mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-14 20:10:18 +03:00
435 lines
No EOL
17 KiB
C
435 lines
No EOL
17 KiB
C
/*
|
|
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "pico.h"
|
|
#include "hardware/regs/clocks.h"
|
|
#include "hardware/platform_defs.h"
|
|
#include "hardware/clocks.h"
|
|
#include "hardware/pll.h"
|
|
#include "hardware/irq.h"
|
|
#include "hardware/gpio.h"
|
|
|
|
check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET);
|
|
check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET);
|
|
check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET);
|
|
|
|
static uint32_t configured_freq[CLK_COUNT];
|
|
|
|
static resus_callback_t _resus_callback;
|
|
|
|
// Clock muxing consists of two components:
|
|
// - A glitchless mux, which can be switched freely, but whose inputs must be
|
|
// free-running
|
|
// - An auxiliary (glitchy) mux, whose output glitches when switched, but has
|
|
// no constraints on its inputs
|
|
// Not all clocks have both types of mux.
|
|
static inline bool has_glitchless_mux(clock_handle_t clock) {
|
|
return clock == clk_sys || clock == clk_ref;
|
|
}
|
|
|
|
void clock_stop(clock_handle_t clock) {
|
|
clock_hw_t *clock_hw = &clocks_hw->clk[clock];
|
|
hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS);
|
|
configured_freq[clock] = 0;
|
|
}
|
|
|
|
/// \tag::clock_configure[]
|
|
static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t actual_freq, uint32_t div) {
|
|
clock_hw_t *clock_hw = &clocks_hw->clk[clock];
|
|
|
|
// If increasing divisor, set divisor before source. Otherwise set source
|
|
// before divisor. This avoids a momentary overspeed when e.g. switching
|
|
// to a faster source and increasing divisor to compensate.
|
|
if (div > clock_hw->div)
|
|
clock_hw->div = div;
|
|
|
|
// If switching a glitchless slice (ref or sys) to an aux source, switch
|
|
// away from aux *first* to avoid passing glitches when changing aux mux.
|
|
// Assume (!!!) glitchless source 0 is no faster than the aux source.
|
|
if (has_glitchless_mux(clock) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
|
|
hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
|
|
while (!(clock_hw->selected & 1u))
|
|
tight_loop_contents();
|
|
}
|
|
// If no glitchless mux, cleanly stop the clock to avoid glitches
|
|
// propagating when changing aux mux. Note it would be a really bad idea
|
|
// to do this on one of the glitchless clocks (clk_sys, clk_ref).
|
|
else {
|
|
// Disable clock. On clk_ref and clk_sys this does nothing,
|
|
// all other clocks have the ENABLE bit in the same position.
|
|
hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
|
|
if (configured_freq[clock] > 0) {
|
|
// Delay for 3 cycles of the target clock, for ENABLE propagation.
|
|
// Note XOSC_COUNT is not helpful here because XOSC is not
|
|
// necessarily running, nor is timer...
|
|
uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1;
|
|
busy_wait_at_least_cycles(delay_cyc * 3);
|
|
}
|
|
}
|
|
|
|
// Set aux mux first, and then glitchless mux if this clock has one
|
|
hw_write_masked(&clock_hw->ctrl,
|
|
(auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
|
|
CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
|
|
);
|
|
|
|
if (has_glitchless_mux(clock)) {
|
|
hw_write_masked(&clock_hw->ctrl,
|
|
src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
|
|
CLOCKS_CLK_REF_CTRL_SRC_BITS
|
|
);
|
|
while (!(clock_hw->selected & (1u << src)))
|
|
tight_loop_contents();
|
|
}
|
|
|
|
// Enable clock. On clk_ref and clk_sys this does nothing,
|
|
// all other clocks have the ENABLE bit in the same position.
|
|
hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
|
|
|
|
// Now that the source is configured, we can trust that the user-supplied
|
|
// divisor is a safe value.
