1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-15 20:35:29 +03:00
inav/lib/main/MAVLink/common/mavlink_msg_obstacle_distance.h
2021-02-28 18:26:02 +00:00

405 lines
24 KiB
C

#pragma once
// MESSAGE OBSTACLE_DISTANCE PACKING
#define MAVLINK_MSG_ID_OBSTACLE_DISTANCE 330
MAVPACKED(
typedef struct __mavlink_obstacle_distance_t {
uint64_t time_usec; /*< [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.*/
uint16_t distances[72]; /*< [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm.*/
uint16_t min_distance; /*< [cm] Minimum distance the sensor can measure.*/
uint16_t max_distance; /*< [cm] Maximum distance the sensor can measure.*/
uint8_t sensor_type; /*< Class id of the distance sensor type.*/
uint8_t increment; /*< [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero.*/
float increment_f; /*< [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise.*/
float angle_offset; /*< [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise.*/
uint8_t frame; /*< Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned.*/
}) mavlink_obstacle_distance_t;
#define MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN 167
#define MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN 158
#define MAVLINK_MSG_ID_330_LEN 167
#define MAVLINK_MSG_ID_330_MIN_LEN 158
#define MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC 23
#define MAVLINK_MSG_ID_330_CRC 23
#define MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN 72
#if MAVLINK_COMMAND_24BIT
#define MAVLINK_MESSAGE_INFO_OBSTACLE_DISTANCE { \
330, \
"OBSTACLE_DISTANCE", \
9, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_obstacle_distance_t, time_usec) }, \
{ "sensor_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 156, offsetof(mavlink_obstacle_distance_t, sensor_type) }, \
{ "distances", NULL, MAVLINK_TYPE_UINT16_T, 72, 8, offsetof(mavlink_obstacle_distance_t, distances) }, \
{ "increment", NULL, MAVLINK_TYPE_UINT8_T, 0, 157, offsetof(mavlink_obstacle_distance_t, increment) }, \
{ "min_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 152, offsetof(mavlink_obstacle_distance_t, min_distance) }, \
{ "max_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 154, offsetof(mavlink_obstacle_distance_t, max_distance) }, \
{ "increment_f", NULL, MAVLINK_TYPE_FLOAT, 0, 158, offsetof(mavlink_obstacle_distance_t, increment_f) }, \
{ "angle_offset", NULL, MAVLINK_TYPE_FLOAT, 0, 162, offsetof(mavlink_obstacle_distance_t, angle_offset) }, \
{ "frame", NULL, MAVLINK_TYPE_UINT8_T, 0, 166, offsetof(mavlink_obstacle_distance_t, frame) }, \
} \
}
#else
#define MAVLINK_MESSAGE_INFO_OBSTACLE_DISTANCE { \
"OBSTACLE_DISTANCE", \
9, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_obstacle_distance_t, time_usec) }, \
{ "sensor_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 156, offsetof(mavlink_obstacle_distance_t, sensor_type) }, \
{ "distances", NULL, MAVLINK_TYPE_UINT16_T, 72, 8, offsetof(mavlink_obstacle_distance_t, distances) }, \
{ "increment", NULL, MAVLINK_TYPE_UINT8_T, 0, 157, offsetof(mavlink_obstacle_distance_t, increment) }, \
{ "min_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 152, offsetof(mavlink_obstacle_distance_t, min_distance) }, \
{ "max_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 154, offsetof(mavlink_obstacle_distance_t, max_distance) }, \
{ "increment_f", NULL, MAVLINK_TYPE_FLOAT, 0, 158, offsetof(mavlink_obstacle_distance_t, increment_f) }, \
{ "angle_offset", NULL, MAVLINK_TYPE_FLOAT, 0, 162, offsetof(mavlink_obstacle_distance_t, angle_offset) }, \
{ "frame", NULL, MAVLINK_TYPE_UINT8_T, 0, 166, offsetof(mavlink_obstacle_distance_t, frame) }, \
} \
}
#endif
/**
* @brief Pack a obstacle_distance message
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
*
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param sensor_type Class id of the distance sensor type.
* @param distances [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm.
* @param increment [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero.
* @param min_distance [cm] Minimum distance the sensor can measure.
* @param max_distance [cm] Maximum distance the sensor can measure.
* @param increment_f [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise.
* @param angle_offset [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise.
* @param frame Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_obstacle_distance_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
uint64_t time_usec, uint8_t sensor_type, const uint16_t *distances, uint8_t increment, uint16_t min_distance, uint16_t max_distance, float increment_f, float angle_offset, uint8_t frame)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint16_t(buf, 152, min_distance);
_mav_put_uint16_t(buf, 154, max_distance);
_mav_put_uint8_t(buf, 156, sensor_type);
_mav_put_uint8_t(buf, 157, increment);
_mav_put_float(buf, 158, increment_f);
_mav_put_float(buf, 162, angle_offset);
_mav_put_uint8_t(buf, 166, frame);
_mav_put_uint16_t_array(buf, 8, distances, 72);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN);
#else
mavlink_obstacle_distance_t packet;
packet.time_usec = time_usec;
packet.min_distance = min_distance;
packet.max_distance = max_distance;
packet.sensor_type = sensor_type;
packet.increment = increment;
packet.increment_f = increment_f;
packet.angle_offset = angle_offset;
packet.frame = frame;
mav_array_memcpy(packet.distances, distances, sizeof(uint16_t)*72);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_OBSTACLE_DISTANCE;
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
}
/**
* @brief Pack a obstacle_distance message on a channel
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param sensor_type Class id of the distance sensor type.
