mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-23 00:05:33 +03:00
677 lines
22 KiB
C
677 lines
22 KiB
C
/*
|
|
* This file is part of Cleanflight.
|
|
*
|
|
* Cleanflight is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Cleanflight is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "platform.h"
|
|
|
|
#include "build/debug.h"
|
|
|
|
#include "common/axis.h"
|
|
#include "common/maths.h"
|
|
#include "common/filter.h"
|
|
|
|
#include "config/parameter_group.h"
|
|
#include "config/parameter_group_ids.h"
|
|
|
|
#include "drivers/accgyro/accgyro.h"
|
|
#include "drivers/accgyro/accgyro_adxl345.h"
|
|
#include "drivers/accgyro/accgyro_bma280.h"
|
|
#include "drivers/accgyro/accgyro_fake.h"
|
|
#include "drivers/accgyro/accgyro_l3g4200d.h"
|
|
#include "drivers/accgyro/accgyro_l3gd20.h"
|
|
#include "drivers/accgyro/accgyro_lsm303dlhc.h"
|
|
#include "drivers/accgyro/accgyro_mma845x.h"
|
|
#include "drivers/accgyro/accgyro_mpu.h"
|
|
#include "drivers/accgyro/accgyro_mpu3050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_spi_bmi160.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20649.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20689.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu6000.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu9250.h"
|
|
#include "drivers/bus_spi.h"
|
|
#include "drivers/gyro_sync.h"
|
|
#include "drivers/io.h"
|
|
|
|
#include "fc/runtime_config.h"
|
|
|
|
#include "io/beeper.h"
|
|
#include "io/statusindicator.h"
|
|
|
|
#include "scheduler/scheduler.h"
|
|
|
|
#include "sensors/boardalignment.h"
|
|
#include "sensors/gyro.h"
|
|
#include "sensors/gyroanalyse.h"
|
|
#include "sensors/sensors.h"
|
|
|
|
#ifdef USE_HARDWARE_REVISION_DETECTION
|
|
#include "hardware_revision.h"
|
|
#endif
|
|
|
|
gyro_t gyro;
|
|
static uint8_t gyroDebugMode;
|
|
|
|
|
|
typedef struct gyroCalibration_s {
|
|
int32_t sum[XYZ_AXIS_COUNT];
|
|
stdev_t var[XYZ_AXIS_COUNT];
|
|
uint16_t calibratingG;
|
|
} gyroCalibration_t;
|
|
|
|
bool firstArmingCalibrationWasStarted = false;
|
|
|
|
typedef union gyroSoftFilter_u {
|
|
biquadFilter_t gyroFilterLpfState[XYZ_AXIS_COUNT];
|
|
pt1Filter_t gyroFilterPt1State[XYZ_AXIS_COUNT];
|
|
firFilterDenoise_t gyroDenoiseState[XYZ_AXIS_COUNT];
|
|
} gyroSoftLpfFilter_t;
|
|
|
|
typedef struct gyroSensor_s {
|
|
gyroDev_t gyroDev;
|
|
gyroCalibration_t calibration;
|
|
// gyro soft filter
|
|
filterApplyFnPtr softLpfFilterApplyFn;
|
|
gyroSoftLpfFilter_t softLpfFilter;
|
|
void *softLpfFilterPtr[XYZ_AXIS_COUNT];
|
|
// notch filters
|
|
filterApplyFnPtr notchFilter1ApplyFn;
|
|
biquadFilter_t notchFilter1[XYZ_AXIS_COUNT];
|
|
filterApplyFnPtr notchFilter2ApplyFn;
|
|
biquadFilter_t notchFilter2[XYZ_AXIS_COUNT];
|
|
filterApplyFnPtr notchFilterDynApplyFn;
|
|
biquadFilter_t notchFilterDyn[XYZ_AXIS_COUNT];
|
|
} gyroSensor_t;
|
|
|
|
static gyroSensor_t gyroSensor1;
|
|
|
|
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor);
|
|
|
|
#define DEBUG_GYRO_CALIBRATION 3
|
|
|
|
#ifdef STM32F10X
|
|
#define GYRO_SYNC_DENOM_DEFAULT 8
|
|
#elif defined(USE_GYRO_SPI_MPU6000) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
|
|
|| defined(USE_GYRO_SPI_ICM20689)
|
|
#define GYRO_SYNC_DENOM_DEFAULT 1
|
|
#else
|
|
#define GYRO_SYNC_DENOM_DEFAULT 4
|
|
#endif
|
|
|
|
PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 1);
|
|
|
