mirror of
https://github.com/iNavFlight/inav.git
synced 2025-07-24 00:35:34 +03:00
514 lines
15 KiB
C
514 lines
15 KiB
C
/*
|
|
* This file is part of Cleanflight.
|
|
*
|
|
* Cleanflight is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Cleanflight is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "platform.h"
|
|
|
|
#include "build/build_config.h"
|
|
#include "build/debug.h"
|
|
|
|
#include "common/axis.h"
|
|
#include "common/calibration.h"
|
|
#include "common/filter.h"
|
|
#include "common/log.h"
|
|
#include "common/maths.h"
|
|
#include "common/utils.h"
|
|
|
|
#include "config/parameter_group.h"
|
|
#include "config/parameter_group_ids.h"
|
|
#include "config/feature.h"
|
|
|
|
#include "drivers/accgyro/accgyro.h"
|
|
#include "drivers/accgyro/accgyro_mpu.h"
|
|
#include "drivers/accgyro/accgyro_mpu3050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6000.h"
|
|
#include "drivers/accgyro/accgyro_mpu6050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_mpu9250.h"
|
|
|
|
#include "drivers/accgyro/accgyro_lsm303dlhc.h"
|
|
#include "drivers/accgyro/accgyro_l3g4200d.h"
|
|
#include "drivers/accgyro/accgyro_l3gd20.h"
|
|
#include "drivers/accgyro/accgyro_adxl345.h"
|
|
#include "drivers/accgyro/accgyro_mma845x.h"
|
|
#include "drivers/accgyro/accgyro_bma280.h"
|
|
#include "drivers/accgyro/accgyro_bmi160.h"
|
|
#include "drivers/accgyro/accgyro_icm20689.h"
|
|
#include "drivers/accgyro/accgyro_fake.h"
|
|
#include "drivers/io.h"
|
|
|
|
#include "fc/config.h"
|
|
#include "fc/runtime_config.h"
|
|
|
|
#include "io/beeper.h"
|
|
#include "io/statusindicator.h"
|
|
|
|
#include "scheduler/scheduler.h"
|
|
|
|
#include "sensors/boardalignment.h"
|
|
#include "sensors/gyro.h"
|
|
#include "sensors/sensors.h"
|
|
|
|
#include "flight/gyroanalyse.h"
|
|
#include "flight/rpm_filter.h"
|
|
|
|
#ifdef USE_HARDWARE_REVISION_DETECTION
|
|
#include "hardware_revision.h"
|
|
#endif
|
|
|
|
FASTRAM gyro_t gyro; // gyro sensor object
|
|
|
|
STATIC_UNIT_TESTED gyroDev_t gyroDev0; // Not in FASTRAM since it may hold DMA buffers
|
|
STATIC_FASTRAM int16_t gyroTemperature0;
|
|
|
|
STATIC_FASTRAM_UNIT_TESTED zeroCalibrationVector_t gyroCalibration;
|
|
STATIC_FASTRAM int32_t gyroADC[XYZ_AXIS_COUNT];
|
|
|
|
STATIC_FASTRAM filterApplyFnPtr gyroLpfApplyFn;
|
|
STATIC_FASTRAM filter_t gyroLpfState[XYZ_AXIS_COUNT];
|
|
|
|
STATIC_FASTRAM filterApplyFnPtr gyroLpf2ApplyFn;
|
|
STATIC_FASTRAM filter_t gyroLpf2State[XYZ_AXIS_COUNT];
|
|
|
|
STATIC_FASTRAM filterApplyFnPtr notchFilter1ApplyFn;
|
|
STATIC_FASTRAM void *notchFilter1[XYZ_AXIS_COUNT];
|
|
STATIC_FASTRAM filterApplyFnPtr notchFilter2ApplyFn;
|
|
STATIC_FASTRAM void *notchFilter2[XYZ_AXIS_COUNT];
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
|
|
#define DYNAMIC_NOTCH_DEFAULT_CENTER_HZ 350
|
|
#define DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ 300
|
|
|
|
static EXTENDED_FASTRAM filterApplyFnPtr notchFilterDynApplyFn;
|
|
