1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-12 19:10:32 +03:00
betaflight/imu.c
2012-02-16 09:39:58 +00:00

350 lines
11 KiB
C
Executable file

#include "board.h"
#include "mw.h"
#define M_PI 3.14159265358979323846
int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
int16_t acc_25deg = 0;
int32_t pressure = 0;
int16_t BaroAlt = 0;
int16_t EstAlt = 0; // in cm
int16_t zVelocity = 0;
// **************
// gyro+acc IMU
// **************
int16_t gyroData[3] = { 0, 0, 0 };
int16_t gyroZero[3] = { 0, 0, 0 };
int16_t accZero[3] = { 0, 0, 0 };
int16_t magZero[3] = { 0, 0, 0 };
int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
int8_t smallAngle25 = 1;
static void getEstimatedAttitude(void);
static void getEstimatedAltitude(void);
void imuInit(void)
{
acc_25deg = acc_1G * 0.423;
// if mag sensor is enabled, use it
if (sensors(SENSOR_MAG))
Mag_init();
}
void computeIMU(void)
{
uint8_t axis;
static int16_t gyroADCprevious[3] = { 0, 0, 0 };
int16_t gyroADCp[3];
int16_t gyroADCinter[3];
static uint32_t timeInterleave = 0;
#if defined(TRI)
static int16_t gyroYawSmooth = 0;
#endif
if (sensors(SENSOR_MAG))
Mag_getADC();
if (sensors(SENSOR_BARO))
Baro_update();
if (sensors(SENSOR_ACC)) {
ACC_getADC();
getEstimatedAttitude();
if (sensors(SENSOR_BARO))
getEstimatedAltitude();
}
Gyro_getADC();
for (axis = 0; axis < 3; axis++)
gyroADCp[axis] = gyroADC[axis];
timeInterleave = micros();
annexCode();
if ((micros() - timeInterleave) > 650) {
annex650_overrun_count++;
} else {
while ((micros() - timeInterleave) < 650); //empirical, interleaving delay between 2 consecutive reads
}
Gyro_getADC();
for (axis = 0; axis < 3; axis++) {
gyroADCinter[axis] = gyroADC[axis] + gyroADCp[axis];
// empirical, we take a weighted value of the current and the previous values
gyroData[axis] = (gyroADCinter[axis] + gyroADCprevious[axis] + 1) / 3;
gyroADCprevious[axis] = gyroADCinter[axis] / 2;
if (!sensors(SENSOR_ACC))
accADC[axis] = 0;
}
#if defined(TRI)
gyroData[YAW] = (gyroYawSmooth * 2 + gyroData[YAW] + 1) / 3;
gyroYawSmooth = gyroData[YAW];
#endif
}
// **************************************************
// Simplified IMU based on "Complementary Filter"
// Inspired by http://starlino.com/imu_guide.html
//
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
//
// The following ideas was used in this project:
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
// 2) Small-angle approximation: http://en.wikipedia.org/wiki/Small-angle_approximation
// 3) C. Hastings approximation for atan2()
// 4) Optimization tricks: http://www.hackersdelight.org/
//
// Currently Magnetometer uses separate CF which is used only
// for heading approximation.