|
PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
|
|
.gyro_align = ALIGN_DEFAULT,
|
|
.gyroMovementCalibrationThreshold = 48,
|
|
.gyro_sync_denom = GYRO_SYNC_DENOM_DEFAULT,
|
|
.gyro_lpf = GYRO_LPF_256HZ,
|
|
.gyro_soft_lpf_type = FILTER_PT1,
|
|
.gyro_soft_lpf_hz = 90,
|
|
.gyro_use_32khz = false,
|
|
.gyro_to_use = 0,
|
|
.gyro_soft_notch_hz_1 = 400,
|
|
.gyro_soft_notch_cutoff_1 = 300,
|
|
.gyro_soft_notch_hz_2 = 200,
|
|
.gyro_soft_notch_cutoff_2 = 100
|
|
);
|
|
|
|
|
|
const busDevice_t *gyroSensorBus(void)
|
|
{
|
|
return &gyroSensor1.gyroDev.bus;
|
|
}
|
|
|
|
const mpuConfiguration_t *gyroMpuConfiguration(void)
|
|
{
|
|
return &gyroSensor1.gyroDev.mpuConfiguration;
|
|
}
|
|
|
|
const mpuDetectionResult_t *gyroMpuDetectionResult(void)
|
|
{
|
|
return &gyroSensor1.gyroDev.mpuDetectionResult;
|
|
}
|
|
|
|
STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev)
|
|
{
|
|
gyroSensor_e gyroHardware = GYRO_DEFAULT;
|
|
|
|
dev->gyroAlign = ALIGN_DEFAULT;
|
|
|
|
switch (gyroHardware) {
|
|
case GYRO_DEFAULT:
|
|
#ifdef USE_GYRO_MPU6050
|
|
case GYRO_MPU6050:
|
|
if (mpu6050GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6050;
|
|
#ifdef GYRO_MPU6050_ALIGN
|
|
dev->gyroAlign = GYRO_MPU6050_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3G4200D
|
|
case GYRO_L3G4200D:
|
|
if (l3g4200dDetect(dev)) {
|
|
gyroHardware = GYRO_L3G4200D;
|
|
#ifdef GYRO_L3G4200D_ALIGN
|
|
dev->gyroAlign = GYRO_L3G4200D_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_MPU3050
|
|
case GYRO_MPU3050:
|
|
if (mpu3050Detect(dev)) {
|
|
gyroHardware = GYRO_MPU3050;
|
|
#ifdef GYRO_MPU3050_ALIGN
|
|
dev->gyroAlign = GYRO_MPU3050_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3GD20
|
|
case GYRO_L3GD20:
|
|
if (l3gd20Detect(dev)) {
|
|
gyroHardware = GYRO_L3GD20;
|
|
#ifdef GYRO_L3GD20_ALIGN
|
|
dev->gyroAlign = GYRO_L3GD20_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_MPU6000
|
|
case GYRO_MPU6000:
|
|
if (mpu6000SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6000;
|
|
#ifdef GYRO_MPU6000_ALIGN
|
|
dev->gyroAlign = GYRO_MPU6000_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
|
|
case GYRO_MPU6500:
|
|
case GYRO_ICM20601:
|
|
case GYRO_ICM20602:
|
|
case GYRO_ICM20608G:
|
|
#ifdef USE_GYRO_SPI_MPU6500
|
|
if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev)) {
|
|
#else
|
|
if (mpu6500GyroDetect(dev)) {
|
|
#endif
|
|
switch (dev->mpuDetectionResult.sensor) {
|
|
case MPU_9250_SPI:
|
|
gyroHardware = GYRO_MPU9250;
|
|
break;
|
|
case ICM_20601_SPI:
|
|
gyroHardware = GYRO_ICM20601;
|
|
break;
|
|
case ICM_20602_SPI:
|
|
gyroHardware = GYRO_ICM20602;
|
|
break;
|
|
case ICM_20608_SPI:
|
|
gyroHardware = GYRO_ICM20608G;
|
|
break;
|
|
default:
|
|
gyroHardware = GYRO_MPU6500;
|
|
}
|
|
#ifdef GYRO_MPU6500_ALIGN
|
|
dev->gyroAlign = GYRO_MPU6500_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_MPU9250
|
|
case GYRO_MPU9250:
|
|
|
|
if (mpu9250SpiGyroDetect(dev))
|
|
{
|
|
gyroHardware = GYRO_MPU9250;
|
|
#ifdef GYRO_MPU9250_ALIGN
|
|
dev->gyroAlign = GYRO_MPU9250_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM20649
|
|
case GYRO_ICM20649:
|
|
if (icm20649SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20649;
|
|
#ifdef GYRO_ICM20649_ALIGN
|
|
dev->gyroAlign = GYRO_ICM20649_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM20689
|
|
case GYRO_ICM20689:
|
|