static EXTENDED_FASTRAM filterApplyFnPtr notchFilterDynApplyFn2;
|
|
static EXTENDED_FASTRAM biquadFilter_t notchFilterDyn[XYZ_AXIS_COUNT];
|
|
static EXTENDED_FASTRAM biquadFilter_t notchFilterDyn2[XYZ_AXIS_COUNT];
|
|
EXTENDED_FASTRAM gyroAnalyseState_t gyroAnalyseState;
|
|
#endif
|
|
|
|
PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 7);
|
|
|
|
PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
|
|
.gyro_lpf = GYRO_LPF_42HZ, // 42HZ value is defined for Invensense/TDK gyros
|
|
.gyro_soft_lpf_hz = 60,
|
|
.gyro_soft_lpf_type = FILTER_BIQUAD,
|
|
.gyro_align = ALIGN_DEFAULT,
|
|
.gyroMovementCalibrationThreshold = 32,
|
|
.looptime = 1000,
|
|
.gyroSync = 1,
|
|
.gyro_to_use = 0,
|
|
.gyro_soft_notch_hz_1 = 0,
|
|
.gyro_soft_notch_cutoff_1 = 1,
|
|
.gyro_soft_notch_hz_2 = 0,
|
|
.gyro_soft_notch_cutoff_2 = 1,
|
|
.gyro_stage2_lowpass_hz = 0,
|
|
.gyro_stage2_lowpass_type = FILTER_BIQUAD,
|
|
.dyn_notch_width_percent = 8,
|
|
.dyn_notch_range = DYN_NOTCH_RANGE_MEDIUM,
|
|
.dyn_notch_q = 120,
|
|
.dyn_notch_min_hz = 150,
|
|
);
|
|
|
|
STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev, gyroSensor_e gyroHardware)
|
|
{
|
|
dev->gyroAlign = ALIGN_DEFAULT;
|
|
|
|
switch (gyroHardware) {
|
|
case GYRO_AUTODETECT:
|
|
FALLTHROUGH;
|
|
|
|
#ifdef USE_GYRO_MPU6050
|
|
case GYRO_MPU6050:
|
|
if (mpu6050GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6050;
|
|
#ifdef GYRO_MPU6050_ALIGN
|
|
dev->gyroAlign = GYRO_MPU6050_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3G4200D
|
|
case GYRO_L3G4200D:
|
|
if (l3g4200dDetect(dev)) {
|
|
gyroHardware = GYRO_L3G4200D;
|
|
#ifdef GYRO_L3G4200D_ALIGN
|
|
dev->gyroAlign = GYRO_L3G4200D_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_MPU3050
|
|
case GYRO_MPU3050:
|
|
if (mpu3050Detect(dev)) {
|
|
gyroHardware = GYRO_MPU3050;
|
|
#ifdef GYRO_MPU3050_ALIGN
|
|
dev->gyroAlign = GYRO_MPU3050_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3GD20
|
|
case GYRO_L3GD20:
|
|
if (l3gd20Detect(dev)) {
|
|
gyroHardware = GYRO_L3GD20;
|
|
#ifdef GYRO_L3GD20_ALIGN
|
|
dev->gyroAlign = GYRO_L3GD20_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_MPU6000
|
|
case GYRO_MPU6000:
|
|
if (mpu6000GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6000;
|
|
#ifdef GYRO_MPU6000_ALIGN
|
|
dev->gyroAlign = GYRO_MPU6000_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#if defined(USE_GYRO_MPU6500)
|
|
case GYRO_MPU6500:
|
|
if (mpu6500GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6500;
|
|
#ifdef GYRO_MPU6500_ALIGN
|
|
dev->gyroAlign = GYRO_MPU6500_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_MPU9250
|
|
case GYRO_MPU9250:
|
|
if (mpu9250GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU9250;
|
|
#ifdef GYRO_MPU9250_ALIGN
|
|
dev->gyroAlign = GYRO_MPU9250_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_BMI160
|
|
case GYRO_BMI160:
|
|
if (bmi160GyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI160;
|
|
#ifdef GYRO_BMI160_ALIGN
|
|