|
|
clock_hw->div = div;
|
|
configured_freq[clock] = actual_freq;
|
|
}
|
|
|
|
bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) {
|
|
assert(src_freq >= freq);
|
|
|
|
if (freq > src_freq)
|
|
return false;
|
|
|
|
uint32_t div = (uint32_t)((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq);
|
|
uint32_t actual_freq = (uint32_t) ((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / div);
|
|
|
|
clock_configure_internal(clock, src, auxsrc, actual_freq, div);
|
|
// Store the configured frequency
|
|
return true;
|
|
}
|
|
|
|
void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t int_divider) {
|
|
clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider << CLOCKS_CLK_GPOUT0_DIV_INT_LSB);
|
|
}
|
|
|
|
void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq) {
|
|
clock_configure_internal(clock, src, auxsrc, src_freq, 1u << CLOCKS_CLK_GPOUT0_DIV_INT_LSB);
|
|
}
|
|
|
|
/// \end::clock_configure[]
|
|
|
|
/// \tag::clock_get_hz[]
|
|
uint32_t clock_get_hz(clock_handle_t clock) {
|
|
return configured_freq[clock];
|
|
}
|
|
/// \end::clock_get_hz[]
|
|
|
|
void clock_set_reported_hz(clock_handle_t clock, uint hz) {
|
|
configured_freq[clock] = hz;
|
|
}
|
|
|
|
/// \tag::frequency_count_khz[]
|
|
uint32_t frequency_count_khz(uint src) {
|
|
fc_hw_t *fc = &clocks_hw->fc0;
|
|
|
|
// If frequency counter is running need to wait for it. It runs even if the source is NULL
|
|
while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) {
|
|
tight_loop_contents();
|
|
}
|
|
|
|
// Set reference freq
|
|
fc->ref_khz = clock_get_hz(clk_ref) / 1000;
|
|
|
|
// FIXME: Don't pick random interval. Use best interval
|
|
fc->interval = 10;
|
|
|
|
// No min or max
|
|
fc->min_khz = 0;
|
|
fc->max_khz = 0xffffffff;
|
|
|
|
// Set SRC which automatically starts the measurement
|
|
fc->src = src;
|
|
|
|
while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) {
|
|
tight_loop_contents();
|
|
}
|
|
|
|
// Return the result
|
|
return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB;
|
|
}
|
|
/// \end::frequency_count_khz[]
|
|
|
|
static void clocks_handle_resus(void) {
|
|
// Set clk_sys back to the ref clock rather than it being forced to clk_ref
|
|
// by resus. Call the user's resus callback if they have set one
|
|
|
|
// CLK SYS = CLK_REF. Must be running for this code to be running
|
|
uint clk_ref_freq = clock_get_hz(clk_ref);
|
|
clock_configure_undivided(clk_sys,
|
|
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF,
|
|
0,
|
|
clk_ref_freq);
|
|
|
|
// Assert we have been resussed
|
|
assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS);
|
|
|
|
// Now we have fixed clk_sys we can safely remove the resus
|
|
hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
|
|
hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
|
|
|
|
// Now we should no longer be resussed
|
|
assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS));
|
|
|
|
// Call the user's callback to notify them of the resus event
|
|
if (_resus_callback) {
|
|
_resus_callback();
|
|
}
|
|
}
|
|
|
|
static void clocks_irq_handler(void) {
|
|
// Clocks interrupt handler. Only resus but handle irq
|
|
// defensively just in case.
|
|
uint32_t ints = clocks_hw->ints;
|
|
|
|
if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) {
|
|
ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS;
|
|
clocks_handle_resus();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (ints) {
|
|
panic("Unexpected clocks irq\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void clocks_enable_resus(resus_callback_t resus_callback) {
|
|
// Restart clk_sys if it is stopped by forcing it
|
|
// to the default source of clk_ref. If clk_ref stops running this will
|
|
// not work.