if (icm20689SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20689;
|
|
#ifdef GYRO_ICM20689_ALIGN
|
|
dev->gyroAlign = GYRO_ICM20689_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_ACCGYRO_BMI160
|
|
case GYRO_BMI160:
|
|
if (bmi160SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI160;
|
|
#ifdef GYRO_BMI160_ALIGN
|
|
dev->gyroAlign = GYRO_BMI160_ALIGN;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_FAKE_GYRO
|
|
case GYRO_FAKE:
|
|
if (fakeGyroDetect(dev)) {
|
|
gyroHardware = GYRO_FAKE;
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
gyroHardware = GYRO_NONE;
|
|
}
|
|
|
|
if (gyroHardware != GYRO_NONE) {
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware;
|
|
sensorsSet(SENSOR_GYRO);
|
|
}
|
|
|
|
|
|
return gyroHardware;
|
|
}
|
|
|
|
static bool gyroInitSensor(gyroSensor_t *gyroSensor)
|
|
{
|
|
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
|
|
|| defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) || defined(USE_GYRO_SPI_ICM20689)
|
|
|
|
#if defined(MPU_INT_EXTI)
|
|
gyroSensor->gyroDev.mpuIntExtiTag = IO_TAG(MPU_INT_EXTI);
|
|
#elif defined(USE_HARDWARE_REVISION_DETECTION)
|
|
gyroSensor->gyroDev.mpuIntExtiTag = selectMPUIntExtiConfigByHardwareRevision();
|
|
#else
|
|
gyroSensor->gyroDev.mpuIntExtiTag = IO_TAG_NONE;
|
|
#endif // MPU_INT_EXTI
|
|
|
|
#ifdef USE_DUAL_GYRO
|
|
// set cnsPin using GYRO_n_CS_PIN defined in target.h
|
|
gyroSensor->gyroDev.bus.busdev_u.spi.csnPin = gyroConfig()->gyro_to_use == 0 ? IOGetByTag(IO_TAG(GYRO_0_CS_PIN)) : IOGetByTag(IO_TAG(GYRO_1_CS_PIN));
|
|
#else
|
|
gyroSensor->gyroDev.bus.busdev_u.spi.csnPin = IO_NONE; // set cnsPin to IO_NONE so mpuDetect will set it according to value defined in target.h
|
|
#endif // USE_DUAL_GYRO
|
|
mpuDetect(&gyroSensor->gyroDev);
|
|
mpuResetFn = gyroSensor->gyroDev.mpuConfiguration.resetFn; // must be set after mpuDetect
|
|
#endif
|
|
|
|
const gyroSensor_e gyroHardware = gyroDetect(&gyroSensor->gyroDev);
|
|
if (gyroHardware == GYRO_NONE) {
|
|
return false;
|
|
}
|
|
|
|
switch (gyroHardware) {
|
|
case GYRO_MPU6500:
|
|
case GYRO_MPU9250:
|
|
case GYRO_ICM20601:
|
|
case GYRO_ICM20602:
|
|
case GYRO_ICM20608G:
|
|
case GYRO_ICM20689:
|
|
// do nothing, as gyro supports 32kHz
|
|
break;
|
|
default:
|
|
// gyro does not support 32kHz
|
|
gyroConfigMutable()->gyro_use_32khz = false;
|
|
break;
|
|
}
|
|
|
|
// Must set gyro targetLooptime before gyroDev.init and initialisation of filters
|
|
gyro.targetLooptime = gyroSetSampleRate(&gyroSensor->gyroDev, gyroConfig()->gyro_lpf, gyroConfig()->gyro_sync_denom, gyroConfig()->gyro_use_32khz);
|
|
gyroSensor->gyroDev.lpf = gyroConfig()->gyro_lpf;
|
|
gyroSensor->gyroDev.initFn(&gyroSensor->gyroDev);
|
|
if (gyroConfig()->gyro_align != ALIGN_DEFAULT) {
|
|
gyroSensor->gyroDev.gyroAlign = gyroConfig()->gyro_align;
|
|
}
|
|
gyroInitSensorFilters(gyroSensor);
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroDataAnalyseInit(gyro.targetLooptime);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool gyroInit(void)
|
|
{
|
|
switch (debugMode) {
|
|
case DEBUG_FFT:
|
|
case DEBUG_GYRO_NOTCH:
|
|
case DEBUG_GYRO:
|
|
case DEBUG_GYRO_RAW:
|
|
gyroDebugMode = debugMode;
|
|
break;
|
|
default:
|
|
// debugMode is not gyro-related
|
|
gyroDebugMode = DEBUG_NONE;
|
|
break;
|
|
}
|
|
memset(&gyro, 0, sizeof(gyro));
|
|
return gyroInitSensor(&gyroSensor1);