dev->gyroAlign = GYRO_BMI160_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_ICM20689
|
|
case GYRO_ICM20689:
|
|
if (icm20689GyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20689;
|
|
#ifdef GYRO_ICM20689_ALIGN
|
|
dev->gyroAlign = GYRO_ICM20689_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_FAKE_GYRO
|
|
case GYRO_FAKE:
|
|
if (fakeGyroDetect(dev)) {
|
|
gyroHardware = GYRO_FAKE;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
default:
|
|
case GYRO_NONE:
|
|
gyroHardware = GYRO_NONE;
|
|
}
|
|
|
|
if (gyroHardware != GYRO_NONE) {
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware;
|
|
sensorsSet(SENSOR_GYRO);
|
|
}
|
|
return gyroHardware;
|
|
}
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
bool isDynamicFilterActive(void)
|
|
{
|
|
return feature(FEATURE_DYNAMIC_FILTERS);
|
|
}
|
|
|
|
static void gyroInitFilterDynamicNotch(void)
|
|
{
|
|
|
|
notchFilterDynApplyFn = nullFilterApply;
|
|
notchFilterDynApplyFn2 = nullFilterApply;
|
|
|
|
if (isDynamicFilterActive()) {
|
|
notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
if(gyroConfig()->dyn_notch_width_percent != 0) {
|
|
notchFilterDynApplyFn2 = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
}
|
|
const float notchQ = filterGetNotchQ(DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ); // any defaults OK here
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(¬chFilterDyn[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, getLooptime(), notchQ, FILTER_NOTCH);
|
|
biquadFilterInit(¬chFilterDyn2[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, getLooptime(), notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
bool gyroInit(void)
|
|
{
|
|
memset(&gyro, 0, sizeof(gyro));
|
|
|
|
// Set inertial sensor tag (for dual-gyro selection)
|
|
#ifdef USE_DUAL_GYRO
|
|
gyroDev0.imuSensorToUse = gyroConfig()->gyro_to_use;
|
|
#else
|
|
gyroDev0.imuSensorToUse = 0;
|
|
#endif
|
|
|
|
if (gyroDetect(&gyroDev0, GYRO_AUTODETECT) == GYRO_NONE) {
|
|
return false;
|
|
}
|
|
|
|
// Driver initialisation
|
|
gyroDev0.lpf = gyroConfig()->gyro_lpf;
|
|
gyroDev0.requestedSampleIntervalUs = gyroConfig()->looptime;
|
|
gyroDev0.sampleRateIntervalUs = gyroConfig()->looptime;
|
|
gyroDev0.initFn(&gyroDev0);
|
|
|
|
// initFn will initialize sampleRateIntervalUs to actual gyro sampling rate (if driver supports it). Calculate target looptime using that value
|
|
gyro.targetLooptime = gyroConfig()->gyroSync ? gyroDev0.sampleRateIntervalUs : gyroConfig()->looptime;
|
|
|
|
if (gyroConfig()->gyro_align != ALIGN_DEFAULT) {
|
|
gyroDev0.gyroAlign = gyroConfig()->gyro_align;
|
|
}
|
|
|
|
gyroInitFilters();
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
gyroInitFilterDynamicNotch();
|
|
gyroDataAnalyseStateInit(&gyroAnalyseState, getLooptime());
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
static void initGyroFilter(filterApplyFnPtr *applyFn, filter_t state[], uint8_t type, uint16_t cutoff)
|
|
{
|
|
