1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-14 20:10:18 +03:00
betaflight/src/imu.c

412 lines
14 KiB
C
Executable file

#include "board.h"
#include "mw.h"
int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
int32_t accSum[3];
uint32_t accTimeSum = 0; // keep track for integration of acc
int accSumCount = 0;
int16_t accZ_25deg = 0;
int32_t baroPressure = 0;
int32_t baroTemperature = 0;
uint32_t baroPressureSum = 0;
int32_t BaroAlt = 0;
int32_t sonarAlt; // to think about the unit
int32_t EstAlt; // in cm
int32_t BaroPID = 0;
int32_t AltHold;
int32_t errorAltitudeI = 0;
int32_t vario = 0; // variometer in cm/s
int16_t throttleAngleCorrection = 0; // correction of throttle in lateral wind,
float magneticDeclination = 0.0f; // calculated at startup from config
float accVelScale;
// **************
// gyro+acc IMU
// **************
int16_t gyroData[3] = { 0, 0, 0 };
int16_t gyroZero[3] = { 0, 0, 0 };
int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians
static void getEstimatedAttitude(void);
void imuInit(void)
{
accZ_25deg = acc_1G * cosf(RAD * 25.0f);
accVelScale = 9.80665f / acc_1G / 10000.0f;
#ifdef MAG
// if mag sensor is enabled, use it
if (sensors(SENSOR_MAG))
Mag_init();
#endif
}
void computeIMU(void)
{
uint32_t axis;
static int16_t gyroYawSmooth = 0;
Gyro_getADC();
if (sensors(SENSOR_ACC)) {
ACC_getADC();
getEstimatedAttitude();
} else {
accADC[X] = 0;
accADC[Y] = 0;
accADC[Z] = 0;
}
if (feature(FEATURE_GYRO_SMOOTHING)) {
static uint8_t Smoothing[3] = { 0, 0, 0 };
static int16_t gyroSmooth[3] = { 0, 0, 0 };
if (Smoothing[0] == 0) {
// initialize
Smoothing[ROLL] = (mcfg.gyro_smoothing_factor >> 16) & 0xff;
Smoothing[PITCH] = (mcfg.gyro_smoothing_factor >> 8) & 0xff;
Smoothing[YAW] = (mcfg.gyro_smoothing_factor) & 0xff;
}
for (axis = 0; axis < 3; axis++) {
gyroData[axis] = (int16_t)(((int32_t)((int32_t)gyroSmooth[axis] * (Smoothing[axis] - 1)) + gyroADC[axis] + 1) / Smoothing[axis]);
gyroSmooth[axis] = gyroData[axis];
}
} else if (mcfg.mixerConfiguration == MULTITYPE_TRI) {
gyroData[YAW] = (gyroYawSmooth * 2 + gyroADC[YAW]) / 3;
gyroYawSmooth = gyroData[YAW];
gyroData[ROLL] = gyroADC[ROLL];
gyroData[PITCH] = gyroADC[PITCH];
} else {
for (axis = 0; axis < 3; axis++)
gyroData[axis] = gyroADC[axis];
}
}
// **************************************************
// Simplified IMU based on "Complementary Filter"
// Inspired by http://starlino.com/imu_guide.html
//
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
//
// The following ideas was used in this project:
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
//
// Currently Magnetometer uses separate CF which is used only
// for heading approximation.
