1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00
betaflight/src/test/unit/flight_failsafe_unittest.cc
ctzsnooze 776e8c7b3c
Refactor Rx code and better support 25Hz links (#13435)
* RX task update rate to 22Hz, to improve 25Hz link stability

* modified Rx code

* add LQ to debug

* use max of frameAge or FrameDelta

* Require a dropouit of 200ms, not 100ms, before RXLOSS

* remove FrameAge, use 150ms timeout 50ms checks

* fix tests and tidy up the comments

* Handle NULL input as before, log frame time

* possible solutions to review comment about names

* Remove rxFrameTimeUs

- prepare for direct use of lastRcFrameTimeUs
- refactor rx_spi callback

* remove global currentRxRateHz

* simplify updateRcRefreshRate

* re-name to recheck interval, return frame time debug

* Calculate RxRate only once

* use rxReceivingSignal for consistency

* use signalReceived not rxDataReceived for consistency

* suggestions from review PL

* move defines, thanks K

* fixes from review, thanks MH

* review changes, undo task interval change

rename bool rxIsReceivingSignal to isRxReceivingSignal
thanks Steve for resolving that tasks changes are not needed
thanks PL for your feedback also

---------

Co-authored-by: Petr Ledvina <ledvinap@hp124.ekotip.cz>
2024-10-01 09:23:24 +10:00