* @param distances [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm.
* @param increment [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero.
* @param min_distance [cm] Minimum distance the sensor can measure.
* @param max_distance [cm] Maximum distance the sensor can measure.
* @param increment_f [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise.
* @param angle_offset [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise.
* @param frame Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_obstacle_distance_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
mavlink_message_t* msg,
uint64_t time_usec,uint8_t sensor_type,const uint16_t *distances,uint8_t increment,uint16_t min_distance,uint16_t max_distance,float increment_f,float angle_offset,uint8_t frame)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint16_t(buf, 152, min_distance);
_mav_put_uint16_t(buf, 154, max_distance);
_mav_put_uint8_t(buf, 156, sensor_type);
_mav_put_uint8_t(buf, 157, increment);
_mav_put_float(buf, 158, increment_f);
_mav_put_float(buf, 162, angle_offset);
_mav_put_uint8_t(buf, 166, frame);
_mav_put_uint16_t_array(buf, 8, distances, 72);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN);
#else
mavlink_obstacle_distance_t packet;
packet.time_usec = time_usec;
packet.min_distance = min_distance;
packet.max_distance = max_distance;
packet.sensor_type = sensor_type;
packet.increment = increment;
packet.increment_f = increment_f;
packet.angle_offset = angle_offset;
packet.frame = frame;
mav_array_memcpy(packet.distances, distances, sizeof(uint16_t)*72);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_OBSTACLE_DISTANCE;
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
}
/**
* @brief Encode a obstacle_distance struct
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
* @param obstacle_distance C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_obstacle_distance_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_obstacle_distance_t* obstacle_distance)
{
return mavlink_msg_obstacle_distance_pack(system_id, component_id, msg, obstacle_distance->time_usec, obstacle_distance->sensor_type, obstacle_distance->distances, obstacle_distance->increment, obstacle_distance->min_distance, obstacle_distance->max_distance, obstacle_distance->increment_f, obstacle_distance->angle_offset, obstacle_distance->frame);
}
/**
* @brief Encode a obstacle_distance struct on a channel
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param obstacle_distance C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_obstacle_distance_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_obstacle_distance_t* obstacle_distance)
{
return mavlink_msg_obstacle_distance_pack_chan(system_id, component_id, chan, msg, obstacle_distance->time_usec, obstacle_distance->sensor_type, obstacle_distance->distances, obstacle_distance->increment, obstacle_distance->min_distance, obstacle_distance->max_distance, obstacle_distance->increment_f, obstacle_distance->angle_offset, obstacle_distance->frame);
}
/**
* @brief Send a obstacle_distance message
* @param chan MAVLink channel to send the message
*
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param sensor_type Class id of the distance sensor type.
* @param distances [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm.
* @param increment [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero.
* @param min_distance [cm] Minimum distance the sensor can measure.
* @param max_distance [cm] Maximum distance the sensor can measure.
* @param increment_f [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise.
* @param angle_offset [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise.
* @param frame Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned.
*/
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
static inline void mavlink_msg_obstacle_distance_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_type, const uint16_t *distances, uint8_t increment, uint16_t min_distance, uint16_t max_distance, float increment_f, float angle_offset, uint8_t frame)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint16_t(buf, 152, min_distance);
_mav_put_uint16_t(buf, 154, max_distance);
_mav_put_uint8_t(buf, 156, sensor_type);
_mav_put_uint8_t(buf, 157, increment);
_mav_put_float(buf, 158, increment_f);
_mav_put_float(buf, 162, angle_offset);
_mav_put_uint8_t(buf, 166, frame);
_mav_put_uint16_t_array(buf, 8, distances, 72);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
#else
mavlink_obstacle_distance_t packet;
packet.time_usec = time_usec;
packet.min_distance = min_distance;
packet.max_distance = max_distance;
packet.sensor_type = sensor_type;
packet.increment = increment;
packet.increment_f = increment_f;
packet.angle_offset = angle_offset;
packet.frame = frame;
mav_array_memcpy(packet.distances, distances, sizeof(uint16_t)*72);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, (const char *)&packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
#endif
}
/**
* @brief Send a obstacle_distance message
* @param chan MAVLink channel to send the message
* @param struct The MAVLink struct to serialize
*/
static inline void mavlink_msg_obstacle_distance_send_struct(mavlink_channel_t chan, const mavlink_obstacle_distance_t* obstacle_distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
mavlink_msg_obstacle_distance_send(chan, obstacle_distance->time_usec, obstacle_distance->sensor_type, obstacle_distance->distances, obstacle_distance->increment, obstacle_distance->min_distance, obstacle_distance->max_distance, obstacle_distance->increment_f, obstacle_distance->angle_offset, obstacle_distance->frame);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, (const char *)obstacle_distance, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
#endif
}
#if MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
This varient of _send() can be used to save stack space by re-using
memory from the receive buffer. The caller provides a
mavlink_message_t which is the size of a full mavlink message. This
is usually the receive buffer for the channel, and allows a reply to an
incoming message with minimum stack space usage.
