 0;
|
||||
static t_fp_vector EstM;
|
||||
static t_fp_vector EstN = { .A = { 1000.0f, 0.0f, 0.0f } };
|
||||
static float accLPF[3];
|
||||
static uint32_t previousT;
|
||||
uint32_t currentT = micros();
|
||||
uint32_t deltaT;
|
||||
float scale, deltaGyroAngle[3];
|
||||
deltaT = currentT - previousT;
|
||||
scale = deltaT * gyro.scale;
|
||||
previousT = currentT;
|
||||
|
||||
// Initialization
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
deltaGyroAngle[axis] = gyroADC[axis] * scale;
|
||||
if (cfg.acc_lpf_factor > 0) {
|
||||
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor);
|
||||
accSmooth[axis] = accLPF[axis];
|
||||
} else {
|
||||
accSmooth[axis] = accADC[axis];
|
||||
}
|
||||
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
|
||||
}
|
||||
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
|
||||
|
||||
rotateV(&EstG.V, deltaGyroAngle);
|
||||
if (sensors(SENSOR_MAG))
|
||||
rotateV(&EstM.V, deltaGyroAngle);
|
||||
else
|
||||
rotateV(&EstN.V, deltaGyroAngle);
|
||||
|
||||
// Apply complimentary filter (Gyro drift correction)
|
||||
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
||||
// To do that, we just skip filter, as EstV already rotated by Gyro
|
||||
if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR;
|
||||
}
|
||||
|
||||
if (sensors(SENSOR_MAG)) {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR;
|
||||
}
|
||||
|
||||
if (EstG.A[Z] > accZ_25deg)
|
||||
f.SMALL_ANGLES_25 = 1;
|
||||
else
|
||||
f.SMALL_ANGLES_25 = 0;
|
||||
|
||||
// Attitude of the estimated vector
|
||||
anglerad[ROLL] = atan2f(EstG.V.Y, EstG.V.Z);
|
||||
anglerad[PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z));
|
||||
angle[ROLL] = lrintf(anglerad[ROLL] * (1800.0f / M_PI));
|
||||
angle[PITCH] = lrintf(anglerad[PITCH] * (1800.0f / M_PI));
|
||||
|
||||
if (sensors(SENSOR_MAG))
|
||||
heading = calculateHeading(&EstM);
|
||||
else
|
||||
heading = calculateHeading(&EstN);
|
||||
|
||||
acc_calc(deltaT); // rotate acc vector into earth frame
|
||||
|
||||
if (cfg.throttle_angle_correction) {
|
||||
int cosZ = ((int32_t)(EstG.V.Z * 100.0f)) / acc_1G;
|
||||
throttleAngleCorrection = cfg.throttle_angle_correction * constrain(100 - cosZ, 0, 100) / 8;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef BARO
|
||||
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
|
||||
|
||||
int getEstimatedAltitude(void)
|
||||
{
|
||||
static uint32_t previousT;
|
||||
uint32_t currentT = micros();
|
||||
uint32_t dTime;
|
||||
int32_t error;
|
||||
int32_t baroVel;
|
||||
int32_t vel_tmp;
|
||||
int32_t BaroAlt_tmp;
|
||||
int32_t setVel;
|
||||
float dt;
|
||||
float vel_acc;
|
||||
float accZ_tmp;
|
||||
static float accZ_old = 0.0f;
|
||||
static float vel = 0.0f;
|
||||
static float accAlt = 0.0f;
|
||||
static int32_t lastBaroAlt;
|
||||
static int32_t baroGroundAltitude = 0;
|
||||
static int32_t baroGroundPressure = 0;
|
||||
|
||||
dTime = currentT - previousT;
|
||||
if (dTime < UPDATE_INTERVAL)
|
||||
return 0;
|
||||
previousT = currentT;
|
||||
|
||||
if (calibratingB > 0) {
|
||||
baroGroundPressure -= baroGroundPressure / 8;
|
||||
baroGroundPressure += baroPressureSum / (cfg.baro_tab_size - 1);
|
||||
baroGroundAltitude = (1.0f - powf((baroGroundPressure / 8) / 101325.0f, 0.190295f)) * 4433000.0f;
|
||||
|
||||
vel = 0;
|
||||
accAlt = 0;
|
||||
calibratingB--;
|
||||
}
|
||||
|
||||
// calculates height from ground via baro readings
|
||||
// see: https://github.com/diydrones/ardupilot/blob/master/libraries/AP_Baro/AP_Baro.cpp#L140
|
||||
BaroAlt_tmp = lrintf((1.0f - powf((float)(baroPressureSum / (cfg.baro_tab_size - 1)) / 101325.0f, 0.190295f)) * 4433000.0f); // in cm
|
||||
BaroAlt_tmp -= baroGroundAltitude;
|
||||
BaroAlt = lrintf((float)BaroAlt * cfg.baro_noise_lpf + (float)BaroAlt_tmp * (1.0f - cfg.baro_noise_lpf)); // additional LPF to reduce baro noise
|
||||
|
||||
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
|
||||
|
||||
// Integrator - velocity, cm/sec
|
||||
accZ_tmp = (float)accSum[2] / (float)accSumCount;
|
||||
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
|
||||
|
||||
// Integrator - Altitude in cm
|
||||
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
|
||||
accAlt = accAlt * cfg.baro_cf_alt + (float) BaroAlt *(1.0f - cfg.baro_cf_alt); // complementary filter for Altitude estimation (baro & acc)
|
||||
EstAlt = accAlt;
|
||||
vel += vel_acc;
|
||||
|
||||
#if 0
|
||||
debug[0] = accSum[2] / accSumCount; // acceleration
|
||||
debug[1] = vel; // velocity
|
||||
debug[2] = accAlt; // height
|
||||
#endif
|
||||
|
||||
accSum_reset();
|
||||
|
||||
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
|
||||
lastBaroAlt = BaroAlt;
|
||||
|
||||
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
|
||||
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
|
||||
|
||||
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
|
||||
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
|
||||
vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel);
|
||||
|
||||
// set vario
|
||||
vel_tmp = lrintf(vel);
|
||||
vel_tmp = applyDeadband(vel_tmp, 5);
|
||||
vario = vel_tmp;
|
||||
|
||||
// Altitude P-Controller
|
||||
error = constrain(AltHold - EstAlt, -500, 500);
|
||||
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
|
||||
setVel = constrain((cfg.P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
|
||||
|
||||
// Velocity PID-Controller
|
||||
// P
|
||||
error = setVel - lrintf(vel);
|
||||
BaroPID = constrain((cfg.P8[PIDVEL] * error / 32), -300, +300);
|
||||
|
||||
// I
|
||||
errorAltitudeI += (cfg.I8[PIDVEL] * error) / 8;
|
||||
errorAltitudeI = constrain(errorAltitudeI, -(1024 * 200), (1024 * 200));
|
||||
BaroPID += errorAltitudeI / 1024; // I in range +/-200
|
||||
|
||||
// D
|
||||
accZ_old = accZ_tmp;
|
||||
BaroPID -= constrain(cfg.D8[PIDVEL] * (accZ_tmp + accZ_old) / 64, -150, 150);
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif /* BARO */
|
Loading…
Add table
Add a link
Reference in a new issue