778 lines
25 KiB
C++

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>
extern "C" {
#include "platform.h"
#include "build/debug.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/bitarray.h"
#include "fc/runtime_config.h"
#include "fc/rc_modes.h"
#include "fc/rc_controls.h"
#include "fc/core.h"
#include "flight/failsafe.h"
#include "io/beeper.h"
#include "drivers/io.h"
#include "rx/rx.h"
extern boxBitmask_t rcModeActivationMask;
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
uint32_t testFeatureMask = 0;
uint16_t testMinThrottle = 0;
throttleStatus_e throttleStatus = THROTTLE_HIGH;
enum {
COUNTER_MW_DISARM = 0,
};
#define CALL_COUNT_ITEM_COUNT 1
static int callCounts[CALL_COUNT_ITEM_COUNT];
#define CALL_COUNTER(item) (callCounts[item])
void resetCallCounters(void)
{
memset(&callCounts, 0, sizeof(callCounts));
}
#define TEST_MID_RC 1495 // something other than the default 1500 will suffice.
#define TEST_MIN_CHECK 1100;
#define PERIOD_OF_10_SCONDS 10000
#define DE_ACTIVATE_ALL_BOXES 0
uint32_t sysTickUptime;
void configureFailsafe(void)
{
rxConfigMutable()->midrc = TEST_MID_RC;
rxConfigMutable()->mincheck = TEST_MIN_CHECK;
failsafeConfigMutable()->failsafe_delay = 10; // 1 second
failsafeConfigMutable()->failsafe_landing_time = 1; // 1.0 seconds
failsafeConfigMutable()->failsafe_switch_mode = FAILSAFE_SWITCH_MODE_STAGE1;
failsafeConfigMutable()->failsafe_throttle = 1200;
failsafeConfigMutable()->failsafe_throttle_low_delay = 100; // 10 seconds
failsafeConfigMutable()->failsafe_procedure = FAILSAFE_PROCEDURE_AUTO_LANDING;
// NB we don't have failsafe_recovery_delay so use PERIOD_RXDATA_RECOVERY (100ms)
sysTickUptime = 0;
}
void activateBoxFailsafe()
{
boxBitmask_t newMask;
bitArraySet(&newMask, BOXFAILSAFE);
rcModeUpdate(&newMask);
}
void deactivateBoxFailsafe()
{
boxBitmask_t newMask;
memset(&newMask, 0, sizeof(newMask));
rcModeUpdate(&newMask);
}
//
// Stepwise tests
//
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeInitialState)
{
// given
configureFailsafe();
// and
DISABLE_ARMING_FLAG(ARMED);
// when
failsafeInit();
failsafeReset();
// then
EXPECT_FALSE(failsafeIsMonitoring());
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeStartMonitoring)
{
// when
failsafeStartMonitoring();
// then
EXPECT_TRUE(failsafeIsMonitoring());
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeFirstArmedCycle)
{
// given
ENABLE_ARMING_FLAG(ARMED);
// when
sysTickUptime ++;
failsafeOnValidDataFailed(); // set last invalid sample to a non-zero value
sysTickUptime += PERIOD_RXDATA_RECOVERY + 1; // adjust time to point just past the recovery time to
failsafeOnValidDataReceived(); // cause a recovered link
// and
failsafeUpdateState();
// then
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeNotActivatedWhenReceivingData)
{
// when
for (sysTickUptime = 0; sysTickUptime < PERIOD_OF_10_SCONDS; sysTickUptime++) {
failsafeOnValidDataReceived();
failsafeUpdateState();
// then
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
}
}
/****************************************************************************************/
//
// Clean start
//
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeDetectsRxLossAndStartsLanding)
{
// given
configureFailsafe();
failsafeInit();
DISABLE_ARMING_FLAG(ARMED);
resetCallCounters();
failsafeStartMonitoring();
// then
EXPECT_TRUE(failsafeIsMonitoring());
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
// given
ENABLE_ARMING_FLAG(ARMED);
throttleStatus = THROTTLE_HIGH; // throttle HIGH to go for a failsafe landing procedure
failsafeOnValidDataReceived();
sysTickUptime = 0;
failsafeUpdateState();
// then
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_FALSE(isArmingDisabled());
// simulate an Rx loss for the stage 1 duration
sysTickUptime += (failsafeConfig()->failsafe_delay * MILLIS_PER_TENTH_SECOND);
failsafeOnValidDataFailed();
failsafeUpdateState();
// should be in stage 1
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
sysTickUptime ++; // exceed the stage 1 period by one tick
failsafeOnValidDataFailed(); // confirm that we still have no valid data
failsafeUpdateState();
// we should now be in stage 2, landing phase
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_LANDING, failsafePhase());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeCausesLanding)
// note this test follows on from the previous test
{
// exceed the stage 2 landing time
sysTickUptime += (failsafeConfig()->failsafe_landing_time * MILLIS_PER_SECOND);