|
|
}
|
|
|
|
void gyroInitFilterLpf(gyroSensor_t *gyroSensor, uint8_t lpfHz)
|
|
{
|
|
gyroSensor->softLpfFilterApplyFn = nullFilterApply;
|
|
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
|
|
|
|
if (lpfHz && lpfHz <= gyroFrequencyNyquist) { // Initialisation needs to happen once samplingrate is known
|
|
switch (gyroConfig()->gyro_soft_lpf_type) {
|
|
case FILTER_BIQUAD:
|
|
gyroSensor->softLpfFilterApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
gyroSensor->softLpfFilterPtr[axis] = &gyroSensor->softLpfFilter.gyroFilterLpfState[axis];
|
|
biquadFilterInitLPF(&gyroSensor->softLpfFilter.gyroFilterLpfState[axis], lpfHz, gyro.targetLooptime);
|
|
}
|
|
break;
|
|
case FILTER_PT1:
|
|
gyroSensor->softLpfFilterApplyFn = (filterApplyFnPtr)pt1FilterApply;
|
|
const float gyroDt = (float) gyro.targetLooptime * 0.000001f;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
gyroSensor->softLpfFilterPtr[axis] = &gyroSensor->softLpfFilter.gyroFilterPt1State[axis];
|
|
pt1FilterInit(&gyroSensor->softLpfFilter.gyroFilterPt1State[axis], lpfHz, gyroDt);
|
|
}
|
|
break;
|
|
default:
|
|
gyroSensor->softLpfFilterApplyFn = (filterApplyFnPtr)firFilterDenoiseUpdate;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
gyroSensor->softLpfFilterPtr[axis] = &gyroSensor->softLpfFilter.gyroDenoiseState[axis];
|
|
firFilterDenoiseInit(&gyroSensor->softLpfFilter.gyroDenoiseState[axis], lpfHz, gyro.targetLooptime);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t calculateNyquistAdjustedNotchHz(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
|
|
if (notchHz > gyroFrequencyNyquist) {
|
|
if (notchCutoffHz < gyroFrequencyNyquist) {
|
|
notchHz = gyroFrequencyNyquist;
|
|
} else {
|
|
notchHz = 0;
|
|
}
|
|
}
|
|
|
|
return notchHz;
|
|
}
|
|
|
|
static void gyroInitFilterNotch1(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
gyroSensor->notchFilter1ApplyFn = nullFilterApply;
|
|
|
|
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
|
|
|
|
if (notchHz != 0 && notchCutoffHz != 0) {
|
|
gyroSensor->notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
biquadFilterInit(&gyroSensor->notchFilter1[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gyroInitFilterNotch2(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
gyroSensor->notchFilter2ApplyFn = nullFilterApply;
|
|
|
|
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
|
|
|
|
if (notchHz != 0 && notchCutoffHz != 0) {
|
|
gyroSensor->notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
biquadFilterInit(&gyroSensor->notchFilter2[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
static void gyroInitFilterDynamicNotch(gyroSensor_t *gyroSensor)
|
|
{
|
|
gyroSensor->notchFilterDynApplyFn = nullFilterApply;
|
|
|
|
if (isDynamicFilterActive()) {
|
|
gyroSensor->notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
const float notchQ = filterGetNotchQ(400, 390); //just any init value
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
biquadFilterInit(&gyroSensor->notchFilterDyn[axis], 400, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor)
|
|
{
|
|
gyroInitFilterLpf(gyroSensor, gyroConfig()->gyro_soft_lpf_hz);
|
|
gyroInitFilterNotch1(gyroSensor, gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
|
|
gyroInitFilterNotch2(gyroSensor, gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroInitFilterDynamicNotch(gyroSensor);