//
// Modified: 19/04/2011 by ziss_dm
// Version: V1.1
//
// code size deduction and tmp vector intermediate step for vector rotation computation: October 2011 by Alex
// **************************************************
//****** advanced users settings *******************
/* Set the Low Pass Filter factor for ACC */
/* Increasing this value would reduce ACC noise (visible in GUI), but would increase ACC lag time*/
/* Comment this if you do not want filter at all.*/
/* Default WMC value: 8*/
#define ACC_LPF_FACTOR 4
/* Set the Low Pass Filter factor for Magnetometer */
/* Increasing this value would reduce Magnetometer noise (not visible in GUI), but would increase Magnetometer lag time*/
/* Comment this if you do not want filter at all.*/
/* Default WMC value: n/a*/
//#define MG_LPF_FACTOR 4
/* Set the Gyro Weight for Gyro/Acc complementary filter */
/* Increasing this value would reduce and delay Acc influence on the output of the filter*/
/* Default WMC value: 300*/
#define GYR_CMPF_FACTOR 310.0f
/* Set the Gyro Weight for Gyro/Magnetometer complementary filter */
/* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/
/* Default WMC value: n/a*/
#define GYR_CMPFM_FACTOR 200.0f
//****** end of advanced users settings *************
#define INV_GYR_CMPF_FACTOR (1.0f / (GYR_CMPF_FACTOR + 1.0f))
#define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f))
#define GYRO_SCALE ((2380 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) //should be 2279.44 but 2380 gives better result
// +-2000/sec deg scale
//#define GYRO_SCALE ((200.0f * PI)/((32768.0f / 5.0f / 4.0f ) * 180.0f * 1000000.0f) * 1.5f)
// +- 200/sec deg scale
// 1.5 is emperical, not sure what it means
// should be in rad/sec
typedef struct fp_vector {
float X;
float Y;
float Z;
} t_fp_vector_def;
typedef union {
float A[3];
t_fp_vector_def V;
} t_fp_vector;
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
void rotateV(struct fp_vector *v, float *delta)
{
struct fp_vector v_tmp = *v;
v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y;
v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y;
v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X;
}
#if 1
static int16_t _atan2f(float y, float x)
{
#define fp_is_neg(val) (val < 0 ? 1 : 0)
float z = y / x;
int16_t zi = abs((int16_t)(z * 100));
int8_t y_neg = fp_is_neg(y);
if (zi < 100) {
if (zi > 10)
z = z / (1.0f + 0.28f * z * z);
if (fp_is_neg(x)) {
if (y_neg)
z -= M_PI;
else
z += M_PI;
}
} else {
z = (M_PI / 2.0f) - z / (z * z + 0.28f);
if (y_neg)
z -= M_PI;
}
z *= (180.0f / M_PI * 10);
return z;
}
#else
static int16_t _atan2f(float y, float x)
{
return (int16_t)atan2f(y, x) * (180.0f / M_PI * 10.0f);
}
#endif
static void getEstimatedAttitude(void)
{
uint8_t axis;
int32_t accMag = 0;
static t_fp_vector EstG;
static t_fp_vector EstM;
#if defined(MG_LPF_FACTOR)
static int16_t mgSmooth[3];
#endif
#if defined(ACC_LPF_FACTOR)
static int16_t accTemp[3]; //projection of smoothed and normalized magnetic vector on x/y/z axis, as measured by magnetometer
#endif
static uint32_t previousT;
uint32_t currentT = micros();
float scale, deltaGyroAngle[3];
scale = (currentT - previousT) * GYRO_SCALE;
previousT = currentT;
// Initialization
for (axis = 0; axis < 3; axis++) {
deltaGyroAngle[axis] = gyroADC[axis] * scale;
#if defined(ACC_LPF_FACTOR)
accTemp[axis] = (accTemp[axis] - (accTemp[axis] >> ACC_LPF_FACTOR)) + accADC[axis];
accSmooth[axis] = accTemp[axis] >> ACC_LPF_FACTOR;
#define ACC_VALUE accSmooth[axis]
#else
accSmooth[axis] = accADC[axis];
#define ACC_VALUE accADC[axis]
#endif
accMag += (int32_t) ACC_VALUE * ACC_VALUE;
if (sensors(SENSOR_MAG)) {
#if defined(MG_LPF_FACTOR)
mgSmooth[axis] = (mgSmooth[axis] * (MG_LPF_FACTOR - 1) + magADC[axis]) / MG_LPF_FACTOR; // LPF for Magnetometer values
#define MAG_VALUE mgSmooth[axis]
#else
#define MAG_VALUE magADC[axis]
#endif
}
}
accMag = accMag * 100 / ((int32_t) acc_1G * acc_1G);
rotateV(&EstG.V, deltaGyroAngle);
if (sensors(SENSOR_MAG)) {
rotateV(&EstM.V, deltaGyroAngle);
}
if (abs(accSmooth[ROLL]) < acc_25deg && abs(accSmooth[PITCH]) < acc_25deg && accSmooth[YAW] > 0)
smallAngle25 = 1;
else
smallAngle25 = 0;
// Apply complimentary filter (Gyro drift correction)
// If accel magnitude >1.4G or <0.6G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
// To do that, we just skip filter, as EstV already rotated by Gyro
if ((36 < accMag && accMag < 196) || smallAngle25)
for (axis = 0; axis < 3; axis++) {
int16_t acc = ACC_VALUE;
#if !defined(TRUSTED_ACCZ)
if (smallAngle25 && axis == YAW)
//We consider ACCZ = acc_1G when the acc on other axis is small.