failsafeOnValidDataFailed(); // confirm that we still have no valid data
// when
failsafeUpdateState();
// expect to still be in landing phase
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_LANDING, failsafePhase());
// adjust time to point just past the landing time
sysTickUptime++;
failsafeOnValidDataFailed(); // confirm that we still have no valid data
// when
failsafeUpdateState();
// expect to be in monitoring mode
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
// let's wait 3 seconds and still get no signal
sysTickUptime += PERIOD_OF_3_SECONDS;
failsafeOnValidDataFailed(); // confirm that we still have no valid data
// when
failsafeUpdateState();
// nothing should change
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
// now lets get a signal while in monitoring mode
failsafeOnValidDataReceived();
// we must clear the first delay in failsafeOnValidDataReceived(), for which 200ms 'works'
sysTickUptime += PERIOD_RXDATA_RECOVERY;
failsafeOnValidDataReceived();
failsafeUpdateState();
// nothing should change
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
sysTickUptime += PERIOD_RXDATA_RECOVERY;
failsafeOnValidDataReceived();
failsafeUpdateState();
// nothing should change
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
// One tick later
sysTickUptime++;
failsafeOnValidDataReceived();
// when
failsafeUpdateState();
// we expect failsafe to finish and to revert to idle
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM)); // disarm not called repeatedly.
EXPECT_FALSE(isArmingDisabled());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeDetectsRxLossAndJustDisarms)
// Just Disarm is when throttle is low for >10s before signal loss
// we should exit stage 1 directly into failsafe monitoring mode, and not enter landing mode
{
ENABLE_ARMING_FLAG(ARMED);
resetCallCounters();
failsafeStartMonitoring();
// set to normal initial state
throttleStatus = THROTTLE_HIGH; // throttle HIGH to go for a failsafe landing procedure
failsafeConfigMutable()->failsafe_switch_mode = FAILSAFE_SWITCH_MODE_KILL;
sysTickUptime += PERIOD_OF_3_SECONDS; // 3s of normality
failsafeOnValidDataReceived(); // we have a valid signal
// when
failsafeUpdateState();
// confirm that we are in idle mode
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_FALSE(isArmingDisabled());
// run throttle_low for 11s
throttleStatus = THROTTLE_LOW; // for failsafe 'just-disarm' procedure
sysTickUptime += 11000;
failsafeOnValidDataReceived(); // set the last valid signal to now
failsafeUpdateState();
// check that we are still in idle mode
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_FALSE(isArmingDisabled());
// simulate an Rx loss for the stage 1 duration
sysTickUptime += (failsafeConfig()->failsafe_delay * MILLIS_PER_TENTH_SECOND);
failsafeOnValidDataFailed();
failsafeUpdateState();
// should remain in stage 1
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
sysTickUptime ++; // now we exceed stage 1
failsafeOnValidDataFailed(); // we still have no valid data
failsafeUpdateState();
// we should now be in stage 2 via Just Disarm, going direct to monitoring mode.
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
// now lets get a signal while in monitoring mode
failsafeOnValidDataReceived();
// we must clear the first delay in failsafeOnValidDataReceived(), for which 200ms 'works'
sysTickUptime += PERIOD_RXDATA_RECOVERY;
failsafeOnValidDataReceived();
failsafeUpdateState();
// nothing should change
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
sysTickUptime += PERIOD_RXDATA_RECOVERY;
failsafeOnValidDataReceived();
failsafeUpdateState();
// nothing should change
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
// One tick later
sysTickUptime++;
failsafeOnValidDataReceived();
// when
failsafeUpdateState();
// we expect failsafe to finish and to revert to idle
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM)); // disarm not called repeatedly.
EXPECT_FALSE(isArmingDisabled());}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeSwitchModeKill)
{
// given
ENABLE_ARMING_FLAG(ARMED);
resetCallCounters();
failsafeStartMonitoring();
// set to normal initial state
throttleStatus = THROTTLE_HIGH; // throttle HIGH to go for a failsafe landing procedure
failsafeConfigMutable()->failsafe_switch_mode = FAILSAFE_SWITCH_MODE_KILL;
sysTickUptime += PERIOD_OF_3_SECONDS; // 3s of normality
failsafeOnValidDataReceived(); // we have a valid signal