|
|
#endif
|
|
}
|
|
|
|
void gyroInitFilters(void)
|
|
{
|
|
gyroInitSensorFilters(&gyroSensor1);
|
|
}
|
|
|
|
bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor)
|
|
{
|
|
return gyroSensor->calibration.calibratingG == 0;
|
|
}
|
|
|
|
bool isGyroCalibrationComplete(void)
|
|
{
|
|
return isGyroSensorCalibrationComplete(&gyroSensor1);
|
|
}
|
|
|
|
static bool isOnFinalGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
|
|
{
|
|
return gyroCalibration->calibratingG == 1;
|
|
}
|
|
|
|
static uint16_t gyroCalculateCalibratingCycles(void)
|
|
{
|
|
return (CALIBRATING_GYRO_CYCLES / gyro.targetLooptime) * CALIBRATING_GYRO_CYCLES;
|
|
}
|
|
|
|
static bool isOnFirstGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
|
|
{
|
|
return gyroCalibration->calibratingG == gyroCalculateCalibratingCycles();
|
|
}
|
|
|
|
static void gyroSetCalibrationCycles(gyroSensor_t *gyroSensor)
|
|
{
|
|
gyroSensor->calibration.calibratingG = gyroCalculateCalibratingCycles();
|
|
}
|
|
|
|
void gyroStartCalibration(bool isFirstArmingCalibration)
|
|
{
|
|
if (!(isFirstArmingCalibration && firstArmingCalibrationWasStarted)) {
|
|
gyroSetCalibrationCycles(&gyroSensor1);
|
|
|
|
if (isFirstArmingCalibration) {
|
|
firstArmingCalibrationWasStarted = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isFirstArmingGyroCalibrationRunning(void)
|
|
{
|
|
return firstArmingCalibrationWasStarted && !isGyroCalibrationComplete();
|
|
}
|
|
|
|
STATIC_UNIT_TESTED void performGyroCalibration(gyroSensor_t *gyroSensor, uint8_t gyroMovementCalibrationThreshold)
|
|
{
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
// Reset g[axis] at start of calibration
|
|
if (isOnFirstGyroCalibrationCycle(&gyroSensor->calibration)) {
|
|
gyroSensor->calibration.sum[axis] = 0;
|
|
devClear(&gyroSensor->calibration.var[axis]);
|
|
// gyroZero is set to zero until calibration complete
|
|
gyroSensor->gyroDev.gyroZero[axis] = 0;
|
|
}
|
|
|
|
// Sum up CALIBRATING_GYRO_CYCLES readings
|
|
gyroSensor->calibration.sum[axis] += gyroSensor->gyroDev.gyroADCRaw[axis];
|
|
devPush(&gyroSensor->calibration.var[axis], gyroSensor->gyroDev.gyroADCRaw[axis]);
|
|
|
|
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
|
|
const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]);
|
|
|
|
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(stddev));
|
|
|
|
// check deviation and startover in case the model was moved
|
|
if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
|
|
gyroSetCalibrationCycles(gyroSensor);
|
|
return;
|
|
}
|
|
gyroSensor->gyroDev.gyroZero[axis] = (gyroSensor->calibration.sum[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
|
|
}
|
|
}
|
|
|
|
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
|
|
schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
|
|
if (!firstArmingCalibrationWasStarted || !isArmingDisabled()) {
|
|
beeper(BEEPER_GYRO_CALIBRATED);
|
|
}
|
|
}
|
|
--gyroSensor->calibration.calibratingG;
|
|
|
|
}
|
|
|
|
void gyroUpdateSensor(gyroSensor_t *gyroSensor)
|
|
{
|
|
if (!gyroSensor->gyroDev.readFn(&gyroSensor->gyroDev)) {
|
|
return;
|
|
}
|
|
gyroSensor->gyroDev.dataReady = false;
|
|
|
|
if (isGyroSensorCalibrationComplete(gyroSensor)) {
|
|
// move gyro data into 32-bit variables to avoid overflows in calculations
|
|
gyroSensor->gyroDev.gyroADC[X] = (int32_t)gyroSensor->gyroDev.gyroADCRaw[X] - (int32_t)gyroSensor->gyroDev.gyroZero[X];