*applyFn = nullFilterApply;
|
|
if (cutoff > 0) {
|
|
switch (type)
|
|
{
|
|
case FILTER_PT1:
|
|
*applyFn = (filterApplyFnPtr)pt1FilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
pt1FilterInit(&state[axis].pt1, cutoff, getLooptime()* 1e-6f);
|
|
}
|
|
break;
|
|
case FILTER_BIQUAD:
|
|
*applyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
biquadFilterInitLPF(&state[axis].biquad, cutoff, getLooptime());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void gyroInitFilters(void)
|
|
{
|
|
STATIC_FASTRAM biquadFilter_t gyroFilterNotch_1[XYZ_AXIS_COUNT];
|
|
notchFilter1ApplyFn = nullFilterApply;
|
|
|
|
STATIC_FASTRAM biquadFilter_t gyroFilterNotch_2[XYZ_AXIS_COUNT];
|
|
notchFilter2ApplyFn = nullFilterApply;
|
|
|
|
initGyroFilter(&gyroLpf2ApplyFn, gyroLpf2State, gyroConfig()->gyro_stage2_lowpass_type, gyroConfig()->gyro_stage2_lowpass_hz);
|
|
initGyroFilter(&gyroLpfApplyFn, gyroLpfState, gyroConfig()->gyro_soft_lpf_type, gyroConfig()->gyro_soft_lpf_hz);
|
|
|
|
if (gyroConfig()->gyro_soft_notch_hz_1) {
|
|
notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
notchFilter1[axis] = &gyroFilterNotch_1[axis];
|
|
biquadFilterInitNotch(notchFilter1[axis], getLooptime(), gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
|
|
}
|
|
}
|
|
|
|
if (gyroConfig()->gyro_soft_notch_hz_2) {
|
|
notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
notchFilter2[axis] = &gyroFilterNotch_2[axis];
|
|
biquadFilterInitNotch(notchFilter2[axis], getLooptime(), gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
|
|
}
|
|
}
|
|
}
|
|
|
|
void gyroStartCalibration(void)
|
|
{
|
|
zeroCalibrationStartV(&gyroCalibration, CALIBRATING_GYRO_TIME_MS, gyroConfig()->gyroMovementCalibrationThreshold, false);
|
|
}
|
|
|
|
bool FAST_CODE NOINLINE gyroIsCalibrationComplete(void)
|
|
{
|
|
return zeroCalibrationIsCompleteV(&gyroCalibration) && zeroCalibrationIsSuccessfulV(&gyroCalibration);
|
|
}
|
|
|
|
STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *dev, zeroCalibrationVector_t *gyroCalibration)
|
|
{
|
|
fpVector3_t v;
|
|
|
|
// Consume gyro reading
|
|
v.v[0] = dev->gyroADCRaw[0];
|
|
v.v[1] = dev->gyroADCRaw[1];
|
|
v.v[2] = dev->gyroADCRaw[2];
|
|
|
|
zeroCalibrationAddValueV(gyroCalibration, &v);
|
|
|
|
// Check if calibration is complete after this cycle
|
|
if (zeroCalibrationIsCompleteV(gyroCalibration)) {
|
|
zeroCalibrationGetZeroV(gyroCalibration, &v);
|
|
dev->gyroZero[0] = v.v[0];
|
|
dev->gyroZero[1] = v.v[1];
|
|
dev->gyroZero[2] = v.v[2];
|
|
|
|
LOG_D(GYRO, "Gyro calibration complete (%d, %d, %d)", dev->gyroZero[0], dev->gyroZero[1], dev->gyroZero[2]);
|
|
schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
|
|
}
|
|
else {
|
|
dev->gyroZero[0] = 0;
|
|
dev->gyroZero[1] = 0;
|
|
dev->gyroZero[2] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate rotation rate in rad/s in body frame
|
|
*/
|
|
void gyroGetMeasuredRotationRate(fpVector3_t *measuredRotationRate)
|
|
{
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