//
// **************************************************
#define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f))
#define INV_GYR_CMPFM_FACTOR (1.0f / ((float)mcfg.gyro_cmpfm_factor + 1.0f))
typedef struct fp_vector {
float X;
float Y;
float Z;
} t_fp_vector_def;
typedef union {
float A[3];
t_fp_vector_def V;
} t_fp_vector;
t_fp_vector EstG;
// Normalize a vector
void normalizeV(struct fp_vector *src, struct fp_vector *dest)
{
float length;
length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z);
if (length != 0) {
dest->X = src->X / length;
dest->Y = src->Y / length;
dest->Z = src->Z / length;
}
}
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
void rotateV(struct fp_vector *v, float *delta)
{
struct fp_vector v_tmp = *v;
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation
float mat[3][3];
float cosx, sinx, cosy, siny, cosz, sinz;
float coszcosx, coszcosy, sinzcosx, coszsinx, sinzsinx;
cosx = cosf(delta[ROLL]);
sinx = sinf(delta[ROLL]);
cosy = cosf(delta[PITCH]);
siny = sinf(delta[PITCH]);
cosz = cosf(delta[YAW]);
sinz = sinf(delta[YAW]);
coszcosx = cosz * cosx;
coszcosy = cosz * cosy;
sinzcosx = sinz * cosx;
coszsinx = sinx * cosz;
sinzsinx = sinx * sinz;
mat[0][0] = coszcosy;
mat[0][1] = -cosy * sinz;
mat[0][2] = siny;
mat[1][0] = sinzcosx + (coszsinx * siny);
mat[1][1] = coszcosx - (sinzsinx * siny);
mat[1][2] = -sinx * cosy;
mat[2][0] = (sinzsinx) - (coszcosx * siny);
mat[2][1] = (coszsinx) + (sinzcosx * siny);
mat[2][2] = cosy * cosx;
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0];
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1];
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
}
int32_t applyDeadband(int32_t value, int32_t deadband)
{
if (abs(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
}
#define F_CUT_ACCZ 20.0f
static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ);
// rotate acc into Earth frame and calculate acceleration in it
void acc_calc(uint32_t deltaT)
{
static int32_t accZoffset = 0;
static float accz_smooth;
float rpy[3];
t_fp_vector accel_ned;
// the accel values have to be rotated into the earth frame
rpy[0] = -(float)anglerad[ROLL];
rpy[1] = -(float)anglerad[PITCH];
rpy[2] = -(float)heading * RAD;
accel_ned.V.X = accSmooth[0];
accel_ned.V.Y = accSmooth[1];
accel_ned.V.Z = accSmooth[2];
rotateV(&accel_ned.V, rpy);
if (cfg.acc_unarmedcal == 1) {
if (!f.ARMED) {
accZoffset -= accZoffset / 64;
accZoffset += accel_ned.V.Z;
}
accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis
} else
accel_ned.V.Z -= acc_1G;
accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter
// apply Deadband to reduce integration drift and vibration influence
accel_ned.V.Z = applyDeadband(lrintf(accz_smooth), cfg.accz_deadband);
accel_ned.V.X = applyDeadband(lrintf(accel_ned.V.X), cfg.accxy_deadband);
accel_ned.V.Y = applyDeadband(lrintf(accel_ned.V.Y), cfg.accxy_deadband);
// sum up Values for later integration to get velocity and distance
accTimeSum += deltaT;
accSumCount++;
accSum[X] += lrintf(accel_ned.V.X);
accSum[Y] += lrintf(accel_ned.V.Y);
accSum[Z] += lrintf(accel_ned.V.Z);
}
void accSum_reset(void)
{
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// baseflight calculation by Luggi09 originates from arducopter
static int16_t calculateHeading(t_fp_vector *vec)
{
int16_t head;
float cosineRoll = cosf(anglerad[ROLL]);
float sineRoll = sinf(anglerad[ROLL]);
float cosinePitch = cosf(anglerad[PITCH]);
float sinePitch = sinf(anglerad[PITCH]);
float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll;
float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
head = lrintf(hd);
if (head < 0)
head += 360;
return head;
}
static void getEstimatedAttitude(void)
{
uint32_t axis;
int32_t accMag = 0;
static t_fp_vector EstM;
static t_fp_vector EstN = { .A = { 1000.0f, 0.0f, 0.0f } };
static float accLPF[3];
static uint32_t previousT;
uint32_t currentT = micros();
uint32_t deltaT;
float scale, deltaGyroAngle[3];
deltaT = currentT - previousT;
scale = deltaT * gyro.scale;
previousT = currentT;
// Initialization
for (axis = 0; axis < 3; axis++) {