//It's a tweak to deal with some configs where ACC_Z tends to a value < acc_1G when high throttle is applied.
//This tweak applies only when the multi is not in inverted position
acc = acc_1G;
#endif
EstG.A[axis] = (EstG.A[axis] * GYR_CMPF_FACTOR + acc) * INV_GYR_CMPF_FACTOR;
}
if (sensors(SENSOR_MAG)) {
for (axis = 0; axis < 3; axis++)
EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + MAG_VALUE) * INV_GYR_CMPFM_FACTOR;
}
// Attitude of the estimated vector
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
angle[PITCH] = _atan2f(EstG.V.Y, EstG.V.Z);
if (sensors(SENSOR_MAG)) {
// Attitude of the cross product vector GxM
heading = _atan2f(EstG.V.X * EstM.V.Z - EstG.V.Z * EstM.V.X, EstG.V.Z * EstM.V.Y - EstG.V.Y * EstM.V.Z) / 10;
}
}
float InvSqrt(float x)
{
union {
int32_t i;
float f;
} conv;
conv.f = x;
conv.i = 0x5f3759df - (conv.i >> 1);
return 0.5f * conv.f * (3.0f - x * conv.f * conv.f);
}
int32_t isq(int32_t x)
{
return x * x;
}
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
#define INIT_DELAY 4000000 // 4 sec initialization delay
#define Kp1 5.5f // PI observer velocity gain
#define Kp2 10.0f // PI observer position gain
#define Ki 0.01f // PI observer integral gain (bias cancellation)
#define dt (UPDATE_INTERVAL / 1000000.0f)
static void getEstimatedAltitude(void)
{
static uint8_t inited = 0;
static int16_t AltErrorI = 0;
static float AccScale;
static uint32_t deadLine = INIT_DELAY;
int16_t AltError;
int16_t InstAcc;
static int32_t tmpAlt;
static int16_t EstVelocity = 0;
static uint32_t velTimer;
static int16_t lastAlt;
if (currentTime < deadLine)
return;
deadLine = currentTime + UPDATE_INTERVAL;
// Soft start
if (!inited) {
inited = 1;
tmpAlt = BaroAlt * 10;
AccScale = 100 * 9.80665f / acc_1G;
}
// Estimation Error
AltError = BaroAlt - EstAlt;
AltErrorI += AltError;
AltErrorI = constrain(AltErrorI, -2500, +2500);
// Gravity vector correction and projection to the local Z
//InstAcc = (accADC[YAW] * (1 - acc_1G * InvSqrt(isq(accADC[ROLL]) + isq(accADC[PITCH]) + isq(accADC[YAW])))) * AccScale + (Ki) * AltErrorI;
#if defined(TRUSTED_ACCZ)
InstAcc = (accADC[YAW] * (1 - acc_1G * InvSqrt(isq(accADC[ROLL]) + isq(accADC[PITCH]) + isq(accADC[YAW])))) * AccScale + AltErrorI / 100;
#else
InstAcc = AltErrorI / 100;
#endif
// Integrators
tmpAlt += EstVelocity * (dt * dt) + (Kp2 * dt) * AltError;
EstVelocity += InstAcc + Kp1 * AltError;
EstVelocity = constrain(EstVelocity, -10000, +10000);
EstAlt = tmpAlt / 10;
if (currentTime < velTimer)
return;
velTimer = currentTime + 500000;
zVelocity = tmpAlt - lastAlt;
lastAlt = tmpAlt;
debug4 = zVelocity;
}