// when
failsafeUpdateState();
// confirm that we are in idle mode
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
// given
activateBoxFailsafe(); // activate the Kill swith
// when
failsafeUpdateState(); // should failsafe immediately the kill switch is hit
// then
EXPECT_TRUE(failsafeIsActive());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
// given
failsafeOnValidDataReceived(); // the link is active the whole time
// deactivate the kill switch
deactivateBoxFailsafe(); // receivingRxData is immediately true
// we should go to failsafe monitoring mode, via Landing
EXPECT_TRUE(failsafeIsActive());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
// since we didn't enter stage 2, we have one rxDataRecoveryPeriod delay to deal with
// while within rxDataRecoveryPeriod in monitoring mode...
sysTickUptime += PERIOD_RXDATA_RECOVERY;
failsafeOnValidDataReceived();
// when
failsafeUpdateState();
// we should still be in failsafe monitoring mode
EXPECT_TRUE(failsafeIsActive());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
// one tick later
sysTickUptime ++;
// when
failsafeUpdateState();
// we should now have exited failsafe
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM)); // disarm not called repeatedly.
EXPECT_FALSE(isArmingDisabled());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeSwitchModeStage1OrStage2Drop)
// should immediately stop motors and go to monitoring mode diretly
{
// given a clean start
ENABLE_ARMING_FLAG(ARMED);
resetCallCounters();
failsafeStartMonitoring();
// and set initial states
throttleStatus = THROTTLE_HIGH; // throttle HIGH to go for a failsafe landing procedure
failsafeConfigMutable()->failsafe_switch_mode = FAILSAFE_SWITCH_MODE_STAGE2;
failsafeConfigMutable()->failsafe_procedure = FAILSAFE_PROCEDURE_DROP_IT;
sysTickUptime = 0; // restart time from 0
failsafeOnValidDataReceived(); // we have a valid signal
sysTickUptime += 3000; // 3s of normality
// when
failsafeUpdateState();
// confirm that we are in idle mode
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
// given
activateBoxFailsafe(); // activate the stage 2 Drop switch
failsafeOnValidDataFailed(); // immediate stage 2 switch sets failsafeOnValidDataFailed
// when
failsafeUpdateState(); // should activate stage2 immediately, even though signal is good
// expect to be in monitoring mode, and to have disarmed
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_TRUE(isArmingDisabled());
// deactivate the failsafe switch
deactivateBoxFailsafe();
EXPECT_TRUE(failsafeIsActive());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
// by next evaluation we should be out of failsafe
sysTickUptime ++;
// receivingRxData is immediately true because signal exists
failsafeOnValidDataReceived();
// when
failsafeUpdateState();
// we should now have exited failsafe
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM)); // disarm not called repeatedly.
EXPECT_FALSE(isArmingDisabled());
}
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeSwitchModeStage2Land)
{
// given a clean start
ENABLE_ARMING_FLAG(ARMED);
resetCallCounters();
failsafeStartMonitoring();
// and
throttleStatus = THROTTLE_HIGH; // throttle HIGH to go for a failsafe landing procedure
failsafeConfigMutable()->failsafe_switch_mode = FAILSAFE_SWITCH_MODE_STAGE2;
failsafeConfigMutable()->failsafe_procedure = FAILSAFE_PROCEDURE_AUTO_LANDING;
sysTickUptime = 0; // restart time from 0
failsafeOnValidDataReceived(); // we have a valid signal
sysTickUptime += 3000; // 3s of normality
// when
failsafeUpdateState();
// confirm that we are in idle mode
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
// given
activateBoxFailsafe(); // activate the stage 2 Drop switch
failsafeOnValidDataFailed(); // immediate stage 2 switch sets failsafeOnValidDataFailed
// when
failsafeUpdateState(); // should activate stage2 immediately
// expect to immediately be in landing mode, and not disarmed
EXPECT_TRUE(failsafeIsActive()); // stick induced failsafe allows re-arming
EXPECT_EQ(FAILSAFE_LANDING, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
// should stay in landing for failsafe_landing_time (stage 2 landing period) of 1s
sysTickUptime += failsafeConfig()->failsafe_landing_time * MILLIS_PER_SECOND;
// when
failsafeUpdateState();
EXPECT_TRUE(failsafeIsActive()); // stick induced failsafe allows re-arming
EXPECT_EQ(FAILSAFE_LANDING, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