deltaGyroAngle[axis] = gyroADC[axis] * scale;
if (cfg.acc_lpf_factor > 0) {
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor);
accSmooth[axis] = accLPF[axis];
} else {
accSmooth[axis] = accADC[axis];
}
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
}
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
rotateV(&EstG.V, deltaGyroAngle);
if (sensors(SENSOR_MAG))
rotateV(&EstM.V, deltaGyroAngle);
else
rotateV(&EstN.V, deltaGyroAngle);
// Apply complimentary filter (Gyro drift correction)
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
// To do that, we just skip filter, as EstV already rotated by Gyro
if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) {
for (axis = 0; axis < 3; axis++)
EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR;
}
if (sensors(SENSOR_MAG)) {
for (axis = 0; axis < 3; axis++)
EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR;
}
if (EstG.A[Z] > accZ_25deg)
f.SMALL_ANGLES_25 = 1;
else
f.SMALL_ANGLES_25 = 0;
// Attitude of the estimated vector
anglerad[ROLL] = atan2f(EstG.V.Y, EstG.V.Z);
anglerad[PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z));
angle[ROLL] = lrintf(anglerad[ROLL] * (1800.0f / M_PI));
angle[PITCH] = lrintf(anglerad[PITCH] * (1800.0f / M_PI));
if (sensors(SENSOR_MAG))
heading = calculateHeading(&EstM);
else
heading = calculateHeading(&EstN);
acc_calc(deltaT); // rotate acc vector into earth frame
if (cfg.throttle_angle_correction) {
int cosZ = EstG.V.Z / (acc_1G * 100.0f);
throttleAngleCorrection = cfg.throttle_angle_correction * constrain(100 - cosZ, 0, 100) / 8;
}
}
#ifdef BARO
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
int getEstimatedAltitude(void)
{
static uint32_t previousT;
uint32_t currentT = micros();
uint32_t dTime;
int32_t error;
int32_t baroVel;
int32_t vel_tmp;
int32_t BaroAlt_tmp;
float dt;
float vel_acc;
static float vel = 0.0f;
static float accAlt = 0.0f;
static int32_t lastBaroAlt;
static int32_t baroGroundAltitude = 0;
static int32_t baroGroundPressure = 0;
dTime = currentT - previousT;
if (dTime < UPDATE_INTERVAL)
return 0;
previousT = currentT;
if (calibratingB > 0) {
baroGroundPressure -= baroGroundPressure / 8;
baroGroundPressure += baroPressureSum / (cfg.baro_tab_size - 1);
baroGroundAltitude = (1.0f - powf((baroGroundPressure / 8) / 101325.0f, 0.190295f)) * 4433000.0f;
vel = 0;
accAlt = 0;
calibratingB--;
}
// calculates height from ground via baro readings
// see: https://github.com/diydrones/ardupilot/blob/master/libraries/AP_Baro/AP_Baro.cpp#L140
BaroAlt_tmp = lrintf((1.0f - powf((float)(baroPressureSum / (cfg.baro_tab_size - 1)) / 101325.0f, 0.190295f)) * 4433000.0f); // in cm
BaroAlt_tmp -= baroGroundAltitude;
BaroAlt = lrintf((float)BaroAlt * cfg.baro_noise_lpf + (float)BaroAlt_tmp * (1.0f - cfg.baro_noise_lpf)); // additional LPF to reduce baro noise
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
// Integrator - velocity, cm/sec
vel_acc = (float)accSum[2] * accVelScale * (float)accTimeSum / (float)accSumCount;
// Integrator - Altitude in cm
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
accAlt = accAlt * cfg.baro_cf_alt + (float) BaroAlt *(1.0f - cfg.baro_cf_alt); // complementary filter for Altitude estimation (baro & acc)
EstAlt = accAlt;
vel += vel_acc;
#if 0
debug[0] = accSum[2] / accSumCount; // acceleration
debug[1] = vel; // velocity
debug[2] = accAlt; // height
#endif
accSum_reset();
//P
error = constrain(AltHold - EstAlt, -300, 300);
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
BaroPID = constrain((cfg.P8[PIDALT] * error / 128), -200, +200);
//I
errorAltitudeI += cfg.I8[PIDALT] * error / 64;
errorAltitudeI = constrain(errorAltitudeI, -50000, 50000);
BaroPID += errorAltitudeI / 512; // I in range +/-100
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt;
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel);
vel = constrain(vel, -1000, 1000); // limit max velocity to +/- 10m/s (36km/h)
// D
vel_tmp = lrintf(vel);
vel_tmp = applyDeadband(vel_tmp, 5);
vario = vel_tmp;
BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp / 16, -150, 150);
return 1;
}
#endif /* BARO */