1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 20:35:33 +03:00
betaflight/src/main/sensors/acceleration.c
2016-09-04 18:48:58 +01:00

247 lines
7.8 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/filter.h"
#include "drivers/sensor.h"
#include "drivers/accgyro.h"
#include "drivers/system.h"
#include "sensors/sensors.h"
#include "io/beeper.h"
#include "sensors/boardalignment.h"
#include "config/config.h"
#include "config/feature.h"
#include "sensors/acceleration.h"
int32_t accSmooth[XYZ_AXIS_COUNT];
acc_t acc; // acc access functions
sensor_align_e accAlign = 0;
uint32_t accSamplingInterval;
static uint16_t calibratingA = 0; // the calibration is done is the main loop. Calibrating decreases at each cycle down to 0, then we enter in a normal mode.
extern uint16_t InflightcalibratingA;
extern bool AccInflightCalibrationMeasurementDone;
extern bool AccInflightCalibrationSavetoEEProm;
extern bool AccInflightCalibrationActive;
static flightDynamicsTrims_t *accelerationTrims;
static uint16_t accLpfCutHz = 0;
static biquadFilter_t accFilter[XYZ_AXIS_COUNT];
void accInit(uint32_t gyroSamplingInverval)
{
// set the acc sampling interval according to the gyro sampling interval
switch (gyroSamplingInverval) { // Switch statement kept in place to change acc sampling interval in the future
case 500:
case 375:
case 250:
case 125:
accSamplingInterval = 1000;
break;
case 1000:
default:
#ifdef STM32F10X
accSamplingInterval = 1000;
#else
accSamplingInterval = 1000;
#endif
}
if (accLpfCutHz) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadFilterInitLPF(&accFilter[axis], accLpfCutHz, accSamplingInterval);
}
}
}
void accSetCalibrationCycles(uint16_t calibrationCyclesRequired)
{
calibratingA = calibrationCyclesRequired;
}
bool isAccelerationCalibrationComplete(void)
{
return calibratingA == 0;
}
static bool isOnFinalAccelerationCalibrationCycle(void)
{
return calibratingA == 1;
}
static bool isOnFirstAccelerationCalibrationCycle(void)
{
return calibratingA == CALIBRATING_ACC_CYCLES;
}
void resetRollAndPitchTrims(rollAndPitchTrims_t *rollAndPitchTrims)
{
rollAndPitchTrims->values.roll = 0;
rollAndPitchTrims->values.pitch = 0;
}
static void performAcclerationCalibration(rollAndPitchTrims_t *rollAndPitchTrims)
{
static int32_t a[3];
for (int axis = 0; axis < 3; axis++) {
// Reset a[axis] at start of calibration
if (isOnFirstAccelerationCalibrationCycle())
a[axis] = 0;
// Sum up CALIBRATING_ACC_CYCLES readings
a[axis] += accSmooth[axis];
// Reset global variables to prevent other code from using un-calibrated data
accSmooth[axis] = 0;
accelerationTrims->raw[axis] = 0;
}
if (isOnFinalAccelerationCalibrationCycle()) {
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
accelerationTrims->raw[X] = (a[X] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES;
accelerationTrims->raw[Y] = (a[Y] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES;
accelerationTrims->raw[Z] = (a[Z] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES - acc.acc_1G;
resetRollAndPitchTrims(rollAndPitchTrims);
saveConfigAndNotify();
}
calibratingA--;
}
static void performInflightAccelerationCalibration(rollAndPitchTrims_t *rollAndPitchTrims)
{
uint8_t axis;
static int32_t b[3];
static int16_t accZero_saved[3] = { 0, 0, 0 };
static rollAndPitchTrims_t angleTrim_saved = { { 0, 0 } };
// Saving old zeropoints before measurement
if (InflightcalibratingA == 50) {
accZero_saved[X] = accelerationTrims->raw[X];
accZero_saved[Y] = accelerationTrims->raw[Y];
accZero_saved[Z] = accelerationTrims->raw[Z];
angleTrim_saved.values.roll = rollAndPitchTrims->values.roll;
angleTrim_saved.values.pitch = rollAndPitchTrims->values.pitch;
}
if (InflightcalibratingA > 0) {
for (axis = 0; axis < 3; axis++) {
// Reset a[axis] at start of calibration
if (InflightcalibratingA == 50)
b[axis] = 0;
// Sum up 50 readings
b[axis] += accSmooth[axis];
// Clear global variables for next reading
accSmooth[axis] = 0;
accelerationTrims->raw[axis] = 0;
}
// all values are measured
if (InflightcalibratingA == 1) {
AccInflightCalibrationActive = false;
AccInflightCalibrationMeasurementDone = true;
beeper(BEEPER_ACC_CALIBRATION); // indicate end of calibration
// recover saved values to maintain current flight behaviour until new values are transferred
accelerationTrims->raw[X] = accZero_saved[X];
accelerationTrims->raw[Y] = accZero_saved[Y];
accelerationTrims->raw[Z] = accZero_saved[Z];
rollAndPitchTrims->values.roll = angleTrim_saved.values.roll;
rollAndPitchTrims->values.pitch = angleTrim_saved.values.pitch;
}
InflightcalibratingA--;
}
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
if (AccInflightCalibrationSavetoEEProm) { // the aircraft is landed, disarmed and the combo has been done again
AccInflightCalibrationSavetoEEProm = false;
accelerationTrims->raw[X] = b[X] / 50;
accelerationTrims->raw[Y] = b[Y] / 50;
accelerationTrims->raw[Z] = b[Z] / 50 - acc.acc_1G; // for nunchuck 200=1G
resetRollAndPitchTrims(rollAndPitchTrims);
saveConfigAndNotify();
}
}
static void applyAccelerationTrims(const flightDynamicsTrims_t *accelerationTrims)
{
accSmooth[X] -= accelerationTrims->raw[X];
accSmooth[Y] -= accelerationTrims->raw[Y];
accSmooth[Z] -= accelerationTrims->raw[Z];
}
void updateAccelerationReadings(rollAndPitchTrims_t *rollAndPitchTrims)
{
int16_t accADCRaw[XYZ_AXIS_COUNT];
if (!acc.read(accADCRaw)) {
return;
}
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
if (debugMode == DEBUG_ACCELEROMETER) debug[axis] = accADCRaw[axis];
accSmooth[axis] = accADCRaw[axis];
}
if (accLpfCutHz) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
accSmooth[axis] = lrintf(biquadFilterApply(&accFilter[axis], (float)accSmooth[axis]));
}
}
alignSensors(accSmooth, accSmooth, accAlign);
if (!isAccelerationCalibrationComplete()) {
performAcclerationCalibration(rollAndPitchTrims);
}
if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
performInflightAccelerationCalibration(rollAndPitchTrims);
}
applyAccelerationTrims(accelerationTrims);
}
void setAccelerationTrims(flightDynamicsTrims_t *accelerationTrimsToUse)
{
accelerationTrims = accelerationTrimsToUse;
}
void setAccelerationFilter(uint16_t initialAccLpfCutHz)
{
accLpfCutHz = initialAccLpfCutHz;
if (accSamplingInterval) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadFilterInitLPF(&accFilter[axis], accLpfCutHz, accSamplingInterval);
}
}
}