|
|
|
|
// Store user's resus callback
|
|
_resus_callback = resus_callback;
|
|
|
|
irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler);
|
|
|
|
// Enable the resus interrupt in clocks
|
|
clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;
|
|
|
|
// Enable the clocks irq
|
|
irq_set_enabled(CLOCKS_IRQ, true);
|
|
|
|
// 2 * clk_ref freq / clk_sys_min_freq;
|
|
// assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
|
|
uint timeout = 2 * 3 * 1;
|
|
|
|
// Enable resus with the maximum timeout
|
|
clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
|
|
}
|
|
|
|
void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) {
|
|
// Bit messy but it's as much code to loop through a lookup
|
|
// table. The sources for each gpout generators are the same
|
|
// so just call with the sources from GP0
|
|
uint gpclk = 0;
|
|
if (gpio == 21) gpclk = clk_gpout0;
|
|
else if (gpio == 23) gpclk = clk_gpout1;
|
|
else if (gpio == 24) gpclk = clk_gpout2;
|
|
else if (gpio == 25) gpclk = clk_gpout3;
|
|
#if !PICO_RP2040
|
|
else if (gpio == 13) gpclk = clk_gpout0;
|
|
else if (gpio == 15) gpclk = clk_gpout1;
|
|
#endif
|
|
else {
|
|
invalid_params_if(HARDWARE_CLOCKS, true);
|
|
}
|
|
|
|
// Set up the gpclk generator
|
|
clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) |
|
|
CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS;
|
|
clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac;
|
|
|
|
// Set gpio pin to gpclock function
|
|
gpio_set_function(gpio, GPIO_FUNC_GPCK);
|
|
}
|
|
|
|
static const uint8_t gpin0_src[CLK_COUNT] = {
|
|
CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0
|
|
CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1
|
|
CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2
|
|
CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3
|
|
CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_REF
|
|
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_SYS
|
|
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_PERI
|
|
#if !PICO_RP2040
|
|
CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_HSTX
|
|
#endif
|
|
CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_USB
|
|
CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_ADC
|
|
#if PICO_RP2040
|
|
CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_RTC
|
|
#endif
|
|
};
|
|
|
|
// Assert GPIN1 is GPIN0 + 1
|
|
static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
#if HAS_HSTX
|
|
static_assert(CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
#endif
|
|
static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
#if HAS_RP2040_RTC
|
|
static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
|
|
#endif
|
|
|
|
bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq) {
|
|
// Configure a clock to run from a GPIO input
|
|
uint gpin = 0;
|
|
if (gpio == 20) gpin = 0;
|
|
else if (gpio == 22) gpin = 1;
|
|
#if PICO_RP2350
|
|
else if (gpio == 12) gpin = 0;
|
|
else if (gpio == 14) gpin = 1;
|
|
#endif
|
|
else {
|
|
invalid_params_if(HARDWARE_CLOCKS, true);
|
|
}
|
|
|
|
// Work out sources. GPIN is always an auxsrc
|
|
uint src = 0;
|
|
|
|
// GPIN1 == GPIN0 + 1
|
|
uint auxsrc = gpin0_src[clock] + gpin;
|
|
|
|
if (has_glitchless_mux(clock)) {
|
|
// AUX src is always 1
|
|
src = 1;
|
|
}
|
|
|
|
// Set the GPIO function
|
|
gpio_set_function(gpio, GPIO_FUNC_GPCK);
|
|
|
|
// Now we have the src, auxsrc, and configured the gpio input
|
|
// call clock configure to run the clock from a gpio
|
|
return clock_configure(clock, src, auxsrc, src_freq, freq);
|
|
}
|
|
|
|
// everything running off the USB oscillator
|
|
void set_sys_clock_48mhz(void) {
|
|
if (!running_on_fpga()) {
|
|
// Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB
|
|
// which has a source frequency of 48MHz
|
|
clock_configure_undivided(clk_sys,
|
|
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
|
|
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
|
|
USB_CLK_HZ);
|
|
|
|
// Turn off PLL sys for good measure
|
|
pll_deinit(pll_sys);
|
|
|
|
// CLK peri is clocked from clk_sys so need to change clk_peri's freq
|
|
clock_configure_undivided(clk_peri,
|
|
0,
|
|
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
|
|
USB_CLK_HZ);
|
|
}
|
|
}
|
|
|
|
// PICO_CONFIG: PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK, When the SYS clock PLL is changed keep the peripheral clock attached to it, type=bool, default=0, advanced=true, group=hardware_clocks
|
|
#ifndef PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK
|
|
// support old incorrect spelling too
|
|
#ifdef PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK
|
|
#define PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK
|
|
#else
|
|
// By default, when reconfiguring the system clock PLL settings after runtime initialization,
|
|
// the peripheral clock is switched to the 48MHz USB clock to ensure continuity of peripheral operation.