*/
static inline void mavlink_msg_obstacle_distance_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_type, const uint16_t *distances, uint8_t increment, uint16_t min_distance, uint16_t max_distance, float increment_f, float angle_offset, uint8_t frame)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char *buf = (char *)msgbuf;
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_uint16_t(buf, 152, min_distance);
_mav_put_uint16_t(buf, 154, max_distance);
_mav_put_uint8_t(buf, 156, sensor_type);
_mav_put_uint8_t(buf, 157, increment);
_mav_put_float(buf, 158, increment_f);
_mav_put_float(buf, 162, angle_offset);
_mav_put_uint8_t(buf, 166, frame);
_mav_put_uint16_t_array(buf, 8, distances, 72);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
#else
mavlink_obstacle_distance_t *packet = (mavlink_obstacle_distance_t *)msgbuf;
packet->time_usec = time_usec;
packet->min_distance = min_distance;
packet->max_distance = max_distance;
packet->sensor_type = sensor_type;
packet->increment = increment;
packet->increment_f = increment_f;
packet->angle_offset = angle_offset;
packet->frame = frame;
mav_array_memcpy(packet->distances, distances, sizeof(uint16_t)*72);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, (const char *)packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC);
#endif
}
#endif
#endif
// MESSAGE OBSTACLE_DISTANCE UNPACKING
/**
* @brief Get field time_usec from obstacle_distance message
*
* @return [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
*/
static inline uint64_t mavlink_msg_obstacle_distance_get_time_usec(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint64_t(msg, 0);
}
/**
* @brief Get field sensor_type from obstacle_distance message
*
* @return Class id of the distance sensor type.
*/
static inline uint8_t mavlink_msg_obstacle_distance_get_sensor_type(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 156);
}
/**
* @brief Get field distances from obstacle_distance message
*
* @return [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm.
*/
static inline uint16_t mavlink_msg_obstacle_distance_get_distances(const mavlink_message_t* msg, uint16_t *distances)
{
return _MAV_RETURN_uint16_t_array(msg, distances, 72, 8);
}
/**
* @brief Get field increment from obstacle_distance message
*
* @return [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero.
*/
static inline uint8_t mavlink_msg_obstacle_distance_get_increment(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 157);
}
/**
* @brief Get field min_distance from obstacle_distance message
*
* @return [cm] Minimum distance the sensor can measure.
*/
static inline uint16_t mavlink_msg_obstacle_distance_get_min_distance(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint16_t(msg, 152);
}
/**
* @brief Get field max_distance from obstacle_distance message
*
* @return [cm] Maximum distance the sensor can measure.
*/
static inline uint16_t mavlink_msg_obstacle_distance_get_max_distance(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint16_t(msg, 154);
}
/**
* @brief Get field increment_f from obstacle_distance message
*
* @return [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise.
*/
static inline float mavlink_msg_obstacle_distance_get_increment_f(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 158);
}
/**
* @brief Get field angle_offset from obstacle_distance message
*
* @return [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise.
*/
static inline float mavlink_msg_obstacle_distance_get_angle_offset(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 162);
}
/**
* @brief Get field frame from obstacle_distance message
*
* @return Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned.
*/
static inline uint8_t mavlink_msg_obstacle_distance_get_frame(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 166);
}
/**
* @brief Decode a obstacle_distance message into a struct
*
* @param msg The message to decode
* @param obstacle_distance C-struct to decode the message contents into
*/
static inline void mavlink_msg_obstacle_distance_decode(const mavlink_message_t* msg, mavlink_obstacle_distance_t* obstacle_distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
obstacle_distance->time_usec = mavlink_msg_obstacle_distance_get_time_usec(msg);
mavlink_msg_obstacle_distance_get_distances(msg, obstacle_distance->distances);
obstacle_distance->min_distance = mavlink_msg_obstacle_distance_get_min_distance(msg);
obstacle_distance->max_distance = mavlink_msg_obstacle_distance_get_max_distance(msg);
obstacle_distance->sensor_type = mavlink_msg_obstacle_distance_get_sensor_type(msg);
obstacle_distance->increment = mavlink_msg_obstacle_distance_get_increment(msg);
obstacle_distance->increment_f = mavlink_msg_obstacle_distance_get_increment_f(msg);
obstacle_distance->angle_offset = mavlink_msg_obstacle_distance_get_angle_offset(msg);
obstacle_distance->frame = mavlink_msg_obstacle_distance_get_frame(msg);
#else
uint8_t len = msg->len < MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN? msg->len : MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN;
memset(obstacle_distance, 0, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN);
memcpy(obstacle_distance, _MAV_PAYLOAD(msg), len);
#endif
}