// one tick later, landing time has elapsed
sysTickUptime ++;
// when
failsafeUpdateState();
// now should be in monitoring mode, with switch holding rxDataReceived false
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
// given
sysTickUptime += PERIOD_OF_3_SECONDS; // hang around a bit waiting for switch change
// when
failsafeUpdateState();
// should still be in monitoring mode because switch is still forcing receivingRxData false
EXPECT_TRUE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
// deactivate the failsafe switch
deactivateBoxFailsafe();
// receivingRxData is immediately true
// we go directly to failsafe monitoring mode, via Landing
// however, because the switch also forces rxFlightChannelsValid false, emulating real failsafe
// we have two delays to deal with before we can re-arm
EXPECT_TRUE(failsafeIsActive());
EXPECT_TRUE(isArmingDisabled());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM));
EXPECT_EQ(FAILSAFE_RX_LOSS_MONITORING, failsafePhase());
// one tick later
sysTickUptime ++;
failsafeOnValidDataReceived();
// when
failsafeUpdateState();
// we should now have exited failsafe
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(1, CALL_COUNTER(COUNTER_MW_DISARM)); // disarm not called repeatedly.
EXPECT_FALSE(isArmingDisabled());
}
/****************************************************************************************/
//
// Clean start
//
/****************************************************************************************/
TEST(FlightFailsafeTest, TestFailsafeNotActivatedWhenDisarmedAndRXLossIsDetected)
{
// given
resetCallCounters();
configureFailsafe();
// and
failsafeInit();
// and ** WE ARE DISARMED **
DISABLE_ARMING_FLAG(ARMED);
// when failsafe starts
failsafeStartMonitoring();
// and
sysTickUptime = 0; // restart time from 0
failsafeOnValidDataReceived(); // we have a valid signal
sysTickUptime += 3000; // 3s of normality
// when
failsafeUpdateState();
// confirm that we are in idle mode
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
// and that arming is not disabled
EXPECT_FALSE(isArmingDisabled());
// simulate an Rx loss for the stage 1 duration
sysTickUptime += (failsafeConfig()->failsafe_delay * MILLIS_PER_TENTH_SECOND);
failsafeOnValidDataFailed();
failsafeUpdateState();
// within stage 1 time from a true failsafe while disarmed, stage 2 should normally not be active
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
// arming is disabled due to setArmingDisabled in stage 1 due to failsafeOnValidDataFailed()
EXPECT_FALSE(failsafeIsActive());
// given
sysTickUptime++; // adjust time to point just past stage 1
failsafeOnValidDataFailed(); // would normally enter stage 2, but we are disarmed
failsafeUpdateState();
// expect that we do not enter failsafe stage 2, ie no change from above
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
// the lock on the aux channels persists at fixed stage 1 values until recovery time
EXPECT_TRUE(isArmingDisabled());
// allow signal received for the recovery time
sysTickUptime += PERIOD_RXDATA_RECOVERY;
failsafeOnValidDataReceived();
failsafeUpdateState();
// no change in failsafe state (still idle)
EXPECT_FALSE(failsafeIsActive());
EXPECT_EQ(FAILSAFE_IDLE, failsafePhase());
EXPECT_EQ(0, CALL_COUNTER(COUNTER_MW_DISARM));
// but now arming is possible
EXPECT_FALSE(isArmingDisabled());
}
// STUBS
extern "C" {
float rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT];
float rcCommand[4];
int16_t debug[DEBUG16_VALUE_COUNT];
uint8_t debugMode = 0;
bool isUsingSticksToArm = true;
PG_REGISTER(rxConfig_t, rxConfig, PG_RX_CONFIG, 0);
// Return system uptime in milliseconds (rollover in 49 days)
uint32_t millis(void)
{
return sysTickUptime;
}
uint32_t micros(void)
{
return millis() * 1000;
}
throttleStatus_e calculateThrottleStatus()
{
return throttleStatus;
}
void delay(uint32_t) {}
bool featureIsEnabled(uint32_t mask)
{
return (mask & testFeatureMask);
}
void disarm(flightLogDisarmReason_e)
{
callCounts[COUNTER_MW_DISARM]++;
}
void beeper(beeperMode_e mode)
{
UNUSED(mode);
}
uint16_t getCurrentMinthrottle(void)
{
return testMinThrottle;
}
bool isUsingSticksForArming(void)
{
return isUsingSticksToArm;
}
bool areSticksActive(uint8_t stickPercentLimit)
{
UNUSED(stickPercentLimit);
return false;
}
void beeperConfirmationBeeps(uint8_t beepCount) { UNUSED(beepCount); }
bool crashRecoveryModeActive(void) { return false; }
void pinioBoxTaskControl(void) {}
}