|
|
gyroSensor->gyroDev.gyroADC[Y] = (int32_t)gyroSensor->gyroDev.gyroADCRaw[Y] - (int32_t)gyroSensor->gyroDev.gyroZero[Y];
|
|
gyroSensor->gyroDev.gyroADC[Z] = (int32_t)gyroSensor->gyroDev.gyroADCRaw[Z] - (int32_t)gyroSensor->gyroDev.gyroZero[Z];
|
|
|
|
alignSensors(gyroSensor->gyroDev.gyroADC, gyroSensor->gyroDev.gyroAlign);
|
|
} else {
|
|
performGyroCalibration(gyroSensor, gyroConfig()->gyroMovementCalibrationThreshold);
|
|
// Reset gyro values to zero to prevent other code from using uncalibrated data
|
|
gyro.gyroADCf[X] = 0.0f;
|
|
gyro.gyroADCf[Y] = 0.0f;
|
|
gyro.gyroADCf[Z] = 0.0f;
|
|
// still calibrating, so no need to further process gyro data
|
|
return;
|
|
}
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroDataAnalyse(&gyroSensor->gyroDev, gyroSensor->notchFilterDyn);
|
|
#endif
|
|
|
|
if (gyroDebugMode == DEBUG_NONE) {
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
// NOTE: this branch optimized for when there is no gyro debugging, ensure it is kept in step with non-optimized branch
|
|
float gyroADCf = (float)gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroADCf = gyroSensor->notchFilterDynApplyFn(&gyroSensor->notchFilterDyn[axis], gyroADCf);
|
|
#endif
|
|
gyroADCf = gyroSensor->notchFilter1ApplyFn(&gyroSensor->notchFilter1[axis], gyroADCf);
|
|
gyroADCf = gyroSensor->notchFilter2ApplyFn(&gyroSensor->notchFilter2[axis], gyroADCf);
|
|
gyroADCf = gyroSensor->softLpfFilterApplyFn(gyroSensor->softLpfFilterPtr[axis], gyroADCf);
|
|
gyro.gyroADCf[axis] = gyroADCf;
|
|
}
|
|
} else {
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
DEBUG_SET(DEBUG_GYRO_RAW, axis, gyroSensor->gyroDev.gyroADCRaw[axis]);
|
|
// scale gyro output to degrees per second
|
|
float gyroADCf = (float)gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
|
|
// DEBUG_GYRO_NOTCH records the unfiltered gyro output
|
|
DEBUG_SET(DEBUG_GYRO_NOTCH, axis, lrintf(gyroADCf));
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
// Apply Dynamic Notch filtering
|
|
if (isDynamicFilterActive()) {
|
|
if (axis == 0) {
|
|
DEBUG_SET(DEBUG_FFT, 0, lrintf(gyroADCf)); // store raw data
|
|
}
|
|
gyroADCf = gyroSensor->notchFilterDynApplyFn(&gyroSensor->notchFilterDyn[axis], gyroADCf);
|
|
if (axis == 0) {
|
|
DEBUG_SET(DEBUG_FFT, 1, lrintf(gyroADCf)); // store data after dynamic notch
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Apply Static Notch filtering
|
|
gyroADCf = gyroSensor->notchFilter1ApplyFn(&gyroSensor->notchFilter1[axis], gyroADCf);
|
|
gyroADCf = gyroSensor->notchFilter2ApplyFn(&gyroSensor->notchFilter2[axis], gyroADCf);
|
|
|
|
// Apply LPF
|
|
DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf));
|
|
gyroADCf = gyroSensor->softLpfFilterApplyFn(gyroSensor->softLpfFilterPtr[axis], gyroADCf);
|
|
|
|
gyro.gyroADCf[axis] = gyroADCf;
|
|
}
|
|
}
|
|
}
|
|
|
|
void gyroUpdate(void)
|
|
{
|
|
gyroUpdateSensor(&gyroSensor1);
|
|
}
|
|
|
|
void gyroReadTemperature(void)
|
|
{
|
|
if (gyroSensor1.gyroDev.temperatureFn) {
|
|
gyroSensor1.gyroDev.temperatureFn(&gyroSensor1.gyroDev, &gyroSensor1.gyroDev.temperature);
|
|
}
|
|
}
|
|
|
|
int16_t gyroGetTemperature(void)
|
|
{
|
|
return gyroSensor1.gyroDev.temperature;
|
|
}
|
|
|
|
int16_t gyroRateDps(int axis)
|
|
{
|
|
return lrintf(gyro.gyroADCf[axis] / gyroSensor1.gyroDev.scale);
|
|
}
|