|
|
// Setting this value to 1 changes the behavior to have the peripheral clock re-configured
|
|
// to the system clock at it's new frequency.
|
|
#define PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK 0
|
|
#endif
|
|
#endif
|
|
|
|
void set_sys_clock_pll(uint32_t vco_freq, uint post_div1, uint post_div2) {
|
|
if (!running_on_fpga()) {
|
|
clock_configure_undivided(clk_sys,
|
|
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
|
|
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
|
|
USB_CLK_HZ);
|
|
|
|
pll_init(pll_sys, PLL_SYS_REFDIV, vco_freq, post_div1, post_div2);
|
|
uint32_t freq = vco_freq / (post_div1 * post_div2);
|
|
|
|
// Configure clocks
|
|
// CLK_REF is the XOSC source
|
|
clock_configure_undivided(clk_ref,
|
|
CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC,
|
|
0, // No aux mux
|
|
XOSC_HZ);
|
|
|
|
// CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz
|
|
clock_configure_undivided(clk_sys,
|
|
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
|
|
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
|
|
freq);
|
|
|
|
#if PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK
|
|
clock_configure_undivided(clk_peri,
|
|
0,
|
|
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
|
|
freq);
|
|
#else
|
|
clock_configure_undivided(clk_peri,
|
|
0, // Only AUX mux on ADC
|
|
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
|
|
USB_CLK_HZ);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool check_sys_clock_hz(uint32_t freq_hz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) {
|
|
uint reference_freq_hz = XOSC_HZ / PLL_SYS_REFDIV;
|
|
for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) {
|
|
uint vco_hz = fbdiv * reference_freq_hz;
|
|
if (vco_hz < PICO_PLL_VCO_MIN_FREQ_HZ || vco_hz > PICO_PLL_VCO_MAX_FREQ_HZ) continue;
|
|
for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) {
|
|
for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) {
|
|
uint out = vco_hz / (postdiv1 * postdiv2);
|
|
if (out == freq_hz && !(vco_hz % (postdiv1 * postdiv2))) {
|
|
*vco_out = vco_hz;
|
|
*postdiv1_out = postdiv1;
|
|
*postdiv2_out = postdiv2;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Note this impl is kept to preserve previous rounding behavior, vs calling check_sys_clock_hz
|
|
bool check_sys_clock_khz(uint32_t freq_khz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) {
|
|
uint reference_freq_khz = (XOSC_HZ / KHZ) / PLL_SYS_REFDIV;
|
|
for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) {
|
|
uint vco_khz = fbdiv * reference_freq_khz;
|
|
if (vco_khz < PICO_PLL_VCO_MIN_FREQ_HZ / KHZ || vco_khz > PICO_PLL_VCO_MAX_FREQ_HZ / KHZ) continue;
|
|
for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) {
|
|
for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) {
|
|
uint out = vco_khz / (postdiv1 * postdiv2);
|
|
if (out == freq_khz && !(vco_khz % (postdiv1 * postdiv2))) {
|
|
*vco_out = vco_khz * KHZ;
|
|
*postdiv1_out = postdiv1;
|
|
*postdiv2_out = postdiv2;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
} |