measuredRotationRate->v[axis] = DEGREES_TO_RADIANS(gyro.gyroADCf[axis]);
|
|
}
|
|
}
|
|
|
|
void FAST_CODE NOINLINE gyroUpdate()
|
|
{
|
|
// range: +/- 8192; +/- 2000 deg/sec
|
|
if (gyroDev0.readFn(&gyroDev0)) {
|
|
if (zeroCalibrationIsCompleteV(&gyroCalibration)) {
|
|
// Copy gyro value into int32_t (to prevent overflow) and then apply calibration and alignment
|
|
gyroADC[X] = (int32_t)gyroDev0.gyroADCRaw[X] - (int32_t)gyroDev0.gyroZero[X];
|
|
gyroADC[Y] = (int32_t)gyroDev0.gyroADCRaw[Y] - (int32_t)gyroDev0.gyroZero[Y];
|
|
gyroADC[Z] = (int32_t)gyroDev0.gyroADCRaw[Z] - (int32_t)gyroDev0.gyroZero[Z];
|
|
applySensorAlignment(gyroADC, gyroADC, gyroDev0.gyroAlign);
|
|
applyBoardAlignment(gyroADC);
|
|
} else {
|
|
performGyroCalibration(&gyroDev0, &gyroCalibration);
|
|
// Reset gyro values to zero to prevent other code from using uncalibrated data
|
|
gyro.gyroADCf[X] = 0.0f;
|
|
gyro.gyroADCf[Y] = 0.0f;
|
|
gyro.gyroADCf[Z] = 0.0f;
|
|
// still calibrating, so no need to further process gyro data
|
|
return;
|
|
}
|
|
} else {
|
|
// no gyro reading to process
|
|
return;
|
|
}
|
|
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
float gyroADCf = (float)gyroADC[axis] * gyroDev0.scale;
|
|
|
|
DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf));
|
|
|
|
#ifdef USE_RPM_FILTER
|
|
DEBUG_SET(DEBUG_RPM_FILTER, axis, gyroADCf);
|
|
gyroADCf = rpmFilterGyroApply(axis, gyroADCf);
|
|
DEBUG_SET(DEBUG_RPM_FILTER, axis + 3, gyroADCf);
|
|
#endif
|
|
|
|
gyroADCf = gyroLpf2ApplyFn((filter_t *) &gyroLpf2State[axis], gyroADCf);
|
|
gyroADCf = gyroLpfApplyFn((filter_t *) &gyroLpfState[axis], gyroADCf);
|
|
gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf);
|
|
gyroADCf = notchFilter2ApplyFn(notchFilter2[axis], gyroADCf);
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
if (isDynamicFilterActive()) {
|
|
gyroDataAnalysePush(&gyroAnalyseState, axis, gyroADCf);
|
|
gyroADCf = notchFilterDynApplyFn((filter_t *)¬chFilterDyn[axis], gyroADCf);
|
|
gyroADCf = notchFilterDynApplyFn2((filter_t *)¬chFilterDyn2[axis], gyroADCf);
|
|
}
|
|
#endif
|
|
gyro.gyroADCf[axis] = gyroADCf;
|
|
}
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
if (isDynamicFilterActive()) {
|
|
gyroDataAnalyse(&gyroAnalyseState, notchFilterDyn, notchFilterDyn2);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
bool gyroReadTemperature(void)
|
|
{
|
|
// Read gyro sensor temperature. temperatureFn returns temperature in [degC * 10]
|
|
if (gyroDev0.temperatureFn) {
|
|
return gyroDev0.temperatureFn(&gyroDev0, &gyroTemperature0);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int16_t gyroGetTemperature(void)
|
|
{
|
|
return gyroTemperature0;
|
|
}
|
|
|
|
int16_t gyroRateDps(int axis)
|
|
{
|
|
return lrintf(gyro.gyroADCf[axis] / gyroDev0.scale);
|
|
}
|
|
|
|
bool gyroSyncCheckUpdate(void)
|
|
{
|
|
if (!gyroDev0.intStatusFn)
|
|
return false;
|
|
|
|
return gyroDev0.intStatusFn(&gyroDev0);
|
|
}
|